首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lactobacillus plantarum P5 grew aerobically in rich media at the expense of lactate; no growth was observed in the absence of aeration. The oxygen-dependent growth was accompanied by the conversion of lactate to acetate which accumulated in the growth medium. Utilization of oxygen with lactate as substrate was observed in buffered suspensions of washed whole cells and in cell-free extracts. A pathway which accounts for the generation of adenosine triphosphate during aerobic metabolism of lactate to acetate via pyruvate and acetyl phosphate is proposed. Each of the enzyme activities involved, nicotinamide adenine dinucleotide independent lactic dehydrogenase, nicotinamide adenine dinucleotide dependent lactic dehydrogenase, pyruvate oxidase, acetate kinase and NADH oxidase were demonstrated in cell-free extracts. The production of pyruvate, acetyl phosphate and acetate was demonstrated using cell-free extracts and cofactors for the enzymes of the proposed pathway.Abbreviations MRS Man, Rogosa and Sharpe (1960) medium modified as in Materials and methods - TY Tryptone Yeast Extract broth - OUL Oxygen uptake with lactate as substrate - DCPIP 2,6-Dichlorophenolindophenol - LDH Lactic dehydrogenase  相似文献   

2.
A method of obtaining an extract of soluble enzymes from peaseedling mitochondria is described. Evidence is presented thatthe mitochondrial extract contains the following enzymes: Diphosphopyridinenucleotide (DPN) and triphosphopy-ridine nucleotide (TPN) specificwocitric dehydrogenases, alcohol dehydrogenase, formic dehydrogenase,aldehyde dehydrogenase, glutamic dehydrogenase, malic enzyme,lactic dehydrogenase, fumarase, aconitase, DPN and TPN cytochrome-creductases, adenylate kinase, phosphopyridine nucleotide transhydrogenaseand oxaloacetic carboxylase. The relative activities of theseenzymes have been quantitatively determined and the resultsdiscussed.  相似文献   

3.
Summary A histochemical observation was made of various dehydrogenase activities in oral squamous epithelia. The localization of dehydrogenases showed a relatively similiarity except for the intensity of the dehydrogenase activity. Succinic dehydrogenase activity was generally confined to the basal cell layer and adjacent cell layers; superficial layers did not show any enzymatic activity. Lactic, and malic dehydrogenase activities were localized in the basal cells to st. granulosum, and the activity of lactic dehydrogenase was the highest. -Glycerophosphate, glutamic, glucose-6-phosphate and TPN-isocitric dehydrogenase activities were observed in all the epithelial cells with the exception for the hornified layer, and they were found generally low. -Hydroxybutyric dehydrogenase was low and contained in both of st. germinativum and st. granulosum, the keratohyalin in st. granulosum being occasionally found reactive to this enzymatic activity.In connective tissue cells and collagen bundels, activities of lactic, and malic dehydrogenase were intense, while other dehydrogenases were low or trace amount.In the oral squamous epithelium under normal conditions, the dehydrogenase localization concerning the glucose metabolism and TCA cycle member and other close pathways was not similar. Nor were their activities found likewise. Those findings lead to a conclusion that the epithelial cells of the same layer many show a selective metabolic activity.With 21 Figures in the Text  相似文献   

4.
We used six ruminally cannulated Texel wethers to study the relative role of protozoa and lactate-metabolizing bacteria in ruminal fermentative patterns during an induced latent acidosis. The sheep were fed an alfalfa hay diet (H) and latent acidosis was induced, following a short transition period of one week, with a grain-rich acidotic diet (W, 60% wheat + 40% alfalfa hay). Ruminal pH, ruminal volatile fatty acids (VFA), lactate and NH3 concentrations, protozoa and lactate-utilizing bacterial counts, the relative proportions of three main bacteria implicated in lactate metabolism (a lactate-producing species, Streptococcus bovis, and two lactate-utilizing species, Selenomonas ruminantium, and Megasphaera elsdenii) using specific 16S-rRNA-targeting oligonucleotide probes, and lactate dehydrogenase (LDH) activity were determined for both diets. The pH parameters (mean, minimum, maximum, time and area under pH 6.0 and 5.5) measured with the W diet were indicative of a latent (i.e., subacute and maintained) acidosis. However, a butyric rather than lactic latent acidosis was observed in this study. Total ruminal lactate concentration remained at low levels with the acidotic diet (< 4 mmol x L(-1)), but changes were observed in VFA composition, which was oriented towards butyrate at the expense of acetate (P < 0.05), while propionate remained constant. In agreement with the low ruminal lactate concentration, no changes in the proportion of S. bovis 16S-rRNA were observed. The lactate-metabolizing bacterial population also remained fairly constant in number, proportion and activity. The increase in butyrate concentration was accompanied by a proliferation of entodiniomorphs (P < 0.01). These results suggest that the protozoa limited lactate accumulation and possibly also the decrease in pH during latent acidosis. Experiments with defaunated and faunated sheep could provide further evidence of the role of protozoa in the development of rumen latent acidosis.  相似文献   

5.
Summary Fresh tissue and tissue cultures of 80 glioblastoma multiforme and 12 monstrocellular sarcoma were histochemically investigated. The activity of the following enzymes was demonstrated in the biopsies and tissue cultures of every tumor: NADH-tetrazolium reductase, NADPH-tetrazolium reductase, lactic dehydrogenase, succinic dehydrogenase, glutamic acid dehydrogenase and cytochrome oxidase. No major differences in the relative activity pattern was shown when fresh tissue and tissue cultures were compared, nor did the enzymatic pattern change during the four week observation time.In both groups major quantitative differences in the enzymatic activity of the tumor cells in the same tissue area or tissue cultures were frequently a striking finding. Differences in the intracellular localization of the enzymatic activity were also observed. In slowly growing gliomas these histochemical variations are absent.  相似文献   

6.
Van Etten, James L. (University of Illinois, Urbana), H. Peter Molitoris, and David Gottlieb. Changes in fungi with age. II. Respiration and respiratory enzymes of Rhizoctonia solani and Sclerotium bataticola. J. Bacteriol. 91:169-175. 1966.-The rate of respiration of Rhizoctonia solani and Sclerotium bataticola decreased with age. This decrease in respiratory rate might be produced by a decrease in the specific activity of one or more enzymes involved in carbohydrate metabolism. Specific activities in cell-free extracts were measured for most of the enzymes in the hexose monophosphate shunt, Embden-Meyerhof-Parnas pathway, tricarboxylic acid cycle, and terminal electron-transport system. In addition, glucose oxidase, isocitritase, and malic enzyme were measured. In R. solani, increases in activity with age occurred for hexokinase, alpha-glycerolphosphate dehydrogenase, malic dehydrogenase, and cytochrome oxidase. Decreases occurred for phosphohexokinase, aconitase, nicotinamide adenine dinucleotide-specific isocitric dehydrogenase, reduced nicotinamide adenine dinucleotide oxidase, and at least one of the enzymes between 3-phosphoglycerate and pyruvate. In S. bataticola, increases in activity with age were observed for phosphohexokinase, pyruvic dehydrogenase, fumarase, malic dehydrogenase, and malic enzyme, whereas none of the enzymes decreased. The specific activities of the remaining enzymes did not change with age in either fungus.  相似文献   

7.
A mathematical model is proposed to describe the behavior of the pyruvate metabolic reactions, Krebs cycle and oxidative phosphorylation over a wide range of changes in the pyruvate influx rate and the activities of ATPase and NADH-reoxidating dehydrogenase. The role of adenine and pyridine nucleotides in various allosteric regulations of the Krebs cycle enzymes is discussed. The accumulation of ATP and NADH has been shown to proceed in definite succession, which makes the allosteric regulation of the Krebs cycle enzymes successive too. First "works" the inhibition by ATP, then by NADH. It has been shown that the properties of the model are in qualitative agreement with the experimental data (Garber A., Hanson R. [1]) on pyruvate oxidation by mitochondria from guinea pig liver, when allosteric regulation of isocitrate dehydrogenase by adenine nucleotides is taken into account.  相似文献   

8.
【目的】中温大曲是浓香型白酒酿造中的糖化发酵剂和生香剂,目前其质量评价主要依赖于感官和理化特征。已有研究采用扩增子测序初步探索了大曲质量等级与微生物群落组成之间的关联性,但是微生物群落功能对大曲质量的影响尚缺乏深入研究。【方法】本研究采用宏基因组学解析和对比了不同质量等级大曲的微生物群落组成和潜在功能的差异,结合理化性质,聚焦分析了酶活、乳酸和乙酸代谢相关的关键酶基因丰度。【结果】两种等级大曲的真菌群落组成差异显著。一级大曲含有更高相对丰度的丝状真菌,主要分布在曲霉属(Aspergillus, 21.6%)、罗萨氏菌属(Rasamsonia, 6.8%)、拟青霉属(Paecilomyces, 5.0%)和篮状菌属(Talaromyces, 4.4%)等。一级大曲中与环境信息处理和细胞过程相关途径的基因相对丰度普遍显著高于二级大曲。一级大曲中薄层菌属(Hymenobacter)和曲霉属等提供了更高基因丰度的α-淀粉酶,使其具有显著较高的液化力。二级大曲则含有更高相对丰度的横梗霉属(Lichtheimia, 11.8%)、根霉属(Rhizopus, 13.4%)和毕赤酵母属(Pichia, 7.2%)以及乳酸菌类微生物,如伴生乳杆菌属(Companilactobacillus)、魏斯氏菌属(Weissella)和黏液乳杆菌属(Limosilactobacillus)等。二级大曲中与代谢相关途径的基因相对丰度显著较高,如碳水化合物代谢、能量代谢和核苷酸代谢等。二级大曲中较多的乳酸菌类群有利于提高乙醇脱氢酶基因丰度,同时,糖多孢菌属(Saccharopolyspora)、葡萄球菌属(Staphylococcus)、曲霉属和高温放线菌属(Thermoactinomyces)等提供了更多的羧酸酯酶基因丰度,分别使其具有较高的发酵力和酯化力。此外,二级大曲中较多的乳酸菌还可能产生更多的乳酸脱氢酶,降解乳酸,且更高基因丰度的乙酸代谢相关酶类可促进乙酸分解代谢,使得二级大曲酸度显著低于一级大曲。【结论】本研究在基因水平上研究了不同质量等级大曲酶活和酸度差异的微生物基础,可为建立完善的大曲质量评价体系以及理性地调控群落功能提供理论支撑。  相似文献   

9.
Manometric and spectrophotometric techniques were utilized in studying respiratory metabolism in intact mycelia and cell-free extracts of the heterothallic water mold, Achlya ambisexualis Raper. Enzymes representing the hexose monophosphate pathway, the Embden-Meyerhof-Parnas scheme, the tricarboxylic acid (TCA) cycle and a terminal cytochrome system were demonstrated. In addition, glycerol phosphate dehydrogenase and lactic dehydrogenase activities were observed. Activities of selected enzymes were observed to decline with culture-age, with the exceptions of glucose-6-phosphate dehydrogenase and glycerol-phosphate dehydrogenase. Oxygen uptake in the male strain more than doubled in the presence of sexual hormone A.  相似文献   

10.
The use of enzymatic techniques to characterize rumen metabolism was investigated. Assays were developed to estimate the activities of 14 enzymes in cell-free extracts of microorganisms collected from rumen contents of cows fed two diets, selected to produce widely different proportions of fermentation end products. The results reflected the differences between the two diets in metabolic potential, fermentation patterns, and microbial populations. The differences between the diets in the relative activities of succinic dehydrogenase and fumaric reductase, for example, indicated a shift in the microbial population favoring organisms of the Viellonella alcalescens type on the concentrate diet. The data presented indicate that, if employed carefully, enzymatic criteria can be utilized effectively in studies of rumen metabolism.  相似文献   

11.
Three homofermentative (Lactobacillus plantarum B38, L. plantarum B33, Pediococcus pentosaceus B30) and three heterofermentative (Leuconostoc mesenteroides 39, L. oenos B70, Lactobacillus brevis) lactic acid bacteria were examined for the presence or absence of nicotinamide adenine dinucleotide (NAD)-dependent and NAD-independent d- and l-lactate dehydrogenases. Two of the six strains investigated, P. pentosaceus and L. oenos, did not exhibit an NAD-independent enzyme activity capable of reducing dichlorophenol indophenol. The pH optima of the lactic dehydrogenases were determined. The NAD-dependent enzymes from homofermentative strains exhibited optima at pH 7.8 to 8.8, whereas values from 9.0 to 10.0 were noted for these enzymes from heterofermentative organisms. The optima for the NAD-independent enzymes were between 5.8 and 6.6. The apparent Michaelis-Menten constants determined for both NAD and the substrates demonstrated the existence of a greater affinity for d- than l-lactic acid. A comparison of the specific NAD-dependent and NAD-independent lactate dehydrogenase activities revealed a direct correlation of the d/l ratios of these activities with the type of lactic acid produced during the growth of the organism.  相似文献   

12.
Levels of enzymes operative in the Embden-Meyerhof-Parnas (glycolytic) pathway, pentose phosphate cycle, citric acid cycle, and certain other phases of intermediary carbohydrate metabolism have been compared in Thiobacillus thioparus and T. neapolitanus. All enzymes of the glycolytic pathway except phosphofructokinase were demonstrated in both organisms. There were some striking quantitative differences between the two organisms with respect to the activities of the individual enzymes of the glycolytic pathway and the citric acid cycle. Qualitative differences were also found: the isocitrate dehydrogenase activity of T. thioparus is strictly nicotinamide adenine dinucleotide phosphate (NADP)-dependent, whereas that of T. neapolitanus is primarily nicotinamide adenine dinucleotide-dependent, activity with NADP being low; the glucose-6-phosphate dehydrogenase of T. thioparus is particulate, whereas that of T. neapolitanus is partly soluble and partly particulate; the 6-phosphogluconate dehydrogenase of T. thioparus is soluble, that of T. neapolitanus is partly soluble and partly particulate. All enzymes which function in the carbon reduction cycle were present at very high levels. In contrast, enzymes which operate exclusively in cycles other than the carbon reduction cycle were present at low levels. Of the enzymes not operative in the carbon reduction cycle that were examined, isocitric dehydrogenase had the highest specific activity. Both organisms possessed reduced nicotinamide adenine dinucleotide dehydrogenase activity. The qualitative and quantitative aspects of the data are discussed in relation to possible biochemical explanations of obligate autotrophy.  相似文献   

13.
Effect of static magnetic field on some enzymes activities in rats   总被引:2,自引:0,他引:2  
The magnetic field of 0.008 T and 0.15 T inductions influence lasting 7 weeks (7 days a week), 1 h daily determines the increase of the activity of cytoplasmatic enzymes (glutamic pyruvic transaminase, glutamic oxalacetic transaminase, lactic dehydrogenase), the decrease of cholinesterase activity and the growth of alkaline phosphatase activity in the plasma of the examined animals. The observed changes were reversible. 2 months after the exposure had been stopped, the tested parameters were back to normal.  相似文献   

14.
Adenine and pyridine nucleotides play vital roles in virtually all aspects of plant growth. This study analyzed the response of adenine and pyridine metabolism during germination and early seedling growth (ESG) of Brassica juncea exposed to two doses of arsenate (AsV), 100 and 250 μM, having non-significant or significant inhibitory effects, respectively, on germination and ESG. The ratio of NAD/NADP and NAD/NADH showed no significant change in control and 100 μM AsV, but increased significantly at 250 μM AsV during initial 24 h and also at 7th day. The activity of enzymes of NAD metabolism, viz. NAD kinase, NADP phosphatase, nicotinamidase and poly(ADP-ribose) polymerases showed significant change mostly at 250 μM AsV. Further, significant decrease was observed in the ratio of ATP/ADP and in the activities of adenylate kinase and apyrase at 250 μM AsV at 7th day. External supply of ATP (1 mM) to 100 and 250 μM AsV significantly improved germination percentage and germination strength of the seeds as compared to AsV treatments alone. The study concludes that with the increase in concentration of AsV, the balance of NAD/NADP, NAD/NADH and ATP/ADP and the activities of enzymes of adenine and pyridine metabolism were significantly altered and that these changes may be responsible for inhibitory effects of AsV on germination and ESG.  相似文献   

15.
Early iron deficiency in rat does not affect the weight or the protein, DNA, and RNA content but results in a slight reduction in gamma-aminobutyric acid (GABA) (13%, p less than 0.01) and glutamic acid (20%, p less than 0.001) content of the brain. The activities of the two GABA shunt enzymes, glutamate dehydrogenase and GABA-transaminase, and of the NAD+-linked isocitrate dehydrogenase (ICDH) were inhibited whereas the glutamic acid decarboxylase, mitochondrial NADP+-linked ICDH, and succinic dehydrogenase activities remained unaltered in brain. On rehabilitation with the iron-supplemented diet for 1 week, these decreased enzyme activities in brain attained the corresponding control values. However, the hepatic nonheme iron content increased to about 80% of the control, after rehabilitation for 2 weeks. A prolonged iron deficiency resulting in decreased levels of glutamate and GABA may lead to endocrinological, neurological, and behavioral alterations.  相似文献   

16.
Enzymes of Fatty Acid β-Oxidation in Developing Brain   总被引:1,自引:1,他引:0  
Developmental profiles were determined for the activities of eight enzymes involved in fatty acid beta-oxidation in rat brain. The enzymes studied were the palmitoyl-CoA, octanoyl-CoA, butyryl-CoA, glutaryl-CoA, and 3-hydroxyacyl-CoA dehydrogenases, the enoyl-CoA hydratase (crotonase), and the C4- and C10-thiolases. With the exception of the thiolases, all of the activities (expressed on the basis of brain weight) increased during the postnatal period of brain maturation. The activity of octanoyl-CoA dehydrogenase was elevated markedly compared to that of palmitoyl-CoA dehydrogenase at all developmental stages and in all brain regions in the rat. A similar relationship between these enzymes was observed in various regions of adult human brain. Comparisons of the activities of the beta-oxidation enzymes in human brain versus human skeletal muscle and in cultured neural cell lines (neuroblastoma and glioma) versus cultured skin fibroblasts revealed that the elevated activity of octanoyl-CoA dehydrogenase relative to palmitoyl-CoA dehydrogenase was specific to the neural tissues. This relationship was particularly evident when the enzyme activities were normalized to the activity of crotonase. The data support previous findings with radiochemical tracers, indicating that the brain is capable of utilizing fatty acids as substrates for oxidative energy metabolism. The relatively high activity of the medium-chain fatty acyl-CoA dehydrogenase in neural tissue may represent an adaptive mechanism to protect the brain from the known encephalopathic effects of octanoate and other medium-chain fatty acids that readily cross the blood-brain barrier.  相似文献   

17.
Acid phosphatase, alkaline phosphatase, and lactic dehydrogenase activities have been compared in normal human diploid cell strains and in SV40-transformed heteroploid cell lines derived from them. A higher level of acid phosphatase activity was observed in diploid cultures derived from adult lung than in cultures derived from fetal lung of similar passage levels. The alkaline phosphatase activity of normal diploid fibroblasts was significantly higher than that of SV40-transformed cell lines derived from them. Generally, the lactic dehydrogenase activities of all these cell cultures were similar. Human diploid cells in culture “age,” in the sense that their ability to proliferate decreases with time during serial subcultivation. Evaluation of the activities of these three enzymes during the “aging” process showed that, although alkaline phosphatase and lactic dehydrogenase activities were similar in “young” and “senescent” cells, acid phosphatase showed a small but significant increase in the senescent cells.  相似文献   

18.
Less than 50% of theoretical oxygen uptake was observed when glucose was dissimilated by resting cells of Pseudomonas natriegens. Low oxygen uptakes were also observed when a variety of other substrates were dissimilated. When uniformly labeled glucose-(14)C was used as substrate, 56% of the label was shown to accumulate in these resting cells. This material consisted, in part, of a polysaccharide which, although it did not give typical glycogen reactions, yielded glucose after its hydrolysis. Resting cells previously cultivated on media containing glucose completely catabolized glucose and formed a large amount of pyruvate within 30 min. Resting cells cultivated in the absence of glucose catabolized glucose more slowly and produced little pyruvate. Pyruvate disappeared after further incubation. In this latter case, experimental results suggested (i) that pyruvate was converted to other acidic products (e.g., acetate and lactate) and (ii) that pyruvate was further catabolized via the tricarboxylic acid cycle. Growth on glucose repressed the level of key enzymes of the tricarboxylic acid cycle and of lactic dehydrogenase. Growth on glycerol stimulated the level of these enzymes. A low level of isocitratase, but not malate synthetase, was noted in extracts of glucose-grown cells. Isocitric dehydrogenase was shown to require nicotinamide adenine dinucleotide phosphate (NADP) as cofactor. Previous experiments have shown that reduced NADP (NADPH(2)) cannot be readily oxidized and that pyridine nucleotide transhydrogenase could not be detected in extracts. It was concluded that acetate, lactate, and pyruvate accumulate under growing conditions when P. natriegens is cultivated on glucose (i) because of a rapid initial catabolism of glucose via an aerobic glycolytic pathway and (ii) because of a sluggishly functioning tricarboxylic acid cycle due to the accumulation of NADPH(2) and to repressed levels of key enzymes.  相似文献   

19.
Feeding a basal diet free of vitamins E and C to weanling male rats for 8 months resulted in biochemical changes characteristic of vitamin E deficiency. These included increased liver thiobarbituric acid values; decreased blood GSH levels, plasma vitamin E levels, and glutathione peroxidase activities; and increased activities of plasma pyruvate kinase, glutamic-oxaloacetic transaminase, creatine kinase, lactic dehydrogenase, and malic dehydrogenase. Tube-feeding vitamin C for 21 days resulted in partial reversal effects on the above parameters except activities of glutathione peroxidase, lactic dehydrogenase, and malic dehydrogenase. The results suggest that vitamin C may spare in part the metabolism of vitamin E through its antioxidant property.  相似文献   

20.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and other enzymes related to carbohydrate metabolism were studied in rhizobia. A nicotinamide adenine dinucleotide phosphate-6-phosphogluconate dehydrogenase was detected in strains of the fast-growing group of Rhizobium but not in strains of the slow-growing group. An enzymatic differentiation of rhizobia was established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号