首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Obesity is a major current public health problem worldwide due to the severe co-morbid conditions that this disease entails. The development of obesity-related cardiometabolic disorders is in direct association with adipose tissue inflammation that leads to its functional impairment. Activation of the Calcium-Sensing Receptor (CaSR) in adipose tissue contributes to inflammation and adipose dysfunction. Autophagy, a process of cell component degradation, is closely related to inflammation in many diseases, however, whether autophagy is associated with CaSR-induced inflammation remains unknown. Using LS14 and SW872 preadipose cell lines as well as primary human preadipocytes, we show that CaSR activation with the allosteric activator cinacalcet induces autophagosome formation. Cinacalcet-induced LC3II content elevation was precluded by knockdown of the CaSR and enhanced by CaSR overexpression, indicating a specific effect. Autophagy inhibition using 3-methyladenine prevented CaSR-induced TNFα production, indicating that autophagy contributes to CaSR-induced inflammation in human preadipocytes. Our results suggest that modulation of CaSR-induced autophagy is an attractive target in obese inflamed adipose tissue, to prevent the development of diseases triggered by adipose dysfunction. We describe a novel mechanism and possible new target to modulate and prevent adipose inflammation and hence the resulting disease-generating adipose tissue dysfunction.  相似文献   

3.
Lead (Pb) is an environmental and industrial contaminant that still represents a public health problem. Elevated Pb exposure has been inversely correlated with femoral bone density and associated with osteoporosis. In the last years, it has been shown that inhibition of osteogenesis from mesenchymal stem cells activates adipogenesis and vice versa. In this paper, we investigated the effect of Pb on the differentiation of 3T3-L1 fibroblasts to adipocytes which is the cell model most used to study adipogenesis. After induction of differentiation, 2 days post-confluent cells re-enter the cell cycle and undergo mitotic clonal expansion (MCE) followed by expression of genes that produce the adipocyte phenotype. The presence of concentrations of Pb up to 10 μM during differentiation of 3T3-L1 fibroblasts did not interfere with MCE but enhanced the accumulation of cytosolic lipids that occur during adipogenesis, as well as, the induction of PPARγ, the master gene in adipogenesis. It is known that PPARγ upregulation is subsequent to induction of C/EBPβ and ERK activation, which are early events in adipogenesis. We found that both events were enhanced by Pb treatment. Our results support a stimulatory effect of Pb on adipogenesis which involves ERK activation and C/EBPβ upregulation prior to PPARγ and adipogenesis activation.  相似文献   

4.
Adipogenesis represents a key process in adipose tissue development and remodeling, including during obesity. Exploring the regulation of adipogenesis by extracellular ligands is fundamental to our understanding of this process. Adenosine, an extracellular nucleoside signaling molecule found in adipose tissue depots, acts on adenosine receptors. Here we report that, among these receptors, the A2b adenosine receptor (A2bAR) is highly expressed in adipocyte progenitors. Activation of the A2bAR potently inhibits differentiation of mouse stromal vascular cells into adipocytes, whereas A2bAR knockdown stimulates adipogenesis. The A2bAR inhibits differentiation through a novel signaling cascade involving sustained expression of Krüppel-like factor 4 (KLF4), a regulator of stem cell maintenance. Knockdown of KLF4 ablates the ability of the A2bAR to inhibit differentiation. A2bAR activation also inhibits adipogenesis in a human primary preadipocyte culture system. We analyzed the A2bAR-KLF4 axis in adipose tissue of obese subjects and, intriguingly, found a strong correlation between A2bAR and KLF4 expression in both subcutaneous and visceral human fat. Hence, our study implicates the A2bAR as a regulator of adipocyte differentiation and the A2bAR-KLF4 axis as a potentially significant modulator of adipose biology.  相似文献   

5.
The extracellular calcium-sensing receptor (CaSR), a seven transmembrane G-protein-coupled receptor, was cloned in 1993. Its activation was first associated to the regulation of calcium homeostasis; however, the presence in tissues unrelated with this role has revealed its participation in numerous other cell functions. We previously described CaSR expression in human adipocytes, and here we investigated the effect of its activation on adipocyte lipolytic activity by measuring glycerol release to the incubation medium. Treatment of adipocytes with CaSR agonists elicited an inhibitory effect on basal lipolysis, which was prevented by a CaSR antagonist. To further corroborate the antilipolytic effect of CaSR activation, lipolysis was evaluated under conditions that interfere with main antilipolytic regulatory pathways. Cells were preincubated with pertussis toxin (PT, a Gialpha protein inhibitor), the phosphatidylinositol 3 kinase (PI3K) inhibitors wortmannin and LY-294002 as well as the cAMP analog 8Br-cAMP, all of which influenced the antilipolytic effect of CaSR stimulation. In light of the current view of adipose tissue as an organ involved in whole-body metabolic control, the role of the CaSR modulating basal lipolysis elicits great interest, given its metabolic sensing capabilities due to the variety of ligands that regulate its activity, and its potential cross-talk with insulin and adipose tissue-secreted factors.  相似文献   

6.
Obesity-associated health complications are thought to be in part due to the low-grade proinflammatory state that characterizes this disease. The calcium sensing receptor (CaSR), which is expressed in human adipose cells, plays an important role in diseases involving inflammation. To assess the relevance of this protein in adipose pathophysiology, we evaluated its expression in adipocytes under obesity-related proinflammatory conditions. As in primary adipose cells, we established that LS14, a recently described human adipose cell line, expresses the CaSR. Differentiated LS14 and primary adipose cells were exposed overnight to cytokines typically involved in obesity-related inflammation (interleukin (IL)1β, IL6 and tumor necrosis factor (TNF)α). The cytokines increased CaSR abundance in differentiated adipocytes. We incubated LS14 cells with medium previously conditioned (CM) by adipose tissue from subjects with a wide range of body mass index (BMI). Cells exposed to CM from subjects of higher BMI underwent a greater increase in CaSR protein, likely resulting from the greater proinflammatory cytokines secreted from obese tissue. Our observations that proinflammatory factors increase CaSR levels in adipocytes, and the reported ability of CaSR to elevate cytokine levels, open new aspects in the study of obesity inflammatory state pathophysiology, providing a potential novel therapeutic prevention and treatment target.  相似文献   

7.
Abstract Adipocytokines, bioactive molecules secreted from adipose tissues, play important roles in physiology, development, and disease. Recently, heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified as an adipocytokine whose expression correlates with obesity. However, the biological role of fat-secreted HB-EGF is still unclear. In this study, we investigated the effects of HB-EGF on the adipocyte differentiation of C3H10T1/2 pluripotent mesenchymal cells. Upon adipogenic conversion of C3H10T1/2 cells, HB-EGF displayed dynamic changes in expression where an initial decrease was followed by increased levels of expression at later stages. HB-EGF treatment during adipogenic induction inhibited lipid accumulation and decreased the expression of adipocyte molecular markers (fatty acid-binding protein, peroxisome proliferator-activated receptor γ, and CAAT enhancer-binding protein α) and lipogenic genes (glucose transporter, fatty acid synthetase, and lipoprotein lipase). Therefore, HB-EGF has an inhibitory effect on adipocyte differentiation. Administration of HB-EGF at various intervals during adipocyte differentiation revealed that HB-EGF acts during the early stages of adipocyte differentiation, but not at the later stages of differentiation. Furthermore, HB-EGF was able to block the commitment of pluripotent mesenchymal cells to the adipocyte lineage triggered by bone morphogenic protein 4 treatment. These data suggest that HB-EGF acts as a negative regulator of adipogenesis by inhibiting the commitment and early differentiation of the adipose lineage. The inhibitory role of HB-EGF on adipocyte differentiation of pluripotent mesenchymal cells sheds light on potential mechanisms that control adipose tissue homeostasis.  相似文献   

8.
9.
Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor γ agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-β1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.  相似文献   

10.
Lactoferrin is considered an epithelial protein present in different gland secretions. Administration of exogenous lactoferrin is also known to modulate adipogenesis and insulin action in human adipocytes. Here, we aimed to investigate lactoferrin gene expression (real-time polymerase chain reaction) and protein (enzyme-linked immunosorbent assay) levels in human (n=143) and mice adipose tissue samples, in adipose tissue fractions and during human preadipocyte and 3T3-L1 cell line differentiation, evaluating the effects of inducers (rosiglitazone) and disruptors (inflammatory factors) of adipocyte differentiation. Lactoferrin (LTF) gene and protein were detectable at relatively high levels in whole adipose tissue and isolated adipocytes in direct association with low-density lipoprotein-related protein 1 (LRP1, its putative receptor). Obese subjects with type 2 diabetes and increased triglycerides had the lowest levels of LTF gene expression in subcutaneous adipose tissue. Specifically, LTF gene expression was significantly increased in adipocytes, mainly from lean subjects, increasing during differentiation in parallel to adipogenic genes and gene markers of lipid droplets. The induction or disruption of adipogenesis led to concomitant changes (increase and decrease, respectively) of lactoferrin levels during adipocyte differentiation also in parallel to gene markers of adipogenesis and lipid droplet development. The administration of lactoferrin led to autopotentiated increased expression of the LTF gene. The decreased lactoferrin mRNA levels in association with obesity and diabetes were replicated in mice adipose tissue. In conclusion, this is the first observation, to our knowledge, of lactoferrin gene expression in whole adipose tissue and isolated adipocytes, increasing during adipogenesis and suggesting a possible contribution in adipose tissue physiology through LRP1.  相似文献   

11.
12.
S-Adenosylmethionine (SAM) plays a crucial role as a methyl donor in various biological processes and has been previously shown to be involved in adipogenesis in skeletal muscle. This study was conducted to explore the mechanism of SAM inducing adipogenesis in skeletal muscle. Adipose precursor cells, 3T3-L1, and C2C12 cells, were induced into adipogenic differentiation by addition of SAM in MDI-differentiation media (0.5 mmol/L isobutylmethylxanthine, 1 μm/L dexamethasone, and 10 μg/mL insulin) to explore the role of SAM in promoting adipogenesis. Subsequently, cells were cultured with a medium containing SAM alone at the beginning of differentiation to test the relationship between SAM-induced adipogenesis and Wnt/β-catenin, and Hedgehog signaling pathways that control the cell commitment to adipogenic- or myogenic-differentiation. We found SAM possessed an additive effect with MDI in promoting adipogenesis of 3T3-L1 and C2C12 cells at the beginning of adipogenic differentiation. SAM could also individually induce cell adipogenesis in a dose-dependent manner. Moreover, the expression of Wnt/β-catenin and Hedgehog signals and their targets were suppressed by SAM (P < 0.05). These results demonstrate that SAM, as an increasingly accepted nutritional supplement, can initiate adipogenesis of adipose precursor cells derived from adipose and muscle tissues, a function at least partly correlated with the suppression of Wnt/β-catenin and Hedgehog pathways.  相似文献   

13.
Stress of endoplasmic reticulum (ERS) is one of the molecular triggers of adipocyte dysfunction and chronic low inflammation accompanying obesity. ERS can be alleviated by chemical chaperones from the family of bile acids (BAs). Thus, two BAs currently used to treat cholestasis, ursodeoxycholic and tauroursodeoxycholic acid (UDCA and TUDCA), could potentially lessen adverse metabolic effects of obesity. Nevertheless, BAs effects on human adipose cells are mostly unknown. They could regulate gene expression through pathways different from their chaperone function, namely through activation of farnesoid X receptor (FXR) and TGR5, G-coupled receptor. Therefore, this study aimed to analyze effects of UDCA and TUDCA on human preadipocytes and differentiated adipocytes derived from paired samples of two distinct subcutaneous adipose tissue depots, abdominal and gluteal. While TUDCA did not alter proliferation of cells from either depot, UDCA exerted strong anti-proliferative effect. In differentiated adipocytes, acute exposition to neither TUDCA nor UDCA was able to reduce effect of ERS stressor tunicamycin. However, exposure of cells to UDCA during whole differentiation process decreased expression of ERS markers. At the same time however, UDCA profoundly inhibited adipogenic conversion of cells. UDCA abolished expression of PPARγ and lipogenic enzymes already in the early phases of adipogenesis. This anti-adipogenic effect of UDCA was not dependent on FXR or TGR5 activation, but could be related to ability of UDCA to sustain the activation of ERK1/2 previously linked with PPARγ inactivation. Finally, neither BAs did lower expression of chemokines inducible by TLR4 pathway, when UDCA enhanced their expression in gluteal adipocytes. Therefore while TUDCA has neutral effect on human preadipocytes and adipocytes, the therapeutic use of UDCA different from treating cholestatic diseases should be considered with caution because UDCA alters functions of human adipose cells.  相似文献   

14.
Objective: The ability to form new adipose cells is important to adipose tissue physiology; however, the mechanisms controlling the recruitment of adipocyte progenitors are poorly understood. A role for locally generated angiotensin II in this process is currently proposed. Given that visceral adipose tissue reportedly expresses higher levels of angiotensinogen compared with other depots and the strong association of augmented visceral fat mass with the adverse consequences of obesity, we studied the role of angiotensin II in regulating adipogenic differentiation in omental fat of obese and non‐obese humans. Research Methods and Procedures: The angiotensin II effect on adipose cell formation was evaluated in human omental adipocyte progenitor cells that were stimulated to adipogenic differentiation in vitro. The adipogenic response was measured by the activity of the differentiation marker glycerol‐3‐phosphate dehydrogenase. Results: Angiotensin II reduced the adipogenic response of adipocyte progenitor cells, and the extent of the decrease correlated directly with the subjects’ BMI (p = 0.01, R2 = 0.30). A 56.3 ± 3.4% and 44.5 ± 2.7% reduction of adipogenesis was found in obese and non‐obese donors’ cells, respectively (p < 0.01). The effect of angiotensin II was reversed by type 1 angiotensin receptor antagonist losartan. Discussion: A greater anti‐adipogenic response to angiotensin II in omental adipose progenitor cells from obese subjects opens a venue to understand the deregulation of visceral fat tissue cellularity that has been associated with severe functional abnormalities of the obese condition.  相似文献   

15.
Dicer is a cellular enzyme required for the processing of pre‐miRNA molecules into mature miRNA, and Dicer and miRNA biogenesis have been found to play important roles in a variety of physiologic processes. Recently, reports of alterations in miRNA expression levels in cultured pre‐adipogenic cell lines during differentiation and findings of differences between the miRNA expression signatures of white and brown adipose have suggested that miRNA molecules might regulate adipocyte differentiation and the formation of adipose tissue. However, direct evidence that miRNAs regulate adipogenesis is lacking. To determine if Dicer and mature miRNA govern adipocyte differentiation, we utilized primary cells isolated from mice bearing Dicer‐conditional alleles to study adipogenesis in the presence or absence of miRNA biogenesis. Our results reveal that Dicer is required for adipogenic differentiation of mouse embryonic fibroblasts and primary cultures of pre‐adipocytes. Furthermore, the requirement for Dicer in adipocyte differentiation is not due to miRNA‐mediated alterations in cell proliferation, as deletion of the Ink4a locus and the prevention of premature cellular senescence normally induced in primary cells upon Dicer ablation fails to rescue adipogenic differentiation in fibroblasts and pre‐adipocytes. J. Cell. Biochem. 110: 812–816, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Brown adipose tissue (BAT) is a potential target to treat cardiometabolic disorders because of its capacity to combust glucose and fatty acids for thermoregulation. Its cellular and molecular investigation in humans is hampered by the limited availability of cell material and the heterogeneity of BAT between and within individuals. In this study, monoclonal lines of conditionally immortalized brown preadipocytes (iBPAs) of mouse and human origin were generated. Conditional immortalization was achieved by doxycycline-controlled expression of simian virus 40 large tumor antigen (LT) with a repressor-based Tet-On system. In the presence of doxycycline, both the murine and human cell lines showed long-term proliferation capacity with a population doubling time of ~28 h. After switching off LT expression by doxycycline removal and exposure to adipogenic differentiation medium, cells from both species acquired brown adipocyte properties. This was evidenced by the accumulation of multilocular lipid droplets, the upregulation of brown adipocyte markers including uncoupling protein 1 and an increase in lipolysis and oxygen consumption following adrenergic stimulation. Switching off LT expression before the onset of adipogenic differentiation was only critical for inducing adipogenesis in the human iBPAs, while their murine counterparts showed adipogenesis upon exposure to the adipogenic differentiation cocktail regardless of LT expression. When switched to proliferation medium, cultures of adipogenically differentiated human iBPAs de-differentiated and resumed cell division without losing their adipogenic capacity. We suggest that iBPAs represent an easy-to-use model for fundamental and applied research into BAT offering unique experimental opportunities due to their capacity to switch between proliferative and differentiated states.  相似文献   

17.
Glucocorticoids have been proposed to be both adipogenic and lipolytic in action within adipose tissue, although it is unknown whether these actions can occur simultaneously. Here we investigate both the in vitro and in vivo effects of corticosterone (Cort) on adipose tissue metabolism. Cort increased 3T3-L1 preadipocyte differentiation in a concentration-dependent manner, but did not increase lipogenesis in adipocytes. Cort increased lipolysis within adipocytes in a concentration-dependent manner (maximum effect at 1-10 μM). Surprisingly, removal of Cort further increased lipolytic rates (~320% above control, P < 0.05), indicating a residual effect on basal lipolysis. mRNA and protein expression of adipose triglyceride lipase and phosphorylated status of hormone sensitive lipase (Ser563/Ser660) were increased with 48 h of Cort treatment. To test these responses in vivo, Sprague-Dawley rats were subcutaneously implanted with wax pellets with/without Cort (300 mg). After 10 days, adipose depots were removed and cultured ex vivo. Both free fatty acids and glycerol concentrations were elevated in fed and fasting conditions in Cort-treated rats. Despite increased lipolysis, Cort rats had more visceral adiposity than sham rats (10.2 vs. 6.9 g/kg body wt, P < 0.05). Visceral adipocytes from Cort rats were smaller and more numerous than those in sham rats, suggesting that adipogenesis occurred through preadipocyte differentiation rather than adipocyte hypertrophy. Visceral, but not subcutaneous, adipocyte cultures from Cort-treated rats displayed a 1.5-fold increase in basal lipolytic rates compared with sham rats (P < 0.05). Taken together, our findings demonstrate that chronic glucocorticoid exposure stimulates both lipolysis and adipogenesis in visceral adipose tissue but favors adipogenesis primarily through preadipocyte differentiation.  相似文献   

18.
The estrogen sulfotransferase (EST) is a phase II drug-metabolizing enzyme known to catalyze the sulfoconjugation of estrogens. EST is highly expressed in the white adipose tissue of male mice, but the role of EST in the development and function of adipocytes remains largely unknown. In this report, we showed that EST played an important role in adipocyte differentiation. EST was highly expressed in 3T3-L1 preadipocytes and primary mouse preadipocytes. The expression of EST was dramatically reduced in differentiated 3T3-L1 cells and mature primary adipocytes. Overexpression of EST in 3T3-L1 cells prevented adipocyte differentiation. In contrast, preadipocytes isolated from EST knockout (EST-/-) mice exhibited enhanced differentiation. The inhibitory effect of EST on adipogenesis likely resulted from the sustained activation of ERK1/2 MAPK and inhibition of insulin signaling, leading to a failure of switch from clonal expansion to differentiation. The enzymatic activity of EST was required for the inhibitory effect of EST on adipogenesis, because an enzyme-dead EST mutant failed to inhibit adipocyte differentiation. In vivo, overexpression of EST in the adipose tissue of female transgenic mice resulted in smaller adipocyte size. Taken together, our results suggest that EST functions as a negative regulator of adipogenesis.  相似文献   

19.
Here we show that plasma kallikrein (PKal) mediates a plasminogen (Plg) cascade in adipocyte differentiation. Ecotin, an inhibitor of serine proteases, inhibits cell-shape change, adipocyte-specific gene expression, and lipid accumulation during adipogenesis in culture. Deficiency of Plg, but not of urokinase or tissue-type plasminogen activator, suppresses adipogenesis during differentiation of 3T3-L1 cells and mammary-gland involution. PKal, which is inhibited by ecotin, is required for adipose conversion, Plg activation and 3T3-L1 differentiation. Human plasma lacking PKal does not support differentiation of 3T3-L1 cells. PKal is therefore a physiological regulator that acts in the Plg cascade during adipogenesis. We propose that the Plg cascade fosters adipocyte differentiation by degradation of the fibronectin-rich preadipocyte stromal matrix.  相似文献   

20.

Background

Inhibition of angiogenesis may impair adipose tissue development.

Methods

The effect of fumagillin (a methionine aminopeptidase-2 inhibitor) on adipocyte differentiation and de novo adipogenesis was investigated in murine model systems.

Results

During in vitro differentiation of murine 3T3-F442A preadipocytes, administration of fumagillin (≥ 1 μM) resulted in reduced expression of methionine aminopeptidase-2, and in enhanced differentiation rate. In vivo, de novo development of adipose tissue following injection of preadipocytes in nude mice kept on high fat diet was somewhat, but not significantly (p = 0.06), reduced by administration of fumagillin (1 mg/kg/day during 4 weeks by oral gavage). This was not associated with effects on blood vessel size or density, whereas blood vessel density normalized to adipocyte density was enhanced upon fumagillin treatment. In vivo BrdU incorporation experiments did not reveal effects of fumagillin on cell proliferation in adipose tissues, and cellular apoptosis was also not affected.Treatment with fumagillin enhances in vitro differentiation of preadipocytes, but has only a minor effect on in vivo adipogenesis.

General Significance

These studies on in vitro and in vivo preadipcoyte differentiation thus do not support an anti-obesity effect of fumagillin as a result of effects on adipocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号