首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present strategy for the prevention of excessive sympathetic neural traffic to the heart relies on the use of beta-blockers, drugs that act at the heart end of the brain-heart axis. In the present study, we attempted to suppress cardiac sympathetic nerve activity by affecting the relevant cardiomotoneurons in the brain using the selective serotonin-1A (5-HT(1A)) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). In conscious, unrestrained rabbits, instrumented for recordings of heart rate, arterial pressure, or cardiac output, we provoked increases in cardiac sympathetic activity by psychological (loud sound, pinprick, and air jet) or inflammatory (0.5 microg/kg iv lipopolysaccharide) stresses. Pinprick and air-jet stresses elicited transient increases in heart rate (+50 +/- 7 and +38 +/- 4 beats/min, respectively) and in mean arterial pressure (+16 +/- 2 and +15 +/- 3 mmHg, respectively). Lipopolysaccharide injection caused sustained increases in heart rate (from 210 +/- 3 to 268 +/- 10 beats/min) and in arterial pressure (from 74 +/- 3 to 92 +/- 4 mmHg). Systemically administered 8-OH-DPAT (0.004-0.1 mg/kg) substantially attenuated these responses in a dose-dependent manner. Drug effects were prevented by a selective 5-HT(1A) receptor antagonist, WAY-100635 (0.1 mg/kg iv). Similarly to systemic administration, microinjection of 8-OH-DPAT (500 nl of 10 mM solution) into the medullary raphe-parapyramidal region caused antitachycardic effects during stressful stimulation and during lipopolysaccharide-elicited tachycardia. This is the first demonstration that activation of 5-HT(1A) receptors in the medullary raphe-parapyramidal area causes suppression of neurally mediated cardiovascular changes during acute psychological and immune stresses.  相似文献   

2.
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

3.
《Hormones and behavior》2008,53(5):612-620
Food deprivation triggers a constellation of physiological and behavioral changes including increases in peripherally-produced ghrelin and centrally-produced agouti-related protein (AgRP). Upon refeeding, food intake is increased in most species, however hamsters primarily increase food hoarding. Food deprivation-induced increases in food hoarding by Siberian hamsters are mimicked by peripheral ghrelin and central AgRP injections. Because food deprivation stimulates ghrelin as well as AgRP synthesis/release, food deprivation-induced increases in hoarding may be mediated by melanocortin 3 or 4 receptor (MC3/4-R) antagonism via AgRP, the MC3/4-R inverse agonist. Therefore, we asked: Can a MC3/4-R agonist block food deprivation- or ghrelin-induced increases in foraging, food hoarding and food intake? This was accomplished by injecting melanotan II (MTII), a synthetic MC3/4-R agonist, into the 3rd ventricle in food deprived, fed or peripheral ghrelin injected hamsters and housed in a running wheel-based food delivery foraging system. Three foraging conditions were used: a) no running wheel access, non-contingent food, b) running wheel access, non-contingent food or c) a foraging requirement for food (10 revolutions/pellet). Food deprivation was a more potent stimulator of foraging and hoarding than ghrelin. Concurrent injections of MTII completely blocked food deprivation- and ghrelin-induced increases in food intake and attenuated, but did not always completely block, food deprivation- and ghrelin-induced increases in food hoarding. Collectively, these data suggest that the MC3/4-R are involved in ghrelin- and food deprivation-induced increases in food intake, but other neurochemical systems, such as previously demonstrated with neuropeptide Y, also are involved in increases in food hoarding as well as foraging.  相似文献   

4.
Overexpression of agouti-related peptide (AgRP), an endogenous melanocortin (MC) 3 and 4 receptor antagonist (MC3/4-R), causes obesity. Exogenous AgRP-(83---132) increases food intake, but its duration and mode of action are unknown. We report herein that doses as low as 10 pmol can have a potent effect on food intake of rats over a 24-h period after intracerebroventricular injection. Additionally, a single third ventricular dose as low as 100 pmol in rats produces a robust increase in food intake that persists for an entire week. AgRP-(83---132) completely blocks the anorectic effect of MTII (MC3/4-R agonist), given simultaneously, consistent with a competitive antagonist action. However, when given 24 h prior to MTII, AgRP-(83---132) is ineffective at reversing the anorectic effects of the agonist. These results support a critical role of MC tone in limiting food intake and indicate that the orexigenic effects of AgRP-(83---132) are initially mediated by competitive antagonism at MC receptors but are sustained by alternate mechanisms.  相似文献   

5.
Kim MS  Rossi M  Abbott CR  AlAhmed SH  Smith DM  Bloom SR 《Peptides》2002,23(6):1069-1076
Intracerebroventricular (ICV) injection of Agouti related protein (AgRP), an endogenous melanocortin 3 and 4 receptor (MC3/4-R) antagonist, produces a prolonged increase in food intake. To clarify the roles of the MC3-R and MC4-R in AgRP-induced hyperphagia, the feeding effect of AgRP (83-132) was compared with that of the selective MC4-R antagonist, JKC-363 (cyclic [Mpr11, D-Nal14, Cys18, Asp22-NH2]-beta-MSH11-22). Single ICV administration of AgRP (83-132) increased food intake for 48 h whilst ICV JKC-363 increased food intake for 8h. An increase in body weight at 24 and 48 h was observed following AgRP (83-132) but not JKC-363 treatment. These data suggest that the sustained orexigenic action of AgRP (83-132) may not be through MC4-R antagonism.  相似文献   

6.
Lee M  Kim A  Conwell IM  Hruby V  Mayorov A  Cai M  Wardlaw SL 《Peptides》2008,29(3):440-447
Hypothalamic POMC neurons regulate energy balance via interactions with brain melanocortin receptors (MC-Rs). POMC neurons express the MC3-R which can function as an inhibitory autoreceptor in vitro. We now demonstrate that central activation of MC3-R with ICV infusion of the specific MC3-R agonist, [D-Trp(8)]-gamma-MSH, transiently suppresses hypothalamic Pomc expression and stimulates food intake in rats. Conversely, we also show that ICV infusion of a low dose of a selective MC3-R antagonist causes a transient decrease in feeding and weight gain. These data support a functional inhibitory role for the MC3-R on POMC neurons that leads to changes in food intake.  相似文献   

7.
The melanocortin 4 receptor (MC4-R) is a Gs-coupled receptor known to increase cAMP production following agonist stimulation. We demonstrate that the mitogen-activated protein kinases p42 (ERK2) and p44 (ERK1) are also activated by MC4-R following treatment with the MC4-R agonist NDP--MSH in stably transfected CHO-K1 cells. This time- and dose-dependent response is abolished by the MC4-R antagonist SHU-9119. p42/p44 MAPK activation is blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 but not by the protein kinase A (PKA) inhibitor Rp-cAMPS, indicating that that signal activating the p42/p44 MAPK pathway is conveyed through inositol triphosphate.  相似文献   

8.
The yellow mouse obesity syndrome is due to dominant mutations at the Agouti locus, which is characterized by obesity, hyperinsulinemia, insulin resistance, hyperglycemia, hyperleptinemia, increased linear growth, and yellow coat color. This syndrome is caused by ectopic expression of Agouti in multiple tissues. Mechanisms of Agouti action in obesity seem to involve, at least in part, competitive melanocortin antagonism. Both central and peripheral effects have been implicated in Agouti-induced obesity. An Agouti-Related Protein (AGRP) has been described recently. It has been shown to be expressed in mice hypothalamus and to act similarly to agouti as a potent antagonist to central melanocortin receptor MC4-R, suggesting that AGRP is an endogenous MC4-R ligand. Mice lacking MC4-R become hyperphagic and develop obesity, implying that agouti may lead to obesity by interfering with MC4-R signaling in the brain and consequently regulating food intake. Furthermore, food intake is inhibited by intracerebro-ventricular injection of a potent melanocortin agonist and was reversed by administration of an MC4-R antagonist. The direct cellular actions of Agouti include stimulation of fatty acid and triglyceride synthesis via a Ca2+-dependent mechanism. Agouti and insulin act in an additive manner to increase lipogenesis. This additive effect of agouti and insulin is demonstrated by the necessity of insulin in eliciting weight gain in transgenic mice expressing agouti specifically in adipose tissue. This suggests that agouti expression in adipose tissue combined with hyperinsulinemia may lead to increased adiposity. The roles of melanocortin receptors or agouti-specific receptor(s) in agouti regulation of adipocyte metabolism and other peripheral effects remain to be determined. In conclusion, both central and peripheral actions of agouti contribute to the yellow mouse obesity syndrome and this action is mediated at least in part by antagonism with melanocortin receptors and/or regulation of intracellular calcium.  相似文献   

9.
The interaction between opiate and adrenergic receptors on cardiac electrophysiologic function in the conscious dog was addressed in our study. We examined the effects of opiate receptor blockade with naloxone on clonidine-induced changes in refractoriness of the cardiac ventricle. Nine dogs were chronically instrumented for recording mean arterial blood pressure, administration of drugs and for measurement of effective refractory period of the ventricle. Clonidine (10 micrograms/kg, i.v.) significantly (p less than 0.05) decreased heart rate to 72 +/- 5 beats/minute from 108 +/- 8 beats/minute; mean arterial pressure decreased significantly (p less than 0.05) to 83 +/- 3 mmHg from 91 +/- 4 mmHg. Ventricular refractoriness was increased significantly (p less than 0.05) at current levels of 7 and 10 mA and pacing rates 180 and 200 beats/minute. Naloxone (3-10 mg/kg, i.v.) abolished clonidine's effects on heart rate, mean arterial pressure and ventricular refractoriness. We conclude that ventricular refractoriness may be regulated in part by interactions between central adrenergic and opioidergic systems.  相似文献   

10.
We have previously demonstrated that leptin-mediated activation of the central nervous system (CNS) melanocortin system reduces appetite and increases sympathetic activity and blood pressure (BP). In the present study we examined whether endogenous melanocortin system activation, independent of leptin's actions, contributes to the regulation of BP and metabolic functions in obese Zucker rats, which have mutated leptin receptors. The long-term cardiovascular and metabolic effects of central melanocortin-3/4 receptor (MC3/4R) antagonism with SHU-9119 were assessed in lean (n = 6) and obese (n = 8) Zucker rats. BP and heart rate (HR) were measured 24-h/day by telemetry and an intracerebroventricular cannula was placed in the brain lateral ventricle. After stable control measurements, SHU-9119 was infused intracerebroventricularlly (1 nmol/h) for 10 days followed by a 10-day recovery period. Chronic CNS MC3/4R antagonism significantly increased food intake and body weight in lean (20 ± 1 to 45 ± 2 g and 373 ± 11 to 432 ± 14 g) and obese (25 ± 2 to 35 ± 2 g and 547 ± 10 to 604 ± 11 g) rats. No significant changes were observed in plasma glucose levels in lean or obese rats, whereas plasma leptin and insulin levels markedly increased in lean Zucker rats during CNS MC3/4R antagonism. Chronic SHU-9119 infusion in obese Zucker rats reduced mean arterial pressure (MAP) and HR by 6 ± 1 mmHg and 24 ± 5 beats/min, whereas in lean rats SHU-9119 infusion reduced HR by 31 ± 9 beats/min while causing only a transient decrease in MAP. These results suggest that in obese Zucker rats the CNS melanocortin system contributes to elevated BP independent of leptin receptor activation.  相似文献   

11.
Energy balance results from the coordination of multiple pathways affecting energy expenditure and food intake. Candidate neuropeptides involved in energy balance are the melanocortins. Several species, including Siberian hamsters studied here, decrease and increase food intake in response to stimulation and blockade of the melanocortin 4-receptor (MC4-R). In addition, central application of the MC3/4-R agonist melanotan-II decreases body fat (increases lipolysis) beyond that accounted for by its ability to decrease food intake. Because an increase in the sympathetic nervous system drive to white adipose tissue (WAT) is the principal initiator of lipolysis, we tested whether the sympathetic outflow circuitry from brain to WAT contained MC4-R mRNA expressing cells. This was accomplished by labeling the sympathetic outflow to inguinal WAT using the pseudorabies virus (PRV), a transneuronal retrograde viral tract tracer, and then processing the brain for colocalization of PRV immunoreactivity with MC4-R mRNA, the latter assessed by in situ hybridization. MC4-R mRNA was impressively colocalized in PRV-labeled cells (approximately greater than 60%) in many brain areas across the neuroaxis, including those typically implicated in lipid mobilization (e.g., hypothalamic paraventricular, suprachiasmatic, arcuate and dorsomedial nuclei, lateral hypothalamic area), as well as those not traditionally identified with lipolysis (e.g., preoptic area, subzona incerta of the lateral hypothalamus, periaqueductal gray, solitary nucleus). These data provide compelling neuroanatomical evidence that could underlie a direct central modulation of the sympathetic outflow to WAT by the melanocortins through the MC4-Rs resulting in changes in lipid mobilization and adiposity.  相似文献   

12.
Melanocortin system and corticotropin releasing hormone (CRH) are implicated in the control of feeding behavior. Besides its anorexigenic effect on food intake, CRH is one of the most important regulators of hypothalamic-pituitary-adrenal (HPA) axis activity. Therefore, there could be an interplay between HPA axis activity and melanocortin system. We investigated the expression of melanocortin-4 receptor (MC4-R) mRNA in the hypothalamus of rats after 14 days of food restriction or after a fasting-refeeding regimen, in sham or adrenalectomized rats. Male Wistar rats were subjected to free access to food or food ingestion restricted for 2 h a day (8-10 AM) during 14 d, when plasma corticosterone, ACTH, insulin, leptin concentrations, and MC4-R mRNA expression were determined before and after refeeding. Another set of rats was fasted for 48 h, followed by refeeding during 2 or 4 h on the seventh day after adrenalectomy (ADX) or sham surgery. On the day of the experiment, rats were anesthetized and perfused and the brain processed for MC4-R mRNA by in situ hybridization. Long-term reduction of food intake, either secondary to food restriction or adrenalectomy, reduced body weight gain and also leptin and insulin plasma concentrations. Food ingestion reduced MC4-R expression in the paraventricular nucleus in naive rats subjected to food restriction and also in sham rats fasted for 48 h. However, after ADX, MC4-R expression was not changed by refeeding. In conclusion, the present data indicate that MC4-R expression is downregulated by food ingestion and this response could be modulated by glucocorticoid withdrawal.  相似文献   

13.
Schuhler S  Ebling FJ 《Peptides》2006,27(2):301-309
Siberian hamsters express photoperiod-regulated seasonal cycles of body weight and food intake, providing an opportunity to study the role of melanocortin systems in regulating long-term adaptive changes in energy metabolism. These hamsters accumulate intraperitoneal fat reserves when kept in long summer photoperiods, but show a profound long-term decrease in food intake and body weight when exposed to a short winter photoperiod. Icv administration of a MC3/4-R agonist (MTII) potently suppresses food intake in hamsters in both the obese and lean state, indicating the potential for melanocortin systems to regulate energy metabolism in the hypothalamus of the Siberian hamster. Icv treatment with the melanocortin antagonist SHU9119 increases food intake in both seasonal states. Moreover, hamsters bearing neurotoxic lesions, which destroy the majority of POMC expressing neurons in the arcuate nucleus are still able to show seasonal regulation of body weight. These studies in a seasonal model substantiate the view that endogenous melanocortin systems exert a tonic inhibition of food intake in mammals. The observations that this melanocortin tone occurs to a similar extent in both an anabolic state induced by a long day photoperiod, and in a catabolic state induced by a short day photoperiod, suggests that alterations in endogenous melanocortin tone are not the primary cause of the lipolysis, weight-loss and hypophagia which characterize the establishment of the short day-induced overwintering state.  相似文献   

14.
The issue of which melanocortin receptor (MC-R) is responsible for the anti-inflammatory effects of melanocortin peptides is still a matter of debate. Here we have addressed this aspect using a dual pharmacological and genetic approach, taking advantage of the recent characterization of more selective agonists/antagonists at MC1 and MC3-R as well as of the existence of a naturally defective MC1-R mouse strain, the recessive yellow (e/e) mouse. RT-PCR and ultrastructural analyses showed the presence of MC3-R mRNA and protein in peritoneal macrophages (M phi) collected from recessive yellow (e/e) mice and wild-type mice. This receptor was functional as Mphi incubation (30 min) with melanocortin peptides led to accumulation of cAMP, an effect abrogated by the MC3/4-R antagonist SHU9119, but not by the selective MC4-R antagonist HS024. In vitro M phi activation, determined as release of the CXC chemokine KC and IL-1 beta, was inhibited by the more selective MC3-R agonist gamma(2)-melanocyte stimulating hormone but not by the selective MC1-R agonist MS05. Systemic treatment of mice with a panel of melanocortin peptides inhibited IL-1 beta release and PMN accumulation elicited by urate crystals in the murine peritoneal cavity. MS05 failed to inhibit any of the inflammatory parameters either in wild-type or recessive yellow (e/e) mice. SHU9119 prevented the inhibitory actions of gamma(2)-melanocyte stimulating hormone both in vitro and in vivo while HS024 was inactive in vivo. In conclusion, agonism at MC3-R expressed on peritoneal M phi leads to inhibition of experimental nonimmune peritonitis in both wild-type and recessive yellow (e/e) mice.  相似文献   

15.
Hyperinsulinemia and hyperleptinemia occur concurrently in obese subjects, and both have been suggested to mediate increased blood pressure associated with excess weight gain. The goal of this study was to determine whether chronic hyperleptinemia exacerbates the effects of insulin on arterial pressure and renal function. Group I and II rats were infused with insulin (1.5 mU. kg(-1). min(-1)) for 21 days while maintaining euglycemia. After 7 days of insulin infusion, group II rats received leptin (1.0 microg. kg(-1). min(-1)) for 7 days, concomitant with insulin. Insulin plus glucose infusion reduced food intake to 55 +/- 7% of control, while leptin + insulin lowered food intake further to 22 +/- 4% of the initial control. Insulin initially raised mean arterial pressure (MAP) by 12 +/- 1 mmHg; then MAP declined to 5-8 mmHg above control during continued hyperinsulinemia. Leptin + insulin infusion increased MAP by 7 +/- 2 mmHg above the level observed in rats infused with insulin alone. Insulin raised heart rate (HR) by 17 +/- 5 beats/min, whereas leptin + insulin increased HR by 34 +/- 5 beats/min. Thus leptin appears to increase the effects of insulin to suppress appetite and to raise arterial pressure and HR.  相似文献   

16.
Joppa MA  Ling N  Chen C  Gogas KR  Foster AC  Markison S 《Peptides》2005,26(11):2294-2301
We investigated the effect of melanocortin 4 receptor (MC4) antagonists on food intake in mice. Food intake during the light phase was significantly increased by ICV administration of mixed MC3/MC4 antagonists (AgRP and SHU9119) or MC4 selective antagonist peptide [(Cyclo (1-5)[Suc-D-Nal-Arg-Trp-Lys]NH2] (MBP10) and the small molecule antagonists THP and NBI-30. Both mixed and selective antagonists significantly reversed anorexia induced by ICV administration of the MC4 agonist (c (1-6) HfRWK-NH2) and the cytokine IL-1beta. These findings provide pharmacological evidence that the MC4 receptor mediates the effects of melanocortin agonists and antagonists on food intake in mice, and support the idea that selective small molecule MC4 antagonists may be useful as therapeutics for cachexia.  相似文献   

17.
Antagonist and agonist activities of chemically synthetized mouse agouti protein fragment (91-131) (AP91-131) at the melanocortin type-1 receptor (MC1-R) were assessed using B 16-F1 mouse melanoma cells in vitro and the following assay systems: (i) receptor binding, (ii) adenylate cyclase, (iii) tyrosinase, (iv) melanin production, and (v) cell proliferation. In competition binding studies AP91-131 was about 3-fold less potent than the natural agonist alpha-melanocyte-stimulating hormone (alpha-MSH) in displacing the radioligand [125I]-[Nle4, D-Phe7]-alpha-MSH (Ki 6.5 +/- 0.8 nmol/l). Alpha-MSH-induced tyrosinase activation and melanin production were completely inhibited by a 100-fold higher concentration of AP9 l -131; the IC50 values for AP91-131 in thetwo assay systems were 91 +/- 22 nM and 95 +/- 15 nM respectively. Basal melanin production and adenylate cyclase activity in the absence of agonist were decreased by AP91-131 with IC50 values of 9.6+/-1.8 nM and 5.0+/-2.4 nM, respectively. This indicates inverse agonist activity of AP91-131 similar to that of native AP. The presence of 10 nM melanin-concentrating hormone (MCH) slightly potentiated the inhibitory activity of AP91-131 in the adenylate cyclase and melanin assays. On the other hand, AP91-131 inhibited cell growth similar to alpha-MSH (IC50 11.0 +/- 2.1 nM; maximal inhibition 1.8-fold higher than that of alpha-MSH). Furthermore, MC1-R was down-regulated by AP91-131 with about the same potency and time-course as with alpha-MSH. These results demonstrate that AP91-131 displays both agonist and antagonist activities at the MC1-R and hence that it is the cysteine-rich region of agouti protein which inhibits and mimics the different alpha-MSH functions, most likely by simultaneous modulation of different intracellular signalling pathways.  相似文献   

18.
The proinflammatory cytokine interleukin-1beta (IL-1beta) influences neuroendocrine activity and produces other effects, including fever and behavioral changes such as anxiety. The melanocortin neuropeptides, such as alpha-melanocyte-stimulating hormone (alpha-MSH), antagonize many actions of IL-1, including fever, anorexia and hypothalamic-pituitary-adrenal (HPA) axis activation through specific melanocortin receptors (MC-R) in the central nervous system. The objective of the present study was to establish the effect of MSH peptides on IL-1beta-induced anxiety-like behavior and the melanocortin receptors involved. We evaluated the effects of intracerebroventricular (i.c.v.) administration of IL-1beta (30 ng) and melanocortin receptor agonists: alpha-MSH, an MC3/MC4-R agonist (0.2 microg) or gamma-MSH, an MC3-R agonist (2 microg) or HS014, an MC4-R antagonist (2 microg), on an elevated plus-maze (EPM) test. Injection of IL-1beta induced an anxiogenic-like response, as indicated by reduced open arms entries and time spent on open arms. The administration of alpha-MSH reversed IL-1beta-induced anxiety with co-administration of HS014 inhibiting the effect of alpha-MSH. However, the associated treatment with gamma-MSH did not affect the anxiety response to IL-1beta. These data suggest that alpha-MSH, through central MC4-R can modulate the anxiety-like behavior induced by IL-1beta.  相似文献   

19.
alpha-Melanocyte stimulating hormone (MSH) has generally been assumed to be the endogenous ligand acting at the melanocortin-4 receptor (MC4-R), activation of which in the hypothalamus leads to reduced feeding. However, beta-MSH is also capable of activating MC4-R and inhibiting feeding. Here, we investigated the possibility that beta-MSH acts as an endogenous MC4-R agonist and that this melanocortin peptide plays a role in the regulation of feeding and energy balance. We found that beta-MSH had significantly higher affinities than alpha-MSH at both human MC4-R transfected into CHO cells (K(i): beta-MSH, 11.4+/-0.4 nmol/l versus alpha-MSH, 324+/-16 nmol/l, P<0.001) and MC4-R in rat hypothalamic homogenates (K(i): beta-MSH, 5.0+/-0.4 nmol/l versus alpha-MSH, 22.5+/-2.3 nmol/l, P<0.001). Incubation of brain slices with 5 microM beta-MSH significantly increased [35S]GTPgammaS binding by 140-160% (P<0.001), indicating activation of G-protein-coupled receptors (GPCRs), in the hypothalamic ventromedial (VMH), dorsomedial (DMH), arcuate (ARC) and paraventricular (PVN) nuclei. These sites match the distribution of beta-MSH immunoreactive fibres and also the distribution of MC4-R binding sites which we and others previously reported. Food-restriction significantly increased beta-MSH levels in the VMH, DMH and ARC (all P<0.05) above freely-fed controls, whilst alpha-MSH concentrations were unchanged. We propose that increased beta-MSH concentrations reflect blockade of the peptide's release in these sites, consistent with the increased hunger and the known up-regulation of MC4-R in the same nuclei. Thus, we conclude that (1). beta-MSH has higher affinity at MC4-R than alpha-MSH; (2). beta-MSH activates GPCR in these sites, which are rich in MC4-R; and (3). beta-MSH is present in hypothalamic nuclei that regulate feeding and its concentrations alter with nutritional state. We suggest that beta-MSH rather than alpha-MSH is the key ligand at the MC4-R populations that regulate feeding, and that inhibition of tonic release of beta-MSH is one mechanism contributing to hunger in under-feeding.  相似文献   

20.
The melanocortin system is an important regulator of energy balance, and melanocortin 4 receptor (MC4R) deficiency is the most common monogenic cause of obesity. We investigated whether the relationship between melanocortin system activity and energy expenditure (EE) is mediated by brown adipose tissue (BAT) activity. Therefore, female APOE*3-Leiden.CETP transgenic mice were fed a Western-type diet for 4 weeks and infused intracerebroventricularly with the melanocortin 3/4 receptor (MC3/4R) antagonist SHU9119 or vehicle for 2 weeks. SHU9119 increased food intake (+30%) and body fat (+50%) and decreased EE by reduction in fat oxidation (−42%). In addition, SHU9119 impaired the uptake of VLDL-TG by BAT. In line with this, SHU9119 decreased uncoupling protein-1 levels in BAT (−60%) and induced large intracellular lipid droplets, indicative of severely disturbed BAT activity. Finally, SHU9119-treated mice pair-fed to the vehicle-treated group still exhibited these effects, indicating that MC4R inhibition impairs BAT activity independent of food intake. These effects were not specific to the APOE*3-Leiden.CETP background as SHU9119 also inhibited BAT activity in wild-type mice. We conclude that inhibition of central MC3/4R signaling impairs BAT function, which is accompanied by reduced EE, thereby promoting adiposity. We anticipate that activation of MC4R is a promising strategy to combat obesity by increasing BAT activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号