首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillin G acylases (PGAs) are robust industrial catalysts used for biotransformation of β-lactams into key intermediates for chemical production of semi-synthetic β-lactam antibiotics by hydrolysis of natural penicillins. They are used also in reverse, kinetically controlled synthetic reactions for large-scale productions of these antibiotics from corresponding beta-lactam nuclei and activated acyl donors. Further biocatalytic applications of PGAs have recently been described: catalysis of peptide syntheses and the resolutions of racemic mixtures for the production of enantiopure active pharmaceutical ingredients that are based on enantioselective acylation or chiral hydrolysis. Moreover, PGAs rank among promiscuous enzymes because they also catalyze reactions such as trans-esterification, Markovnikov addition or Henry reaction. This particular biocatalytic versatility represents a driving force for the discovery of novel members of this enzyme family and further research into the catalytic potential of PGAs. This review deals with biocatalytic applications exploiting enantioselectivity and promiscuity of prokaryotic PGAs that have been recently reported. Biocatalytic applications are discussed and presented with reaction substrates converted into active compounds useful for the pharmaceutical industry.  相似文献   

2.
Beta-lactamases are serine and metallo-dependent enzymes produced by the bacteria in defense against beta-lactam antibiotics. Production of class-A, class-B, and class-C enzymes by the bacteria make the use of beta-lactam antibiotics ineffective in certain cases. To overcome resistance to beta-lactam antibiotics, several beta-lactamase inhibitors such as clavulanic acid, sulbactam, and tazobactam are widely used in the clinic in combination with beta-lactam antibiotics. However, single point mutations within these enzymes have allowed bacteria to overcome the inhibitory effect of the commercially approved beta-lactamase inhibitors. Although the commercially available beta-lactamase inhibitor/beta-lactam antibiotic combinations are effective against class-A producing bacteria and many extended spectrum beta-lactamase (ESBL's) producing bacteria they are less effective against class-C enzymes expressing bacteria. To circumvent this problem, based on modeling studies several novel imidazole substituted 6-methylidene-penem derivatives were synthesized and tested against various beta-lactamase producing isolates. The present paper deals with the synthesis and structure-activity relationships (SAR) of these compounds.  相似文献   

3.
Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful beta-lactam antibiotics. The increasing incidence of beta-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies.  相似文献   

4.
Competition with well-established, fine-tuned chemical processes is a major challenge for the industrial implementation of the enzymatic synthesis of beta-lactam antibiotics. Enzyme-based routes are acknowledged as an environmental-friendly approach, avoiding organochloride solvents and working at room temperatures. Among different alternatives, the kinetically controlled synthesis, using immobilized penicillin G acylase (PGA) in aqueous environment, with the simultaneous crystallization of the product, is the most promising one. However, PGA may act either as a transferase or as a hydrolase, catalyzing two undesired side reactions: the hydrolysis of the acyl side-chain precursor (an ester or amide, a parallel reaction) and the hydrolysis of the antibiotic itself (a consecutive reaction). This review focuses specially on aspects of the reactions' kinetics that may affect the performance of the enzymatic reactor.  相似文献   

5.
Our laboratory previously constructed mutants of Mycobacterium tuberculosis and Mycobacterium smegmatis with deletions in the genes for their major beta-lactamases, BlaC and BlaS, respectively, and showed that the mutants have increased susceptibilities to most beta-lactam antibiotics, particularly the penicillins. However, there is still a basal level of resistance in the mutants to certain penicillins, and the susceptibilities of the mutants to some cephalosporin-based beta-lactams are essentially the same as those of the wild types. We hypothesized that characterizing additional mutants (derived from beta-lactamase deletion mutants) that are hypersusceptible to beta-lactam antibiotics might reveal novel genes involved with other mechanisms of beta-lactam resistance, peptidoglycan assembly, and cell envelope physiology. We report here the isolation and characterization of nine beta-lactam antibiotic-hypersusceptible transposon mutants, two of which have insertions in genes known to be involved with peptidoglycan biosynthesis (ponA2 and dapB); the other seven mutants have insertions which affect novel genes. These genes can be classified into three groups: those involved with peptidoglycan biosynthesis, cell division, and other cell envelope processes. Two of the peptidoglycan-biosynthetic genes (ponA2 and pbpX) may encode beta-lactam antibiotic-resistant enzymes proposed to be involved with the synthesis of the unusual diaminopimelyl linkages within the mycobacterial peptidoglycan.  相似文献   

6.
The production of semi-synthetic beta-lactam antibiotics such as Amoxicillin may be performed enzymatically using penicillin acylase under mild conditions. However, the thermodynamically favored hydrolysis of the antibiotic product and the acyl donor substrate needs to be minimized to use the kinetically controlled route. The addition of cosolvents such as ethylene glycol and methanol (the two best solvents identified so far for semi-synthetic beta-lactam antibiotics) can achieve this to some degree, but these additives also produce enzyme inhibition and deactivation. In this study, we compared ethylene glycol and methanol under various substrate conditions. Methanol gave a better synthesis to hydrolysis ratio, although its deactivating effects adversely affected production at lower cosolvent concentrations than ethylene glycol. This effect and its dependence on substrate concentration was further modeled and optimized. A few targets of optimization such as Amoxicllin level, the synthesis to hydrolysis ratio, or a combination, were employed. While maximum levels of Amoxicillin synthesis were achievable only at high substrate concentrations, improvements derived from cosolvents were most significant at low substrate concentrations.  相似文献   

7.
Penicillin-binding proteins (PBPs) catalyze the transpeptidase reaction involved in peptidoglycan synthesis and are covalently inhibited by the beta-lactam antibiotics. In a previous work we have focused on acylation efficiency measurements of various Streptococcus pneumoniae PBP2x* mutants to study the molecular determinants of resistance to beta-lactams. In the present paper we have developed a method to improve an accurate determination of the deacylation rate constant using electrospray ionization-mass spectrometry. This method is adaptable to the analysis of deacylation of any beta-lactam. Compared to the fluorographic technique, the ESI-MS method is insensitive to variations in the concentration of functional proteins and is therefore more reliable. We have established that the resistance of PBPs to beta-lactams is mostly due to a decrease of the acylation efficiency with only marginal effects on the deacylation rates.  相似文献   

8.
Beta-lactam antibiotics are the cornerstone of our antibiotic armamentarium. By inhibiting bacterial cell wall synthesis, they are highly effective against Gram-positive and Gram-negative bacteria. Unfortunately, bacteria have evolved sophisticated resistance mechanisms to combat the lethal effects of beta-lactam antibiotics. Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae are all able to evade killing by penicillins, cephalosporins and carbapenems. This multi-drug resistant phenotype that challenges health care workers worldwide is caused by an array of resistance determinants. These include altered expression of outer membrane proteins and efflux pumps, along with an increasing arsenal of beta-lactamases. Future strategies in beta-lactam design must take into account the complex nature of resistance in Gram-negative pathogens.  相似文献   

9.
beta-Lactamases of classes A and C are the two most prevalent resistant determinants to beta-lactam antibiotics among bacterial pathogens. Both these enzymes pursue different mechanisms for their catalytic processes, highlighted by the fact that the hydrolytic water molecule in each approaches the ester of the intermediary acyl-enzyme species from the opposite ends. 6,6-Bis(hydroxylmethyl)penicillanate was designed as an inhibitor that would impair the approach of the hydrolytic water molecule in either of these enzymes upon formation of the acyl-enzyme species. The design, synthesis, and kinetic evaluation of this inhibitor are disclosed herein.  相似文献   

10.
alpha-Amino acid ester hydrolases (AEHs) catalyze the hydrolysis and synthesis of esters and amides with an alpha-amino group. As such, they can synthesize beta-lactam antibiotics from acyl compounds and beta-lactam nuclei obtained from the hydrolysis of natural antibiotics. This article describes the gene sequence and the 1.9-A resolution crystal structure of the AEH from Xanthomonas citri. The enzyme consists of an alpha/beta-hydrolase fold domain, a helical cap domain, and a jellyroll beta-domain. Structural homology was observed to the Rhodococcus cocaine esterase, indicating that both enzymes belong to the same class of bacterial hydrolases. Docking of a beta-lactam antibiotic in the active site explains the substrate specificity, specifically the necessity of an alpha-amino group on the substrate, and explains the low specificity toward the beta-lactam nucleus.  相似文献   

11.
Abstract

Enzymatic synthesis of penicillin V (penV) by acylation of 6-aminopenicillanic acid (6-APA) was carried out using methyl phenoxyacetate (MPOA) as activated acyl donor and soluble penicillin acylase from Streptomyces lavendulae (SlPVA) as biocatalyst. The effect of different reaction conditions on penV synthesis was investigated, such as enzyme concentration, pH, molar ratio of 6-APA to MPOA, as well as presence of DMSO as water-miscible co-solvent at different concentrations. Time-course profiles of all reactions followed the typical pattern of kinetically controlled synthesis (KCS) of β-lactam antibiotics: penV concentration reached a maximum (highest yield or Ymax) and then decreased gradually. Such maximum was higher at pH 7.0, observing that final penV concentration was abruptly reduced when basic pH values were employed in the reaction. Under the selected conditions (100?mM Tris/HCl buffer pH 7.0, 30?°C, 2.7% (v/v) DMSO, 20?mM MPOA, 0.3 UI/ml of SlPVA), Ymax was enhanced by increasing the substrate molar ratio (6-APA to MPOA) up to 5, reaching a maximum of 94.5% and a S/H value of 16.4 (ratio of synthetic activity to hydrolytic activity). As a consequence, the use of an excess of 6-APA as nucleophile has allowed us to obtain some of the highest Ymax and S/H values among those reported in literature for KCS of β-lactam antibiotics. Although many penicillin G acylases (PGAs) have been described in kinetically controlled acylations, SlPVA should be considered as a different enzyme in the biocatalytic tool-box for novel potential synthetic processes, mainly due to its different substrate specificity compared to PGAs.  相似文献   

12.
Staphylococci, a leading cause of infections worldwide, have devised two mechanisms for resistance to beta-lactam antibiotics. One is production of beta-lactamases, hydrolytic resistance enzymes, and the other is the expression of penicillin-binding protein 2a (PBP 2a), which is not susceptible to inhibition by beta-lactam antibiotics. The beta-lactam sensor-transducer (BlaR), an integral membrane protein, binds beta-lactam antibiotics on the cell surface and transduces the information to the cytoplasm, where gene expression is derepressed for both beta-lactamase and penicillin-binding protein 2a. The gene for the sensor domain of the sensor-transducer protein (BlaR(S)) of Staphylococcus aureus was cloned, and the protein was purified to homogeneity. It is shown that beta-lactam antibiotics covalently modify the BlaR(S) protein. The protein was shown to contain the unusual carboxylated lysine that activates the active site serine residue for acylation by the beta-lactam antibiotics. The details of the kinetics of interactions of the BlaR(S) protein with a series of beta-lactam antibiotics were investigated. The protein undergoes acylation by beta-lactam antibiotics with microscopic rate constants (k(2)) of 1-26 s(-1), yet the deacylation process was essentially irreversible within one cell cycle. The protein undergoes a significant conformational change on binding with beta-lactam antibiotics, a process that commences at the preacylation complex and reaches its full effect after protein acylation has been accomplished. These conformational changes are likely to be central to the signal transduction events when the organism is exposed to the beta-lactam antibiotic.  相似文献   

13.
In this paper, the feasibility of precipitation driven synthesis of acidic and zwitterionic beta-lactam antibiotics is studied. As an example of the first type, penicillin G was produced in good yield (160 mmol kg(-1)) directly from the free acid and amine aqueous substrate suspension, where the synthesis product precipitated. Such a precipitation driven synthesis via direct reversal of the hydrolytic reaction is thermodynamically unfavourable for zwitterionic beta-lactam antibiotics, such as amoxicillin. In this paper, a novel method is suggested to help favour precipitation of (poorly soluble) product salts by deliberate addition of certain counter-ions. After screening a number of different counter-ions, it was found that the amoxicillin anion forms a poorly soluble salt with Zn(2+). Despite increased beta-lactam degradation due to the presence of zinc ions, in a synthetic reaction with 0.1 M ZnSO(4) present the synthetic yield could be increased at least 30-fold.  相似文献   

14.
An Mg2+ and ATP dependent beta-lactam synthetase (BLS) catalyses formation of a beta-lactam ring during the biosynthesis of clavulanic acid, an important beta-lactamase inhibitor. An epimeric mixture of a 2-methylated derivative of the natural BLS substrate N2-(2-carboxyethyl)-L-arginine was synthesised and found to be a substrate for the enzyme. The epimeric products were characterised by 1H NMR and mass spectrometric analyses. The results suggest that a modified version of BLS might be used to catalyse the preparation of intermediates useful for the synthesis of beta-lactam antibiotics.  相似文献   

15.
A new penicillin acylase was isolated by cloning and functional screening of DNA isolated from a sand soil enrichment culture. Sequence analysis of this enzyme, PAS2, revealed homology to a group of prominent penicillin G acylases, including the intensively studied enzyme of Escherichia coli ATCC 11105. Accordingly, PAS2 was found to be an Ntn-hydrolase with an N-terminal serine as the catalytic nucleophile, located on its 61.9 kDa β-subunit. The α-subunit was shown to have a molecular mass of 25.5 kDa.To evaluate the biocatalytic performance of the new enzyme, the complex kinetic parameters α, β0, and γ were determined for the kinetically controlled synthesis of a number of important semi-synthetic penicillins and cephalosporins. While α is a measure for the relative affinity of the enzyme for the activated acyl donor (AD), β0 and γ quantify the efficiency of acyl-transfer to the β-lactam nucleophile. Compared to the penicillin acylase of E. coli, PAS2 showed superior potential for the synthesis of 6-aminopenicillanic acid (6-APA)-derived antibiotics, allowing the accumulation of up to 2.3-fold more target product at significantly higher conversion rates. In the synthesis of amoxicillin, for instance, 1.6-fold more antibiotic was formed using the new enzyme, making PAS2 an interesting candidate for biocatalytic application.  相似文献   

16.
Penicillin acylase (PA) from Escherichia coli can catalyze the coupling of an acyl group to penicillin- and cephalosporin-derived beta-lactam nuclei, a conversion that can be used for the industrial synthesis of beta-lactam antibiotics. The modest synthetic properties of the wild-type enzyme make it desirable to engineer improved mutants. Analysis of the crystal structure of PA has shown that residues alphaR145 and alphaF146 undergo extensive repositioning upon binding of large ligands to the active site, suggesting that these residues may be good targets for mutagenesis aimed at improving the catalytic performance of PA. Therefore, site-saturation mutagenesis was performed on both positions and a complete set of all 38 variants was subjected to rapid HPLC screening for improved ampicillin synthesis. Not less than 33 mutants showed improved synthesis, indicating the importance of the mutated residues in PA-catalyzed acyl transfer kinetics. In several mutants at low substrate concentrations, the maximum level of ampicillin production was increased up to 1.5-fold, and the ratio of the synthetic rate over the hydrolytic rate was increased 5-15-fold. Moreover, due to increased tendency of the acyl-enzyme intermediate to react with beta-lactam nucleophile instead of water, mutants alphaR145G, alphaR145S and alphaR145L demonstrated an enhanced synthetic yield over wild-type PA at high substrate concentrations. This was accompanied by an increased conversion of 6-APA to ampicillin as well as a decreased undesirable hydrolysis of the acyl donor. Therefore, these mutants are interesting candidates for the enzymatic production of semi-synthetic beta-lactam antibiotics.  相似文献   

17.
Advantages of performing penicillin acylase-catalyzed synthesis of new penicillins and cephalosporins by enzymatic acyl transfer to the beta-lactam antibiotic nuclei in the supersaturated solutions of substrates have been demonstrated. It has been shown that the effective nucleophile reactivity of 6-aminopenicillanic (6-APA) and 7-aminodesacetoxycephalosporanic (7-ADCA) acids in their supersaturated solutions continue to grow proportionally to the nucleophile concentration. As a result, synthesis/hydrolysis ratio in the enzymatic synthesis can be significantly (up to three times) increased due to the nucleophile supersaturation. In the antibiotic nuclei conversion to the target antibiotic the remarkable improvement (up to 14%) has been gained. Methods of obtaining relatively stable supersaturated solutions of 6-APA, 7-ADCA, and D-p-hydroxyphenylglycine amide (D-HPGA) have been developed and syntheses of ampicillin, amoxicillin, and cephalexin starting from the supersaturated homogeneous solutions of substrates were performed. Higher synthetic efficiency and increased productivity of these reactions compared to the heterogeneous "aqueous solution-precipitate" systems were observed. The suggested approach seems to be an effective solution for the aqueous synthesis of the most widely requested beta-lactam antibiotics (i.e., amoxicillin, cephalexin, cephadroxil, cephaclor, etc.).  相似文献   

18.
BACKGROUND: beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis. The most common bacterial resistance mechanism against beta-lactam compounds is the synthesis of beta-lactamases that hydrolyse beta-lactam rings. These enzymes are believed to have evolved from cell-wall DD-peptidases. Understanding the biochemical and mechanistic features of the beta-lactam targets is crucial because of the increasing number of resistant bacteria. DAP is a D-aminopeptidase produced by Ochrobactrum anthropi. It is inhibited by various beta-lactam compounds and shares approximately 25% sequence identity with the R61 DD-carboxypeptidase and the class C beta-lactamases. RESULTS: The crystal structure of DAP has been determined to 1.9 A resolution using the multiple isomorphous replacement (MIR) method. The enzyme folds into three domains, A, B and C. Domain A, which contains conserved catalytic residues, has the classical fold of serine beta-lactamases, whereas domains B and C are both antiparallel eight-stranded beta barrels. A loop of domain C protrudes into the substrate-binding site of the enzyme. CONCLUSIONS: Comparison of the biochemical properties and the structure of DAP with PBPs and serine beta-lactamases shows that although the catalytic site of the enzyme is very similar to that of beta-lactamases, its substrate and inhibitor specificity rests on residues of domain C. DAP is a new member of the family of penicillin-recognizing proteins (PRPs) and, at the present time, its enzymatic specificity is clearly unique.  相似文献   

19.
Nitrile-converting enzymes, including nitrilase and nitrile hydratase (NHase), have received increasing attention from researchers of industrial biocatalysis because of their critical role as a tool in organic synthesis of carboxylic acids and amides from nitriles. To date, these bioconversion approaches are considered as one of the most potential industrial processes using resting cells or purified enzymes as catalysts for production of food additives, pharmaceutical, and agrochemical precursors. This review focuses on the distribution and catalytic mechanism research of nitrile-converting enzymes in recent years. Molecular biology aspects to improve the biocatalytic performance of microbial nitrilase and NHase are demonstrated. The process developments of microbial nitrilase and NHase for organic synthesis are also discussed.  相似文献   

20.
In spite of being dispensable, O-antigens are believed to facilitate various cellular processes and alter antibiotic sensitivities. Escherichia coli K-12 (CS109) strains are lacking in O-antigens and are reported to be sensitive to antibiotics. To our surprise, E. coli 2443 (expressing O8-antigen) manifested two- to fourfold higher sensitivities toward penicillin and its derivatives than strain CS109. However, sensitivities toward other structurally unrelated antibiotics remained unchanged. To understand the rationale behind such observations, we replaced the rfb locus of strain 2443 with that of E. coli K-12. The beta-lactam sensitivities of 2443 cells with replaced rfb locus appeared to be identical to those for CS109. Therefore, it is quite reasonable to hypothesize the possible involvement of O8-antigen in beta-lactam sensitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号