共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyunjin Park Helena Senta Sabrina Beauvais Richard Blouin Nathalie Faucheux 《Biochemical and biophysical research communications》2010,399(3):446-292
The quaternary benzo[c]phenanthridine alkaloid sanguinarine inhibits the proliferation of cancerous cells from different origins, including lung, breast, pancreatic and colon, but nothing is known of its effects on osteosarcoma, a primary malignant bone tumour. We have found that sanguinarine alters the morphology and reduces the viability of MG-63 and SaOS-2 human osteosarcoma cell lines in concentration- and time-dependent manner. Incubation with 1 μmol/L sanguinarine for 4 and 24 h killed more efficiently MG-63 cells than SaOS-2 cells, while incubation with 5 μmol/L sanguinarine killed almost 100% of both cell populations within 24 h. This treatment also changed the mitochondrial membrane potential in both MG-63 and SaOS-2 cells within 1 h, caused chromatin condensation and the formation of apoptotic bodies. It activated multicaspases, and increased the activities of caspase-8 and caspase-9 in both MG-63 and SaOS-2 cells. These data highlight sanguinarine as a novel potential agent for bone cancer therapy. 相似文献
2.
Cho BO Jin CH Park YD Ryu HW Byun MW Seo KI Jeong IY 《Bioscience, biotechnology, and biochemistry》2011,75(7):1306-1311
Isoegomaketone (IK) is an essential oil component of Perilla frutescens (L.), but the mechanism by which IK induces apoptosis has never been studied. The purpose of this study was to elucidate the IK-induced apoptotic pathway in DLD1 human colon cancer cells. We observed that IK treatment over 24 h significantly inhibited cell viability in a dose-dependent manner. We also found that IK triggered cleavage of PARP. Moreover, IK treatment resulted in cleavage of caspase-8, -9, and -3 in a dose- and time-dependent manner. IK treatment also resulted in cleavage of Bid and translocation of Bax, and triggered the release of cytochrome c from the mitochondria to the cytoplasm. Furthermore, it resulted in the translocation of apoptosis inducing factor (AIF), a caspase-independent mitochondrial apoptosis factor, from the mitochondria into the nucleus. Overall, these results suggest that IK induces apoptosis through caspase-dependent and capase-independent pathways in DLD1 cells. 相似文献
3.
Xiaoxing Wen Jian Zhou Dan Zhang Jing Li Qin Wang Nana Feng Haixing Zhu Yuanlin Song Huayin Li Chunxue Bai 《Respiratory research》2015,16(1)
Background
Denatonium, a widely used bitter agonist, activates bitter taste receptors on many cell types and plays important roles in chemical release, ciliary beating and smooth muscle relaxation through intracellular Ca2+-dependent pathways. However, the effects of denatonium on the proliferation of airway epithelial cells and on the integrity of cellular components such as mitochondria have not been studied. In this study, we hypothesize that denatonium might induce airway epithelial cell injury by damaging mitochondria.Methods
Bright-field microscopy, cell counting kit-8 (CCK-8) assay and flow cytometry analysis were used to examine cellular morphology, proliferation and cell cycle, respectively. Transmission electron microscopy (TEM) was used to examine mitochondrial integrity. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and protein expression, respectively.Results
For airway epithelial cells, we observed that denatonium significantly effects cellular morphology, decreases cell proliferation and reduces the number of cells in S phase in a dose-dependent manner. TEM analysis demonstrated that denatonium causes large amplitude swelling of mitochondria, which was confirmed by the loss of mitochondrial membrane potential, the down-regulation of Bcl-2 protein and the subsequent enhancement of the mitochondrial release of cytochrome c and Smac/DIABLO after denatonium treatment.Conclusions
In this study, we demonstrated for the first time that denatonium damages mitochondria and thus induces apoptosis in airway epithelial cells.Electronic supplementary material
The online version of this article (doi:10.1186/s12931-015-0183-9) contains supplementary material, which is available to authorized users. 相似文献4.
5.
Chiang-Wen Lee Miao-Ching Chi Tsung-Ming Chang Ju-Fang Liu 《Journal of cellular physiology》2019,234(8):13157-13168
Osteosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. However, because of side effects and drug resistance in chemotherapy and the insufficiency of an effective adjuvant therapy for osteosarcoma, it is necessary to research novel treatments. This study was the first to investigate the anticancer effects of the flavonoid derivative artocarpin in osteosarcoma. Artocarpin induced cell apoptosis in three human osteosarcoma cell lines—U2OS, MG63, and HOS. Artocarpin was also associated with increased intracellular reactive oxygen species (ROS). Mitochondrial dysfunction was followed by the release of cytochrome c from mitochondria and accompanied by decreased antiapoptotic Bcl-2 and Bcl-xL and increased proapoptotic protein Bak and Bax. Artocarpin triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels and increased glucose-regulated protein 78 and 94 expressions, and also increased calpains expression and activity. Animal studies revealed a dramatic 40% reduction in tumor volume after 18 days of treatment. This study demonstrated a novel anticancer activity of artocarpin against human osteosarcoma cells and in murine tumor models. In summary, artocarpin significantly induced cell apoptosis through ROS, ER stress, mitochondria, and the caspase pathway, and may thus be a novel anticancer treatment for osteosarcoma. 相似文献
6.
We investigated the molecular basis of the ability of wogonin to control the intracellular signaling cascades of AMP-activated protein kinase (AMPK). This activity induces antitumor activities in glioblastoma multiforme (GBM) cells. Recently, the evolutionarily conserved serine/threonine kinase AMPK has emerged as a possible target for tumor control. We investigated the effects of wogonin on apoptosis regulation and the activation of AMPK. Wogonin treatment resulted in a series of antitumor effects such as cell death and apoptotic appearance. Activation of AMPK suppressed downstream substrates, such as the mammalian target of rapamycin (mTOR) and eukaryotic initiation factor 4E-binding protein-1 (4E-BP1), and resulted in a general decrease in translation. Moreover, wogonin-activated AMPK decreased the activity and/or expression of lipogenic enzymes such as acetyl-CoA carboxylase. Furthermore, in GBM cells, wogonin blocked cell cycle progression at the G1 phase and induced apoptosis by inducing p53 expression and further upregulating p21 expression. Taken together, our findings demonstrated that wogonin has the potential to be a chemopreventive and therapeutic agent against human GBM. 相似文献
7.
8.
9.
Jing Zhao Peifeng Li Hua Zhu Fengqin Ge Jie Liu Jingjun Xia Pengzhou Hang 《Acta biochimica et biophysica Sinica》2021,(7):903-911
Recent studies suggest that 7,8-dihydroxyflavone (7,8-DHF) inhibits the development of several tumors.However,its role in osteosarcoma (OS) remains unknown.This... 相似文献
10.
Transforming growth factor beta (TGFbeta) can modulate the activity of various MAP kinases. However, how this pathway may mediate TGFbeta-induced malignant phenotypes remains elusive. We investigated the role of autocrine TGFbeta signaling through MAP kinases in the regulation of cell survival in breast carcinoma MCF-7 cells and untransformed human mammary epithelial cells (HMECs). Our results show that abrogation of autocrine TGFbeta signaling with the expression of a dominant negative type II TGFbeta receptor (DNRII) or the treatment with a TGFbeta type I receptor inhibitor significantly increased apoptosis in MCF-7 cell, but not in HMEC. The expression of DNRII markedly decreased activated/phosphorylated Erk, whereas increased activated/phosphorylated p38 in MCF-7 cells. In contrast, there was no or little change of phosphorylated Erk and p38 in HMECs after the expression of DNRII. Inhibition of Erk activity in MCF-7 control cell induced apoptosis whereas restoration of Erk activity in MCF-7 DNRII cell reduced apoptosis. Similarly, inhibition of p38 activity also inhibited apoptosis in MCF-7 DNRII cell. Thus, autocrine TGFbeta signaling can enhance the survival of MCF-7 cells by maintaining the level of active Erk high and the level of active p38 low. Furthermore, the survival properties of TGFbeta pathway appear related to transformation supporting the notion that it may be a potential target for cancer therapy. 相似文献
11.
12.
Ranjan Maity Jaiprakash Sharma Nihar Ranjan Jana 《Journal of cellular biochemistry》2010,109(5):933-942
Capsaicin is an active component of red pepper having an antiproliferative effect in a variety of cancer cells, which recent evidence suggests due to its ability to induce apoptosis. However, the molecular mechanisms through which capsaicin induces apoptosis are not well understood. Here we demonstrate that capsaicin‐induced apoptosis is mediated via the inhibition cellular proteasome function. Treatment of capsaicin to mouse neuro 2a cells results in the inhibition of proteasome activity in a dose‐ and time‐dependent manner that seems to correlate with its effect on cell death. The effect of capsaicin on cellular proteasome function is indirect and probably mediated via the generation of oxidative stress. Exposure of capsaicin also causes increased accumulation of ubiquitinated proteins as wells as various target substrates of proteasome like p53 and Bax and p27. Like many other classical proteasome inhibitors, capsaicin also triggers the intrinsic pathway of apoptosis involving mitochondria and induces neurite outgrowth. Our results strongly support for the use of capsaicin as an anticancer drug. J. Cell. Biochem. 109: 933–942, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
13.
Mu S Tian X Ruan Y Liu Y Bian D Ma C Yu C Feng M Wang F Gao L Zhao JJ 《Biochemical and biophysical research communications》2012,418(2):347-352
Insulin-like growth factor-1 (IGF-1) is a growth factor of the thyroid that has been shown in our previous study to possess proliferative and antiapoptotic effects in FRTL-5 cell lines through the upregulation of cyclin D and Fas-associated death domain-like interleukin-1-converting enzyme (FLICE)-inhibitory protein (FLIP). Diosgenin, a natural steroid sapogenin from plants, has been shown to induce apoptosis in many cell lines, with the exception of thyroid cells. In this report, we investigated the apoptotic effect and mechanism of diosgenin in IGF-1-stimulated primary human thyrocytes. Primary human thyrocytes were preincubated with or without IGF-1 for 24h and subsequently exposed to varying concentrations of diosgenin for different times. We found that diosgenin induced apoptosis in human thyrocytes pretreated with IGF-1 in a dose-dependent manner through the activation of caspase cascades. Moreover, diosgenin inhibited FLIP and activated caspase-8 in the FAS-related apoptotic pathway. Diosgenin increased the production of ROS, regulated the balance of Bax and Bcl-2 and cleaved caspase-9 in the mitochondrial apoptotic pathway. These results indicate that diosgenin induces apoptosis in IGF-1-stimulated primary human thyrocytes through two caspase-dependent pathways. 相似文献
14.
Extracellular NAD(+) induces calcium signaling and apoptosis in human osteoblastic cells 总被引:1,自引:0,他引:1
Romanello M Padoan M Franco L Veronesi V Moro L D'Andrea P 《Biochemical and biophysical research communications》2001,285(5):1226-1231
ADP-ribosyl cyclase/CD38 is a bifunctional enzyme that catalyzes at its ectocellular domain the synthesis from NAD(+) (cyclase) and the hydrolysis (hydrolase) of the calcium-mobilizing second messenger cyclic ADP ribose (cADPR). Furthermore, CD38 mediates cADPR influx inside a number of cells, thereby inducing Ca(2+) mobilization. Intracellularly, cADPR releases Ca(2+) from ryanodine-sensitive pools, thus activating several Ca(2+)-dependent functions. Among these, the inhibition of osteoclastic-mediated bone resorption has been demonstrated. We found that HOBIT human osteoblastic cells display ADP-ribosyl cyclase activity and we examined the effects of CD38 stimulation on osteoblasts function. Extracellular NAD(+) induced elevation of cytosolic calcium due to both Ca(2+) influx from the extracellular medium and Ca(2+) release from ryanodine-sensitive intracellular stores. Culturing these cells in the presence of NAD(+) caused a complete growth arrest with a time-dependent decrease of cell number and the appearance of apoptotic nuclei. The first changes could be observed after 24 h of treatment and became fully evident after 72-96 h. We propose a role of extracellular NAD(+) in bone homeostatic control. 相似文献
15.
Narges Ahani Mohammad Hossein Sangtarash Massoud Houshmand Majid Alipour Eskandani 《Journal of cellular biochemistry》2019,120(2):2047-2057
Genipin, a compound derived from Gardenis jasminoides Ellis fruits, was demonstrated to be the specific uncoupling protein 2 (UCP2) inhibitor. UCP2 is a mitochondrial carrier protein that creates proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from adenosine triphosphate (ATP) synthesis. Several studies revealed that UCP2 is broadly over-expressed in leukemia, colorectal, lung, ovarian, prostate, testicular, and bladder cancers. However, the effect of genipin still needs to be elucidated in neurological malignancies. In this study, we investigated the anticancer effect of genipin in U87MG and A172 cell lines. The anticancer effect of genipin on these cell lines was measured by microculture tetrazoliumtest (MTT), Trypan blue exclusion, and colony formation assays, in the presence of various concentrations of genipin at different time intervals. We assessed apoptosis and measure intracellular reactive oxygen species (ROS) by flow cytometry. Expression of UCP2 and some of the genes involved in apoptosis was analyzed by real-time quantitative polymerase chain reaction (PCR). Results of the MTT assay showed that genipin moderately reduced metabolic activity of both cell lines in dose- and time-dependent manner. Result of Trypan blue exclusion test indicated that the viable cell count decreased in the treated group in a concentration-dependent manner. Genipin also significantly decreased colony formation ability of these cells in a concentration-dependent manner. Result of morphological changes showed that there were significant differences in cell number and morphology in treated groups as compared with the untreated groups. Flow cytometric analysis of U87MG and A172 cells with annexin V/propidium iodide staining, 48 hours after treatment with genipin, displays 22.4% and 26.1% apoptotic population, respectively, in treated cells, in comparison to 7.42% and 9.31% apoptotic cells of untreated cells. After treatment, UCP2 and B-cell lymphoma 2 (BCL 2) genes are downregulated, and BCL 2 associated X protein, BCL 2 antagonist/killer, BCL 2 interacting killer, and Cytochrome c genes are upregulated. Genipin treatment increased mitochondrial ROS levels and also induced apoptosis through caspase-3 upregulation. In conclusion, the antiproliferative effects of genipin on the growth of both glioblastoma cell lines have been shown in all of these assays, and genipin profoundly induced apoptosis in both cell lines via the UCP2-related mitochondrial pathway through the induction of intracellular ROS. 相似文献
16.
Takashi Fukada Hiroki Sakajiri Mito Kuroda Noriyuki Kioka Kenji Sugimoto 《Biochemistry and Biophysics Reports》2017
Fluid shear stress (FSS) induces a series of biochemical responses in osteoblasts, and this “mechanoresponse” regulates their survival, proliferation and differentiation. However, the events in cells immediately after FSS application are unclear, and how biochemical signals from soluble factors modify the mechanoresponses is largely unknown. We used the orbital shaking method, instead of the frequently used parallel plate method, to examine activation of ERK and AKT by FSS for detailed tracking of its temporal transition. We found that ERK activation by orbital shaking was biphasic. The early phase was independent of Ca2+, PI3-kinase, and Rho kinase but required RAF activity. The late phase was dependent on Ca2+ but not RAF. These results suggest that the superior time-resolving capability of the orbital shaking method to separate the previously unrecognized Ca2+-independent early phase of ERK activation from the late phase. We also found that a certain combination of serum starvation and medium renewal affected ERK activation by FSS, suggesting that a soluble factor(s) may be secreted during serum starvation, which modified the phosphorylation level of ERK. These findings revealed novel aspects of the osteoblastic mechanoresponses and indicated that the orbital shaking method would be a useful, complementary alternative to the parallel plate method for certain types of study on cellular mechanoresponses. 相似文献
17.
Wang JH Peng Y Yang LL Wang YB Wu BG Zhang Y He P 《Molecular and cellular biochemistry》2011,358(1-2):95-104
Apoptosis is a genetically regulated cellular suicide mechanism that plays an essential role in development and in defense of multicellular organism. Escherichia coli (E. coli) can induce monocyte apoptosis; however, the mechanism is not clear. This study determines if Fas/FasL regulates E. coli-induced human monocyte line U937 cell apoptosis. We found that infection of U937 cells with E. coli induced rapid cell death in a dose- and time-dependent manner displaying the characteristic features of apoptosis. Moreover, opsonized E. coli induced U937 apoptosis with a higher apoptotic rate (53.29 ± 5.83%) than non-opsonized E. coli (19.37 ± 2.56%). Studying the underlying mechanisms we found that the E. coli-induced apoptosis was associated with a more prominent induction expression of Fas/FasL in a time- and dose-dependent manner. Furthermore, E. coli treatment resulted in a significant increase in the levels of DR5, TRAIL, and FADD, but exerted no statistically significant effects on the levels of DR4. The activity of caspase-8 enzyme increased in infection groups, positively correlated with apoptosis rate. Taken together, these results clearly indicate that receptor-mediated phagocytosis of E. coli induces apoptosis. Moreover, our findings suggest a possible regulatory role of Fas/FasL in the pathway of E. coli infection. 相似文献
18.
Tzu-Ching Huang Pu-Rong Chiu Wen-Tsan Chang Bau-Shan Hsieh Yu-Ci Huang Hsiao-Ling Cheng Li-Wen Huang Yu-Chen Hu Kee-Lung Chang 《Apoptosis : an international journal on programmed cell death》2018,23(3-4):226-236
Epirubicin is an anthracycline and is widely used in tumor treatment, but has toxic and undesirable side effects on wide range of cells and hematopoietic stem cells (HSC). Osteoblasts play important roles in bone development and in supporting HSC differentiation and maturation. It remains unknown whether epirubicin-induced bone loss and hematological toxicity are associated with its effect on osteoblasts. In primary osteoblast cell cultures, epirubicin inhibited cell growth and decreased mineralization. Moreover, epirubicin arrested osteoblasts in the G2/M phase, and this arrest was followed by apoptosis in which both the extrinsic (death receptor-mediated) and intrinsic (mitochondrial-mediated) apoptotic pathways were evoked. The factors involved in the extrinsic apoptotic pathway were increased FasL and FADD as well as activated caspase-8. Those involved in the intrinsic apoptotic pathway were decreased Bcl-2; increased reactive oxygen species, Bax, cytochrome c; and activated caspase-9 and caspase-3. These results demonstrate that epirubicin induced osteoblast apoptosis through the extrinsic and intrinsic apoptotic pathways, leading to the destruction of osteoblasts and consequent lessening of their functions in maintaining bone density and supporting hematopoietic stem cell differentiation and maturation. 相似文献
19.
20.
Galphaq/11 signaling induces apoptosis through two pathways involving reduction of Akt phosphorylation and activation of RhoA in HeLa cells 总被引:2,自引:0,他引:2
We have previously reported that expression of the constitutively active mutant of Galpha11 or stimulation of m1 muscarinic acetylcholine receptor induced proteolytic activation of Rho-associated kinase (ROCK-I) by caspase and apoptosis in HeLa cells. In this study, we investigate the molecular mechanisms of Galphaq/11-induced apoptosis in m1 muscarinic acetylcholine receptor-expressing HeLa cells. Overexpression of Bcl-2 inhibited carbachol-induced ROCK-I cleavage, indicating a mitochondrial apoptotic pathway. Overexpression of the constitutively active mutant of Akt that delivers an anti-apoptotic survival signal had a similar influence. Insulin, a major survival factor in many cells, strongly increased phosphorylation of Akt, which was completely blocked by carbachol. This latter effect was partially inhibited by treatment with the tyrosine phosphatase inhibitors, orthovanadate and pervanadate. In parallel with these observations, carbachol attenuated insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1, an effect eliminated by orthovanadate. On the other hand, carbachol induced rapid stimulation of endogenous RhoA, and expression of a constitutively active mutant of RhoA increased ROCK-I cleavage. Orthovanadate and the dominant negative mutant of RhoA partially, and their combination completely, inhibited carbachol-induced ROCK-I cleavage and apoptosis. These results demonstrate that Gq/11 signaling induces apoptosis by reducing insulin-stimulated Akt phosphorylation through tyrosine dephosphorylation and activating RhoA in HeLa cells. 相似文献