首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Selective uptake of cholesteryl esters (CE) from lipoproteins by cells has been extensively studied with high density lipoproteins (HDL). It is only recently that such a mechanism has been attributed to intermediate and low density lipoproteins (IDL and LDL). Here, we compare the association of proteins and CE from very low density lipoproteins (VLDL), IDL, LDL and HDL3 to HepG2 cells. These lipoproteins were either labelled in proteins with 125I or in CE with 3H-cholesteryl oleate. We show that, at any lipoprotein concentration, protein association to the cells is significantly smaller for IDL, LDL, and HDL3 than CE association, but not for VLDL. At a concentration of 20 microg lipoprotein/mL, these associations reveal CE-selective uptake in the order of 2-, 4-, and 11-fold for IDL, LDL, and HDL3, respectively. These studies reveal that LDL and HDL3 are good selective donors of CE to HepG2 cells, while IDL is a poor donor and VLDL is not a donor. A significant inverse correlation (r2 = 0.973) was found between the total lipid/protein ratios of the four classes of lipoproteins and the extent of CE-selective uptake by HepG2 cells. The fate of 3H-CE of the two best CE donors (LDL and HDL3) was followed in HepG2 cells after 3 h of incubation. Cells were shown to hydrolyze approximately 25% of the 3H-CE of both lipoproteins. However, when the cells were treated with 100 microM of chloroquine, a lysosomotropic agent, 85 and 40% of 3H-CE hydrolysis was lost for LDL and HDL3, respectively. The fate of LDL and HDL3-CE in HepG2 cells deficient in LDL-receptor was found to be the same, indicating that the portion of CE hydrolysis sensitive to chloroquine is not significantly linked to LDL-receptor activity. Thus, in HepG2 cells, the magnitude of CE-selective uptake is inversely correlated with the total lipid/protein ratios of the lipoproteins and CE-selective uptake from the two best CE donors (LDL and HDL3) appears to follow different pathways.  相似文献   

2.
Macrophage foam cells are a defining pathologic feature of atherosclerotic lesions. Recent studies have demonstrated that at high concentrations associated with hypercholesterolemia, native LDL induces macrophage lipid accumulation. LDL particles are taken up by macrophages as part of bulk fluid pinocytosis. However, the uptake and metabolism of cholesterol from native LDL during foam cell formation has not been clearly defined. Previous reports have suggested that selective cholesteryl ester (CE) uptake might contribute to cholesterol uptake from LDL independently of particle endocytosis. In this study we demonstrate that the majority of macrophage LDL-derived cholesterol is acquired by selective CE uptake in excess of LDL pinocytosis and degradation. Macrophage selective CE uptake does not saturate at high LDL concentrations and is not down-regulated during cholesterol accumulation. In contrast to CE uptake, macrophages exhibit little selective uptake of free cholesterol (FC) from LDL. Following selective uptake from LDL, CE is rapidly hydrolyzed by a novel chloroquine-sensitive pathway. FC released from LDL-derived CE hydrolysis is largely effluxed from cells but also is subject to ACAT-mediated reesterification. These results indicate that selective CE uptake plays a major role in macrophage metabolism of LDL.  相似文献   

3.
Scavenger receptor-mediated uptake of oxidized LDL (oxLDL) is thought to be the major mechanism of foam cell generation in atherosclerotic lesions. Recent data has indicated that native LDL is also capable of contributing to foam cell formation via low-affinity receptor-independent LDL particle pinocytosis and selective cholesteryl ester (CE) uptake. In the current investigation, Cu2+-induced LDL oxidation was found to inhibit macrophage selective CE uptake. Impairment of selective CE uptake was significant with LDL oxidized for as little as 30 min and correlated with oxidative fragmentation of apoB. In contrast, LDL aggregation, LDL CE oxidation, and the enhancement of scavenger receptor-mediated LDL particle uptake required at least 3 h of oxidation. Selective CE uptake did not require expression of the LDL receptor (LDL-R) and was inhibited similarly by LDL oxidation in LDL-R−/− versus WT macrophages. Inhibition of selective uptake was also observed when cells were pretreated or cotreated with minimally oxidized LDL, indicating a direct inhibitory effect of this oxLDL on macrophages. Consistent with the effect on LDL CE uptake, minimal LDL oxidation almost completely prevented LDL-induced foam cell formation. These data demonstrate a novel inhibitory effect of mildly oxidized LDL that may reduce foam cell formation in atherosclerosis.  相似文献   

4.
Although sphingomyelin (SM) is a major phospholipid in lipoproteins as well as in the membrane rafts where the scavenger receptor class B type I (SR-BI) is localized, its possible role in the selective uptake of cholesteryl ester (CE) by the SR-BI-mediated pathway is unknown. We investigated the effect of SM in lipoproteins and cell membranes on the selective uptake in three different cell lines: SR-BI-transfected CHO cells, hepatocytes (HepG2), and adrenocortical cells (Y1BS1). Incorporation of SM into recombinant high density lipoprotein (rHDL) containing labeled CE resulted in up to 50% inhibition of the selective uptake of CE in all three cell lines. This inhibition was completely reversed by treatment of rHDL with sphingomyelinase (SMase). Selective uptake from plasma HDL was activated by 22-72% after treatment of HDL with SMase. In addition, pretreatment of the cells with SMase resulted in stimulation of CE uptake from rHDL by CHO and Y1BS1, although not by HepG2. Incorporation of ceramide into rHDL resulted in up to 2-fold stimulation of CE uptake, although pretreatment of cells with egg ceramide had no significant effect. These results show that SM and ceramide in the lipoproteins and the cell membranes regulate the SR-BI-mediated selective uptake of CE, possibly by interacting with the sterol ring or with SR-BI itself.  相似文献   

5.
The ability of human postprandial triacylglycerol-rich lipoproteins (TRLs), isolated after meals enriched in saturated fatty acids (SFAs), n-6 PUFAs, and MUFAs, to inhibit the uptake of 125I-labeled LDL by the LDL receptor was investigated in HepG2 cells. Addition of TRLs resulted in a dose-dependent inhibition of heparin-releasable binding, cell-associated radioactivity, and degradation products of 125I-labeled LDL (P < 0.001). SFA-rich Svedberg flotation rate (Sf) 60-400 resulted in significantly greater inhibition of cell-associated radioactivity than PUFA-rich particles (P = 0.016) and total uptake of 125I-labeled LDL compared with PUFA- and MUFA-rich particles (P < 0.02). Normalization of the apolipoprotein (apo)E but not apoC-III content of the TRLs removed the effect of meal fatty acid composition, and addition of an anti-apoE antibody reversed the inhibitory effect of TRLs on the total uptake of 125I-labeled LDL. Real time RT-PCR showed that the SFA-rich Sf 60-400 increased the expression of genes involved in hepatic lipid synthesis (P < 0.05) and decreased the expression of the LDL receptor-related protein 1 compared with MUFAs (P = 0.008). In conclusion, these findings suggest an alternative or additional mechanism whereby acute fat ingestion can influence LDL clearance via competitive apoE-dependent effects of TRL on the LDL receptor.  相似文献   

6.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) and facilitates the efflux of unesterified cholesterol. SR-BI expression in macrophages presumably plays a role in atherosclerosis. The role of SR-BI for selective CE uptake and cholesterol efflux in macrophages was explored. Macrophages and HDL originated from wild-type (WT) or SR-BI knockout (KO; homozygous) mice. For uptake, macrophages were incubated in medium containing 125I-/3H-labeled HDL. For lipid removal, [3H]cholesterol efflux was analyzed using HDL as acceptor. Selective uptake of HDL CE ([3H]cholesteryl oleyl ether - 125I-tyramine cellobiose) was similar in WT and SR-BI KO macrophages. Radiolabeled SR-BI KO-HDL yielded a lower rate of selective uptake compared with WT-HDL in WT and SR-BI KO macrophages. Cholesterol efflux was similar in WT and SR-BI KO cells using HDL as acceptor. SR-BI KO-HDL more efficiently promoted cholesterol removal compared with WT-HDL from both types of macrophages. Macrophages selectively take up HDL CE independently of SR-BI. Additionally, in macrophages, there is substantial cholesterol efflux that is not mediated by SR-BI. Therefore, SR-BI-independent mechanisms mediate selective CE uptake and cholesterol removal. SR-BI KO-HDL is an inferior donor for selective CE uptake compared with WT-HDL, whereas SR-BI KO-HDL more efficiently promotes cholesterol efflux.  相似文献   

7.
Plasma low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors and are either totally degraded or their cholesteryl esters (CE) are selectively delivered to cells by receptors such as the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-II and apoC-III on the uptake of LDL and HDL by HepG2 cells. Stable transformants were obtained with sense or antisense strategies that secrete 47-294% the normal level of apoC-II or 60-200% that of apoC-III. Different levels of secreted apoC-II or apoC-III had little effect on LDL and HDL protein degradation by HepG2 cells. However, compared to controls, cells under-expressing apoC-II showed a 160% higher capacity to selectively take up HDL-CE, while cells under-expressing apoC-III demonstrated 70 and 160% higher capacity to take up CE from LDL and HDL, respectively. In experiments conducted with exogenously added apoC-II or apoC-III, no significant effect was observed on lipoprotein-protein association/degradation; however, LDL-CE and HDL-CE selective uptake was significantly reduced in a dose-dependent manner. These results indicate that apoC-II and apoC-III inhibit CE-selective uptake.  相似文献   

8.
We compared the acute effect of insulin on the human colonic intestinal epithelial cell line CaCo-2 and the transformed human hepatic cell line HepG2. Over 24 h, 100 nM and 10 µM insulin significantly inhibited the secretion of apolipoprotein (apo) B-100 from HepG2 cells to 63 and 49% of control, respectively. Insulin had no effect on the secretion of apoB-48 from CaCo-2 cells. There was no effect of insulin on the cholesterol ester or free cholesterol concentrations in HepG2 or CaCo-2 cells. HepG2 and CaCo-2 cells bound insulin with high affinity, leading to similar stimulation of insulin receptor protein tyrosine kinase activation. Protein kinase C or mitogen-activated protein kinase activity in the presence or absence of insulin was not correlated with apoB-48 production in CaCo-2 cells. Therefore, insulin acutely decreases the secretion of apoB-100 in hepatic HepG2 cells, but does not acutely modulate the production or secretion of apoB-48 from CaCo-2 intestinal cells.  相似文献   

9.
In immortalized rat brain endothelial cells (GP8.39), we have previously shown that oxidized LDL (oxLDL), after 24-h treatment, stimulates arachidonic acid release and phosphatidylcholine hydrolysis by activation of cytosolic phospholipase A2 (cPLA2). A putative role for MAPKs in this process has emerged. Here, we studied the contribution of Ca2+-independent phospholipase A2 (iPLA2), and the role of the MAP kinase family as well as both cPLA2 and iPLA2 mRNA expression by RT-PCR in oxLDL toxicity to GP8.39 cells in vitro. The activation of extracellular signal-regulated kinases ERK1/2, p38 and c-Jun NH2-terminal kinase (JNK) was assessed with Western blotting and kinase activity assays. iPLA2 activity, which was found as a membrane-associated enzyme, was more stimulated by oxLDL compared with native LDL. The phosphorylation of ERK1/2, p38 and JNKs was also significantly enhanced in a dose-dependent manner. PD98059, an ERK inhibitor, SB203580, a p38 inhibitor, and SP600125, an JNK inhibitor, abolished the stimulation of all three members of the MAPK family by oxLDL. Confocal microscopy analysis and subcellular fractionation confirmed either an increase in phosphorylated form of ERKs, p38 and JNKs, or their nuclear translocation upon activation. A strong inhibition of MAPK activation was also observed when endothelial cells were treated with GF109203X, a PKC inhibitor, indicating the important role of both PKC and all three MAPKs in mediating the maximal oxLDL response. Finally, compared with samples untreated or treated with native LDL, treatment with oxLDL (100 μM hydroperoxides) for 24 h significantly increased the levels of constitutively expressed iPLA2 protein (by 5.1-fold) and mRNA (by 3.1-fold), as well as cPLA2 protein (by 4.4-fold) and mRNA (by 1.5-fold). Together, these data link the stimulation of PKC–ERK–p38–JNK pathways and PLA2 activity by oxLDL to the prooxidant mechanism of the lipoprotein complex, which may initially stimulate the endothelial cell reaction against noxious stimuli as well as metabolic repair, such as during inflammation and atherosclerosis.  相似文献   

10.
Oxidized low density lipoproteins (OxLDL) are known to promote atherosclerosis, but it is only recently that OxLDL have been associated with alterations of the functions of bone-forming osteoblasts and osteoporosis. Although high density lipoproteins (HDL) are recognized for their anti-atherogenic action, there is less information about their ability to protect against osteoporosis. Therefore, we investigated the capacity of HDL3 to prevent the cell death induced by OxLDL in human osteoblastic cells. Simultaneous exposure of the cells to HDL3 and OxLDL abolished the reduction of cell viability monitored by MTT activity measurement and the induction of apoptosis determined by annexin V staining indicating that HDL3 prevent the apoptosis of osteoblasts induced by OxLDL. This protection correlated with the displacement by HDL3 of OxLDL association to osteoblasts, signifying that OxLDL binding and/or internalization are/is necessary for their cytotoxic effects. We also found that exposition of osteoblastic cells to HDL3 prior to incubation with OxLDL reduced cell death and preserved the lysosomal integrity. This protection was correlated with an increase of SR-BI expression, a modification of OxLDL metabolism with less global uptake of OxLDL and greater selective uptake of cholesterol from OxLDL. These results strongly suggest that, as for atherosclerosis, HDL may exert beneficial actions on bone metabolism.  相似文献   

11.
We have previously shown that the liver and steroidogenic tissues of rats in vivo and a wider range of cells in vitro, including human cells, selectively take up high density lipoprotein (HDL) cholesteryl esters without parallel uptake of HDL particles. This process is regulated in tissues of rats and in cultured rat cells according to their cholesterol status. In the present study, we examined regulation of HDL selective uptake in cultured human fibroblasts and Hep G2 hepatoma cells. The cholesterol content of these cells was modified by a 20-hr incubation with either low density lipoprotein (LDL) or free cholesterol. Uptake of HDL components was examined in a subsequent 4-6-hr assay using intracellularly trapped tracers: 125I-labeled N-methyl-tyramine-cellobiose-apoA-I (125I-NMTC-apoA-I) to trace apoA-I, and [3H]cholesteryl oleyl ether to trace cholesteryl esters. In the case of fibroblasts, pretreatment with either LDL or free cholesterol resulted in decreased selective uptake (total [3H]cholesteryl ether uptake minus that due to particle uptake as measured by 125I-NMTC-apoA-I). In contrast, HDL particle uptake increased with either form of cholesterol loading. The amount of HDL that was reversibly cell-associated (bound) was increased by prior exposure to free cholesterol, but was decreased by prior exposure to LDL. In the case of Hep G2 cells, exposure to free cholesterol only slightly increased HDL particle uptake; selective uptake decreased after both forms of cholesterol loading, and reversibly bound HDL increased after exposure to free cholesterol, but either did not change or decreased after exposure to LDL. It was excluded that either LDL carried over into the HDL uptake assay or that products secreted by the cultured cells influenced these results. Thus, selective uptake by cells of both hepatic and extrahepatic origin was down-regulated by cholesterol loading, under which conditions HDL particle uptake increased. Total HDL binding was not directly correlated with either the rate of selective uptake or the rate of HDL particle uptake or the cholesterol status of the cells, suggesting more than one type of HDL binding site.  相似文献   

12.
Selective modification of arginine residues of LDL by cyclohexanedione or acetylation of lysine residues of LDL deminishes their high affinity binding and internalisation by human skin fibroblast up to 50% as compared with native LDL. The enhanced negative charge of the modified LDL particles results in an accelerated electrophoretic mobility towards the anode. Neuraminidase treatment of cyclohexanedione-modified LDL and acetyllysine-LDL normalizes not only their electrophoretic mobility, but also restores more than 80% of the original binding and uptake capacity, the specificity of this effect being indicated by using fibroblasts deficient in LDL receptor and by competitive binding and internalization experiments.  相似文献   

13.
Scavenger receptor class B type I (SR-BI) has been identified as a functional HDL binding protein that can mediate the selective uptake of cholesteryl ester (CE) from HDL. To quantify the in vivo role of SR-BI in the process of selective uptake, HDL was labeled with cholesteryl ether ([(3)H] CEt-HDL) and (125)I-tyramine cellobiose ([(125)I]TC-HDL) and injected into SR-BI knockout (KO) and wild-type (WT) mice. In SR-BI KO mice, the clearance of HDL-CE from the blood circulation was greatly diminished (0.043 +/- 0.004 pools/h for SR-BI KO mice vs. 0.106 +/- 0.004 pools/h for WT mice), while liver and adrenal uptake were greatly reduced. Utilization of double-labeled HDL ([(3)H]CEt and [(125)I]TC) indicated the total absence in vivo of the selective decay and liver uptake of CE from HDL in SR-BI KO mice. Parenchymal cells isolated from SR-BI KO mice showed similar association values for [(3)H]CEt and [(125)I]TC in contrast to WT cells, indicating that in parenchymal liver cells SR-BI is the only molecule exerting selective CE uptake from HDL. Thus, in vivo and in vitro, SR-BI is the sole molecule mediating the selective uptake of CE from HDL by the liver and the adrenals, making it the unique target to modulate reverse cholesterol transport.  相似文献   

14.
The concept that selective transfer of high density lipoprotein (HDL)-derived cholesteryl esters (CE) does not require lipoprotein internalization has been challenged recently by evidence that implicates HDL recycling during the selective uptake process. This has prompted us to examine the role of the low density lipoprotein receptor-related protein (LRP) in selective uptake. LRP is an endocytic receptor for lipoprotein lipase (LpL) and apolipoprotein E (apoE) ligands that are able to mediate selective uptake. We report that molecules that interfere with ligand binding to LRP, such as the receptor-associated protein (RAP), suramin, alpha(2)-macroglobulin, or lactoferrin, inhibit HDL-CE selective uptake by human primary adipocytes and SW872 liposarcoma cells by 35-50%. This partial inhibition of selective uptake from total HDL was not due to preferential inhibition of the HDL(2) or HDL(3) subfractions. Selective uptake by the scavenger receptor BI was not inhibited by RAP, excluding its involvement. Furthermore, in SW872 cells in which LRP was reduced to 14% of control levels by stable antisense expression, selective uptake was attenuated by at least 33%, confirming a role for LRP in this process. RAP, alpha(2)-macroglobulin, lactoferrin, and suramin (individually or in paired combinations) also attenuated selective uptake of HDL-CE by primary human adipocytes by about 40%. On the other hand, human skin fibroblasts express LRP abundantly but lack the capacity for selective uptake, demonstrating that other molecules are required. In SW872 cells, exogenous apoE or LpL can facilitate selective uptake but only the apoE-enhanced uptake can be inhibited by RAP, implicating apoE as a likely co-mediator. We discuss the possible mechanisms by which the endocytic receptor, LRP, can mediate selective uptake.  相似文献   

15.
Water uptake is crucial for crop growth and development and drought stress tolerance. The water channel aquaporins(AQP) play important roles in plant water uptake. Here, we discovered that a jasmonic acid analog, coronatine(COR), enhanced maize(Zea mays) root water uptake capacity under artificial water deficiency conditions. COR treatment induced the expression of the AQP gene Plasma membrane intrinsic protein 2;5(ZmPIP2;5).In vivo and in vitro experiments indicated that COR also directly acts ...  相似文献   

16.
Local acidic areas characterize diffuse intimal thickening (DIT) and advanced atherosclerotic lesions. The role of acidity in the modification and extra- and intracellular accumulation of triglyceride-rich VLDL and IDL particles has not been studied before. Here, we examined the effects of acidic pH on the activity of recombinant human group V secreted phospholipase A2 (sPLA2-V) toward small VLDL (sVLDL), IDL, and LDL, on the binding of these apoB-100-containing lipoproteins to human aortic proteoglycans, and on their uptake by human monocyte-derived macrophages. At acidic pH, the ability of sPLA2-V to lipolyze the apoB-100-containing lipoproteins was moderately, but significantly, increased while binding of the lipoproteins to proteoglycans increased > 60-fold and sPLA2-V-modification further doubled the binding. Moreover, acidic pH more than doubled macrophage uptake of soluble complexes of sPLA2-V-LDL with aortic proteoglycans. Proteoglycan-affinity chromatography at pH 7.5 and 5.5 revealed that sVLDL, IDL, and LDL consisted of populations with different proteoglycan-binding affinities, and, surprisingly, the sVLDL fractions with the highest proteoglycan-affinity contained only low amounts of apolipoproteins E and C-III. Our results suggest that in atherosclerotic lesions with acidic extracellular pH, sPLA2-V is able to lipolyze sVLDL, IDL, and LDL, and increase their binding to proteoglycans. This is likely to provoke extracellular accumulation of lipids derived from these atherogenic lipoprotein particles and to increase the progression of the atherosclerotic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号