首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of Nox and Duox enzymatic activity and expression   总被引:10,自引:0,他引:10  
In recent years, it has become clear that reactive oxygen species (ROS, which include superoxide, hydrogen peroxide, and other metabolites) are produced in biological systems. Rather than being simply a by-product of aerobic metabolism, it is now recognized that specific enzymes--the Nox (NADPH oxidase) and Duox (Dual oxidase) enzymes--seem to have the sole function of generating ROS in a carefully regulated manner, and key roles in signal transduction, immune function, hormone biosynthesis, and other normal biological functions are being uncovered. The prototypical Nox is the respiratory burst oxidase or phagocyte oxidase, which generates large amounts of superoxide and other reactive species in the phagosomes of neutrophils and macrophages, playing a central role in innate immunity by killing microbes. This enzyme system has been extensively studied over the past two decades, and provides a basis for comparison with the more recently described Nox and Duox enzymes, which generate ROS in a variety of cells and tissues. This review first considers the structure and regulation of the respiratory burst oxidase, and then reviews recent studies relating to the regulation of the activity of the novel Nox/Duox enzymes. The regulation of Nox and Duox expression in tissues and by specific stimuli is also considered here. An accompanying review considers biological and pathological roles of the Nox family of enzymes.  相似文献   

2.
ROS (reactive oxygen species; including superoxide and H202) are conventionally thought of as being broadly reactive and cytotoxic. Phagocytes utilize an NADPH oxidase to generate large amounts of ROS, and exploit their toxic properties as a host-defence mechanism to kill invading microbes. However, the recent discovery of the Nox and Duox enzymes that are expressed in many non-phagocytic cells implies that the 'deliberate' generation of ROS has additional cellular roles, which are currently incompletely understood. Functions of ROS in mammals have been inferred primarily from cell-culture experiments, and include signalling for mitogenic growth, apoptosis and angiogenesis. Nox/Duox enzymes may also provide H202 as a substrate for peroxidase enzymes (or, in the case of Duox, for its own peroxidase domain), thereby supporting peroxidative reactions. A broad comparison of biological functions of ROS and Nox enzymes across species and kingdoms provides insights into possible functions in mammals. To further understand novel biological roles for Nox/Duox enzymes, we are manipulating the expression of Nox/Duox enzymes in model organisms including Caenorhabditis elegans, Drosophila melanogaster and mouse. This chapter focuses on new insights into the roles of Nox enzymes gained from these approaches.  相似文献   

3.
4.
Reactive oxygen species (ROS) generated by the NADPH oxidases are conventionally thought to be cytotoxic and mutagenic and at high levels induce an oxidative stress response. The phagocyte NADPH oxidase catalyzes the NADPH-dependent reduction of molecular oxygen to generate superoxide O2-., which can dismute to generate ROS species. Together, these ROS participate in host defence by killing or damaging invading microbes. Flavocytochrome b558 is the catalytic core of the phagocyte NADPH oxidase and consists of a large glycoprotein gp91phox or Nox-2 and a small protein p22phox. The other components of the NADPH oxidase are cytosolic proteins, namely p67phox, p47phox, p40phox and Rac. A defect in any of the genes encoding gp91phox, p22phox, p67phox or p47phox results in chronic granulomatous disease, a genetic disorder characterized by severe and recurrent infections. Evidence is rapidly accumulating that low level of ROS were produced by NADPH oxidase homologs in non-phagocytic cells. To date, six human homologs (Nox-1, Nox-3, Nox-4, Nox-5, Duox-1 and Duox-2) have been recently identified in a variety of non-phagocytic cells. The identification of Nox-1 was quickly followed by the cloning of Nox-3, Nox-4, and Nox-5. In parallel, two very large members of the Nox family were discovered, namely Duox-1 and Duox-2, initially also referred to as thyroid oxidases. The physiological functions of Nox-dependent ROS generation are in progress and still require detailed characterization. Activation mechanisms and tissue distribution of the different members of the Nox family are very different, suggesting distinct physiological functions. Nox family enzymes are likely to be involved in a variety of physiological events including cell proliferation, host defence, differentiation, apoptosis, senescence and activation of growth-related signaling pathways. An increase and a decrease in the function of Nox enzymes can contribute to a wide range of pathological processes.  相似文献   

5.
Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non-phagocytic cells. These new homologues (Nox1-Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. Using Nox1 siRNA, we show that Nox1-dependent superoxide production affects the migration of HT29-D4 colonic adenocarcinoma cells on collagen-I. Nox1 inhibition or down-regulation led to a decrease of superoxide production and alpha 2 beta 1 integrin membrane availability. An addition of arachidonic acid stimulated Nox1-dependent superoxide production and HT29-D4 cell migration. Pharmacological evidences using phospholipase A2, lipoxygenases and protein kinase C inhibitors show that upstream regulation of Nox1 relies on arachidonic acid metabolism. Inhibition of 12-lipoxygenase decreased basal and arachidonic acid induced Nox1-dependent superoxide production and cell migration. Migration and ROS production inhibited by a 12-lipoxygenase inhibitor were restored by the addition of 12(S)-HETE, a downstream product of 12-lipoxygenase. Protein kinase C delta inhibition by rottlerin (and also GO6983) prevented Nox1-dependent superoxide production and inhibited cell migration, while other protein kinase C inhibitors were ineffective. We conclude that Nox1 activation by arachidonic acid metabolism occurs through 12-lipoxygenase and protein kinase C delta, and controls cell migration by affecting integrin alpha 2 subunit turn-over.  相似文献   

6.
Protective immunity against mycobacterial infections such as Mycobacterium tuberculosis is mediated by interactions between specific T cells and activated macrophages.To date,many aspects of mycobacterial immunity have shown that innate cells are the key elements that substantially influence the subsequent adaptive host response.During the early phases of infection,phagocytic cells and innate lymphocyte subsets play a pivotal role.Here we summarize the findings of recent investigations on macrophages,dendritic cells and gammadelta T lymphocytes in the response to mycobacteria.  相似文献   

7.
Harper RW  Xu C  Eiserich JP  Chen Y  Kao CY  Thai P  Setiadi H  Wu R 《FEBS letters》2005,579(21):4911-4917
Partially reduced metabolites of molecular oxygen, superoxide (O2-) and hydrogen peroxide (H2O2), are detected in respiratory tract lining fluid, and it is assumed that these are key components of innate immunity. Whether these reactive oxygen species (ROS) are produced specifically by the respiratory epithelium in response to infection, or are a non-specific by-product of oxidant-producing inflammatory cells is not well characterized. Increasing evidence supports the hypothesis that the dual function NAD(P)H oxidases/peroxidases, Duox1 and Duox2, are important sources of regulated H2O2 production in respiratory tract epithelium. However, no studies to date have characterized the regulation of Duox gene expression. Accordingly, we examined Duox1 and Duox2 mRNA expression by real-time PCR in primary respiratory tract epithelial cultures after treatment with multiple cytokines. Herein, we determined that Duox1 expression was increased several-fold by treatment with the Th2 cytokines IL-4 and IL-13, whereas Duox2 expression was highly induced following treatment with the Th1 cytokine IFN-gamma. Duox2 expression was also elevated by polyinosine-polycytidylic acid (poly(I:C)) and rhinovirus infection. Diphenyleneiodonium (DPI)-inhibitable apical H2O2 production was similarly increased by the addition of Th1 or Th2 cytokines. These results demonstrate for the first time the regulation of Duox expression by immunomodulatory Th1 and Th2 cytokines, and suggest a mechanism by which ROS production can be regulated in the respiratory tract as part of the host defense response.  相似文献   

8.
The membrane-integrated protein gp91phox, existing as a heterodimer with p22phox, functions as the catalytic core of the phagocyte NADPH oxidase, which plays a crucial role in host defence. The oxidase, dormant in resting cells, becomes activated to produce superoxide, a precursor of microbicidal oxidants, by interacting with the adaptor proteins p47phox and p67phox as well as the small GTPase Rac. In the past few years, several proteins homologous to gp91phox were discovered as superoxide-producing NAD(P)H oxidases (Nox's) in non-phagocytic cells; however, regulatory mechanisms for the novel oxidases have been largely unknown. Current identification of proteins highly related to p47phox and p67phox, designated Noxol (Nox organizer 1) and Noxal (Nox activator 1), respectively, has shed lights on common and distinct mechanisms underlying activations of Nox family oxidases.  相似文献   

9.
Sumimoto H 《The FEBS journal》2008,275(13):3249-3277
NADPH oxidases of the Nox family exist in various supergroups of eukaryotes but not in prokaryotes, and play crucial roles in a variety of biological processes, such as host defense, signal transduction, and hormone synthesis. In conjunction with NADPH oxidation, Nox enzymes reduce molecular oxygen to superoxide as a primary product, and this is further converted to various reactive oxygen species. The electron-transferring system in Nox is composed of the C-terminal cytoplasmic region homologous to the prokaryotic (and organelle) enzyme ferredoxin reductase and the N-terminal six transmembrane segments containing two hemes, a structure similar to that of cytochrome b of the mitochondrial bc(1) complex. During the course of eukaryote evolution, Nox enzymes have developed regulatory mechanisms, depending on their functions, by inserting a regulatory domain (or motif) into their own sequences or by obtaining a tightly associated protein as a regulatory subunit. For example, one to four Ca(2+)-binding EF-hand motifs are present at the N-termini in several subfamilies, such as the respiratory burst oxidase homolog (Rboh) subfamily in land plants (the supergroup Plantae), the NoxC subfamily in social amoebae (the Amoebozoa), and the Nox5 and dual oxidase (Duox) subfamilies in animals (the Opisthokonta), whereas an SH3 domain is inserted into the ferredoxin-NADP(+) reductase region of two Nox enzymes in Naegleria gruberi, a unicellular organism that belongs to the supergroup Excavata. Members of the Nox1-4 subfamily in animals form a stable heterodimer with the membrane protein p22(phox), which functions as a docking site for the SH3 domain-containing regulatory proteins p47(phox), p67(phox), and p40(phox); the small GTPase Rac binds to p67(phox) (or its homologous protein), which serves as a switch for Nox activation. Similarly, Rac activates the fungal NoxA via binding to the p67(phox)-like protein Nox regulator (NoxR). In plants, on the other hand, this GTPase directly interacts with the N-terminus of Rboh, leading to superoxide production. Here I describe the regulation of Nox-family oxidases on the basis of three-dimensional structures and evolutionary conservation.  相似文献   

10.
Reactive oxygen species (ROS) serve several physiological functions; in some settings they act in host defense, while in others they function in cellular signaling or in biosynthetic reactions. We studied the expression and function of a recently described source of ROS, NAD(P)H oxidase 1 or Nox1, which has been associated with cell proliferation. In situ hybridization in mouse colon revealed high Nox1 expression within the lower two-thirds of colon crypts, where epithelial cells undergo proliferation and differentiation. Human multitumor tissue array analysis confirmed colon-specific Nox1 expression, predominantly in differentiated epithelial tumors. Differentiation of Caco2 and HT29 cells with 1alpha,25-dihydroxyvitamin D(3) or IFN-gamma enhances Nox1 expression and decreases cell proliferation, suggesting that Nox1 does not function as a mitogenic oxidase in colon epithelial cells. Transduction with retrovirus encoding Nox1 restored activation and differentiation-dependent superoxide production in gp91(phox)-deficient PLB-985 cells, indicating close functional similarities to the phagocyte oxidase (phox). Furthermore, coexpression of cytosolic components, p47(phox) and p67(phox), augments Nox1 activity in reconstituted K562 cells. Finally, Nox1 partially restores superoxide production in neutrophils differentiating ex vivo from gp91(phox)-deficient CD34(+) peripheral blood-derived stem cells derived from patients with X-linked chronic granulomatous disease. These studies demonstrate a significant functional homology (cofactor-dependent and activation-regulated superoxide production) between Nox1 and its closest homologue, gp91(phox), suggesting that targeted up-regulation of Nox1 expression in phagocytic cells could provide a novel approach in the molecular treatment of chronic granulomatous disease.  相似文献   

11.
Reactive oxygen species (ROS) are considered to be chemically reactive with and damaging to biomolecules including DNA, protein, and lipid, and excessive exposure to ROS induces oxidative stress and causes genetic mutations. However, the recently described family of Nox and Duox enzymes generates ROS in a variety of tissues as part of normal physiological functions, which include innate immunity, signal transduction, and biochemical reactions, e.g., to produce thyroid hormone. Nature's "choice" of ROS to carry out these biological functions seems odd indeed, given its predisposition to cause molecular damage. This review describes normal biological roles of Nox enzymes as well as pathological conditions that are associated with ROS production by Nox enzymes. By far the most common conditions associated with Nox-derived ROS are chronic diseases that tend to appear late in life, including atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, Alzheimer's disease, and others. In almost all cases, with the exception of a few rare inherited conditions (e.g., related to innate immunity, gravity perception, and hypothyroidism), diseases are associated with overproduction of ROS by Nox enzymes; this results in oxidative stress that damages tissues over time. I propose that these pathological roles of Nox enzymes can be understood in terms of antagonistic pleiotropy: genes that confer a reproductive advantage early in life can have harmful effects late in life. Such genes are retained during evolution despite their harmful effects, because the force of natural selection declines with advanced age. This review discusses some of the proposed physiologic roles of Nox enzymes, and emphasizes the role of Nox enzymes in disease and the likely beneficial effects of drugs that target Nox enzymes, particularly in chronic diseases associated with an aging population.  相似文献   

12.
Changes in serotonin (5-hydroxytryptamine, 5-HT) content in the gut of patients with inflammatory bowel disease (IBD) and animal models of colitis suggest an important role of 5-HT in the pathogenesis of IBD. In this study, we examined the role and mechanism of action of 5-HT in the inflammatory response of colon epithelial cells in vitro and in vivo. In colon epithelial cells (CCD 841, HT-29, Caco-2), direct application of 5-HT induced production of reactive oxygen species (ROS) and monocyte–epithelial adhesion, an initial event of inflammation, which were blocked not only by 5-HT receptor antagonists (tropisetron, RS39604, and SB269970), antioxidants (ascorbic acid, apocynin), and various inhibitors of NADPH oxidase (DPI), CREB (KG-501), and NF-κB (PDTC), but also by transfection with Nox2 siRNA. Nox2-derived production of ROS corresponded with the rapid and brief activation of Rac. In addition, 5-HT induced Nox2, p67phox, and Duox2 without altering the level of Nox1 or Duox1 in colon epithelial cells, and silencing of Nox2 suppressed 5-HT-induced Duox2 increase. 5-HT also induced an increase in the expression of MCP-1, IL-8, and ICAM-1 and a decrease in E-cadherin expression. Exogenous application of 5-HT to rat colon through the rectum caused a minimal level of inflammation, which was demonstrated by histological examination, MPO activity, and inflammatory cytokine induction. However, 5-HT combined with a low dose of 2,4,6-trinitrobenzene sulfonic acid (TNBS), the level of which caused a minimal level of colitis, exaggerated colon inflammation accompanied by much more enhanced induction of inflammatory cytokines, IL-6, IL-8, and MCP-1, indicating that colon epithelial cells directly exposed to 5-HT are primed toward inflammation. In the colon at the lesion site, treatment with 5-HT resulted in an increase in the level of epithelial Nox2 but not of constitutively expressed Nox1, which is the opposite result of TNBS treatment. Furthermore, 5-HT treatment of Nox2-knockout mice did not induce colon inflammation, in contrast to 5-HT-treated wild-type mice. The results demonstrate that colon epithelial cells directly exposed to 5-HT are primed for inflammatory reactions, which is an important innate immune response, and the underlying mechanism for the priming is associated with Nox2-activated signaling pathways, including ERK/p38 MAPK, NF-κB, and CREB.  相似文献   

13.
Dual oxidase 2 is a member of the NADPH oxidase (Nox) gene family that plays a critical role in the biosynthesis of thyroid hormone as well as in the inflammatory response of the upper airway mucosa and in wound healing, presumably through its ability to generate reactive oxygen species, including H2O2. The recently discovered overexpression of Duox2 in gastrointestinal malignancies, as well as our limited understanding of the regulation of Duox2 expression, led us to examine the effect of cytokines and growth factors on Duox2 in human tumor cells. We found that exposure of human pancreatic cancer cells to IFN-γ (but not other agents) produced a profound up-regulation of the expression of Duox2, and its cognate maturation factor DuoxA2, but not other members of the Nox family. Furthermore, increased Duox2/DuoxA2 expression was closely associated with a significant increase in the production of both intracellular reactive oxygen species and extracellular H2O2. Examination of IFN-γ-mediated signaling events demonstrated that in addition to the canonical Jak-Stat1 pathway, IFN-γ activated the p38-MAPK pathway in pancreatic cancer cells, and both played an important role in the induction of Duox2 by IFN-γ. Duox2 up-regulation following IFN-γ exposure is also directly associated with the binding of Stat1 to elements of the Duox2 promoter. Our findings suggest that the pro-inflammatory cytokine IFN-γ initiates a Duox2-mediated reactive oxygen cascade in human pancreatic cancer cells; reactive oxygen species production in this setting could contribute to the pathophysiologic characteristics of these tumors.  相似文献   

14.
Kim YS  Morgan MJ  Choksi S  Liu ZG 《Molecular cell》2007,26(5):675-687
Tumor necrosis factor (TNF) is an important cytokine in immunity and inflammation and induces many cellular responses, including apoptosis and necrosis. TNF signaling enables the generation of superoxide in phagocytic and vascular cells through the activation of the NADPH oxidase Nox2/gp91. Here we show that TNF also activates the Nox1 NADPH oxidase in mouse fibroblasts when cells undergo necrosis. TNF treatment induces the formation of a signaling complex containing TRADD, RIP1, Nox1, and the small GTPase Rac1. TNF-treated RIP1-deficient fibroblasts fail to form such a complex, indicating that RIP1 is essential for Nox1 recruitment. Moreover, the prevention of TNF-induced superoxide generation with dominant-negative mutants of TRADD or Rac1, as well as knockdown of Nox1 using siRNA, inhibits necrosis. Thus our study suggests that activation of Nox1 through forming a complex with TNF signaling components plays a key role in TNF-induced necrotic cell death.  相似文献   

15.
Hydrogen peroxide (H(2)O(2)) has important messenger and effector functions in the plant and animal kingdom. Phagocytes produce H(2)O(2) to kill pathogens, and epithelial cells of large airways have also been reported to produce H(2)O(2) for signaling and host defense purposes. In this report, we show for the first time that urothelial cells produce H(2)O(2) in response to a calcium signal. Using a gene-deficient mouse model we also demonstrate that H(2)O(2) is produced by the NADPH oxidase Duox1, which is expressed in the mouse urothelium. In contrast, we found no evidence for the expression of lactoperoxidase, an enzyme that has been shown to cooperate with Duox enzymes. We also found that specific activation of TRPV4 calcium channels elicits a calcium signal and stimulates H(2)O(2) production in urothelial cells. Furthermore, we detected altered pressure responses in the urinary bladders of Duox1 knockout animals. Our results raise the possibility that mechanosensing in epithelial cells involves calcium-dependent H(2)O(2) production similar to that observed in plants.  相似文献   

16.
Oxidative stress underlies many forms of vascular disease as well as tissue injury following ischemia and reperfusion. The major source of oxidative stress in the artery wall is an NADPH oxidase. This enzyme complex as expressed in vascular cells differs from that in phagocytic leucocytes both in biochemical structure and functions. The crucial flavin-containing catalytic subunits, Nox1 and Nox4, are not found in leucocytes, but are highly expressed in vascular cells and upregulated with vascular remodeling, such as that found in hypertension and atherosclerosis. The difference in catalytic subunits offers the opportunity to develop "vascular specific" NADPH oxidase inhibitors that do not compromise the essential physiological signaling and phagocytic functions carried out by reactive oxygen and nitrogen species. Nitric oxide and targeted inhibitors of NADPH oxidase that block the source of oxidative stress in the vasculature are more likely to prevent the deterioration of vascular function that leads to stroke and heart attack, than are conventional antioxidants. The roles of Nox isoforms in other inflammatory conditions are yet to be explored.  相似文献   

17.
NADPH oxidase (Nox) family proteins produce superoxide (O2) directly by transferring an electron to molecular oxygen. Dual oxidases (Duoxes) also produce an O2 intermediate, although the final species secreted by mature Duoxes is H2O2, suggesting that intramolecular O2 dismutation or other mechanisms contribute to H2O2 release. We explored the structural determinants affecting reactive oxygen species formation by Duox enzymes. Duox2 showed O2 leakage when mismatched with Duox activator 1 (DuoxA1). Duox2 released O2 even in correctly matched combinations, including Duox2 + DuoxA2 and Duox2 + N-terminally tagged DuoxA2 regardless of the type or number of tags. Conversely, Duox1 did not release O2 in any combination. Chimeric Duox2 possessing the A-loop of Duox1 showed no O2 leakage; chimeric Duox1 possessing the A-loop of Duox2 released O2. Moreover, Duox2 proteins possessing the A-loops of Nox1 or Nox5 co-expressed with DuoxA2 showed enhanced O2 release, and Duox1 proteins possessing the A-loops of Nox1 or Nox5 co-expressed with DuoxA1 acquired O2 leakage. Although we identified Duox1 A-loop residues (His1071, His1072, and Gly1074) important for reducing O2 release, mutations of these residues to those of Duox2 failed to convert Duox1 to an O2-releasing enzyme. Using immunoprecipitation and endoglycosidase H sensitivity assays, we found that the A-loop of Duoxes binds to DuoxA N termini, creating more stable, mature Duox-DuoxA complexes. In conclusion, the A-loops of both Duoxes support H2O2 production through interaction with corresponding activators, but complex formation between the Duox1 A-loop and DuoxA1 results in tighter control of H2O2 release by the enzyme complex.  相似文献   

18.
Molecular composition and regulation of the Nox family NAD(P)H oxidases   总被引:12,自引:0,他引:12  
Reactive oxygen species (ROS) are conventionally regarded as inevitable deleterious by-products in aerobic metabolism with a few exceptions such as their significant role in host defense. The phagocyte NADPH oxidase, dormant in resting cells, becomes activated during phagocytosis to deliberately produce superoxide, a precursor of other microbicidal ROS, thereby playing a crucial role in killing pathogens. The catalytic center of this oxidase is the membrane-integrated protein gp91(phox), tightly complexed with p22(phox), and its activation requires the association with p47(phox), p67(phox), and the small GTPase Rac, which normally reside in the cytoplasm. Since recent discovery of non-phagocytic gp91(phox)-related enzymes of the NAD(P)H oxidase (Nox) family--seven homologues identified in humans--deliberate ROS production has been increasingly recognized as important components of various cellular events. Here, we describe a current view on the molecular composition and post-translational regulation of Nox-family oxidases in animals.  相似文献   

19.
Inhibitory action of NoxA1 on dual oxidase activity in airway cells   总被引:1,自引:0,他引:1  
Imbalance between pro- and antioxidant mechanisms in the lungs can compromise pulmonary functions, including blood oxygenation, host defense, and maintenance of an anti-inflammatory environment. Thus, tight regulatory control of reactive oxygen species is critical for proper lung function. Increasing evidence supports a role for the NADPH oxidase dual oxidase (Duox) as an important source for regulated H(2)O(2) production in the respiratory tract epithelium. In this study Duox expression, function, and regulation were investigated in a fully differentiated, mucociliary airway epithelium model. Duox-mediated H(2)O(2) generation was dependent on calcium flux, which was required for dissociation of the NADPH oxidase regulatory protein Noxa1 from plasma membrane-bound Duox. A functional Duox1-based oxidase was reconstituted in model cell lines to permit mutational analysis of Noxa1 and Duox1. Although the activation domain of Noxa1 was not required for Duox function, mutation of a proline-rich domain in the Duox C terminus, a potential interaction motif for the Noxa1 Src homology domain 3, caused up-regulation of basal and stimulated H(2)O(2) production. Similarly, knockdown of Noxa1 in airway cells increased basal H(2)O(2) generation. Our data indicate a novel, inhibitory function for Noxa1 in Duox regulation. This represents a new paradigm for control of NADPH oxidase activity, where second messenger-promoted conformational change of the Nox structure promotes oxidase activation by relieving constraint induced by regulatory components.  相似文献   

20.
NADPH oxidases are enzymes that produce reactive oxygen species. Studies in mammals, plants and fungi have shown that they play important roles in differentiation, defence, host/pathogen interaction and mutualistic symbiosis. In this paper, we have identified a Podospora anserina mutant strain impaired for processes controlled by PaNox1 and PaNox2, the two Nox isoforms characterized in this model ascomycete. We show that the gene mutated is PaNoxR , the homologue of the gene encoding the regulatory subunit p67phox, conserved in mammals and fungi, and that PaNoxR regulates both PaNox1 and PaNox2. Genome sequence analysis of P. anserina reveals that this fungus posses a third Nox isoform, PaNox3, related to human Nox5/Duox and plant Rboh. We have generated a knock-out mutant of PaNox3 and report that PaNox3 plays a minor role in P. anserina , if any. We show that PaNox1 and PaNox2 play antagonist roles in cellulose degradation. Finally, we report for the first time that a saprobic fungus, P. anserina , develops special cell structures dedicated to breach and to exploit a solid cellulosic substrate, cellophane. Importantly, as for similar structures present in some plant pathogens, their proper differentiation requires PaNox1, PaNox2, PaNoxR and the tetraspanin PaPls1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号