首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Hormones and behavior》2009,55(5):709-716
Paced mating induces positive affect as revealed by conditioned place preference (CPP) in female rats. It has been suggested that endogenous opioids are involved in the generation of this positive affect since systemic administration of the opioid antagonist naloxone blocks mating-induced CPP. Several brain structures, including the medial preoptic area (mPOA), the ventromedial nucleus of the hypothalamus (VMH), the amygdala (Me), and the nucleus accumbens (Acb) have been implicated in the control of female sexual behavior. However, it is not known if these structures also participate in the positive affect produced by paced mating. To this end we determined the effects of intracranial administration of naloxone methiodide into the mPOA, VMH, Me and Acb on conditioned place preference induced by paced mating in female rats. Regardless of the site of infusion 5 μg of naloxone did not affect any of the sexual behavior parameters measured during copulation. When CPP was evaluated, the groups infused with naloxone into the mPOA, the VMH, and the Me before each conditioning session did not develop place preference. Only the group infused with naloxone in the Acb and the control groups did so. These results demonstrate that opioid receptors within the mPOA, VMH and Me are necessary for the rewarding aspects of paced mating. We suggest that the Me and VMH are important for the transmission of sensory information produced by copulation while the mPOA is the site where the positive affect is originated.  相似文献   

2.
When female rats pace their coital interaction, a reward state evaluated by conditioned place preference is induced. Progesterone (P) is essential for the expression of proceptive behavior and for the induction of CPP. However, the functional significance of ring A reduction of P for the induction of this state during estrous is unsettled. In the present study, we evaluated whether ring A-reduced metabolites of P are involved in the reward state induced when the females are allowed to pace their sexual contacts. Ovariectomized (ovx) female rats treated with estradiol benzoate (EB, 5 microg) and P (13 microg), Megestrol acetate (MA; 13 microg ), 5 alpha-pregnan-20 dione (5 alphaDHP; 3 microg), or 5 beta-pregnan-3 alpha-ol-20-one (5 beta,3 alpha-Pgl; 3 microg) were used. Progestins were dissolved in propylene glycol and intravenously (iv) injected through an indwelling jugular catheter before females were tested for pacing behavior. After 15 intromissions or one ejaculation, females were gently placed in the nonpreferred compartment of a CPP box. Paced mating in all groups treated with progestins induced a clear change of preference. The administration of progestins alone did not induce CPP. These results suggest that P and ring A-reduced metabolites facilitate the reward state following pacing.  相似文献   

3.
The ability to control or pace the sexual interaction has important physiological and behavioral consequences for the female rat. Paced mating favors reproduction and induces a positive affective state as revealed by conditioned place preference (CPP). In the present experiment we evaluated: 1) If paced mating induces CPP in naturally cycling females; 2) If females developed a positive affective state if they paced the sexual interaction through a 1- or a 3-hole pacing chamber; 3) If females that mate with the same male without pacing the sexual interaction develop CPP. In the first experiment intact females were divided in 4 different groups; 2 paced the sexual interaction until receiving 1 or 3 ejaculations; the other 2 groups mated, without pacing the sexual interaction, until receiving 1 or 3 ejaculations. Only the group that paced the sexual interaction until receiving 3 ejaculations developed a positive affective state. In experiments 2 and 3 hormonally treated ovariectomized females were used. In experiment 2 females were allowed to pace the sexual interaction through a 1- or a 3-hole pacing chamber: A clear positive affective state was induced in both testing conditions. Finally, in experiment 3 females did not develop CPP for non-paced sex despite the fact that they mated with the same male in the conditioning sessions. These results demonstrate that the pattern of vaginocervical stimulation that the females received by engaging in approach and avoidance behaviors to pace the sexual interaction can induce a positive affective state in naturally cycling females. They also confirm the existence of a threshold of vaginocervical stimulation for paced mating to induce CPP in female rats.  相似文献   

4.
The hypothalamic neuropeptide orexin (hypocretin) mediates reward related to drugs of abuse and food intake. However, a role for orexin in sexual reward has yet to be investigated. Orexin neurons are activated by sexual behavior, but endogenous orexin does not appear to be essential for sexual performance and motivation in male rats. Therefore, the goal of the current study was to test the hypothesis that orexin is critically involved in processing of sexual reward in male rats. First, it was demonstrated following exposure to conditioned contextual cues associated with sexual behavior in a conditioned place preference paradigm that cFos expression is induced in orexin neurons, indicating activation of orexin neurons by cues predicting sexual reward. Next, orexin-cell specific lesions were utilized to determine the functional role of orexin in sexual reward processing. Hypothalami of adult male rats were infused with orexin-B-conjugated saporin, resulting in greater than 80% loss of orexin neurons in the perifornical-dorsomedial and lateral hypothalamus. Orexin lesions did not affect expression of sexual behavior, but prevented formation of conditioned place preference for a sexual behavior paired chamber. In contrast, intact sham-treated males or males with partial lesions developed a conditioned place preference for mating. Orexin lesioned males maintained the ability to form a conditioned place aversion to lithium chloride-induced visceral illness, indicating that orexin lesions did not disrupt associative contextual memory. Overall, these findings suggest that orexin is not essential for sexual performance or motivation, but is critical for reward processing and conditioned cue-induced seeking of sexual behavior.  相似文献   

5.
Two experiments assessed the effects of neonatal testosterone treatment on paced mating behavior and conditioned place preference in female rats. In both experiments, females received s.c. injections of 5.0 microg testosterone propionate or oil vehicle at three days postpartum. As adults, females were ovariectomized and given s.c. injections of 10 microg estradiol benzoate and 500 microg progesterone, 48 and 4 h before mating, respectively. In Experiment 1, TP- and Oil-treated females exhibited similar high levels of lordosis responsiveness, but TP-treated females showed increased intervals between mounts and between intromissions in paced and non-paced mating conditions compared to control females. The effect was particularly pronounced during paced mating, when contact return latencies were increased approximately 2-fold by TP treatment. TP-treated females showed exaggerated pacing behavior, showing significantly greater return latencies after intromissions than Oil-treated females. In Experiment 2, TP- and Oil-treated groups were tested in a conditioned place preference paradigm to determine if the behavioral changes observed in Experiment 1 were in part a result of changes in the perceived reward produced by paced mating. TP treated and control females developed equivalent preferences for places associated with paced but not non-paced mating, indicating that neonatal TP treatment at this dosage does not disrupt or enhance the conditioned place preference induced by paced mating. The results of the two experiments demonstrate that neonatal TP treatment alters the display of pacing behavior but not the reward state induced by paced mating, and suggest that TP affects neural substrates involved in performance of paced mating without effects on those controlling lordosis or place preference conditioning.  相似文献   

6.
Methamphetamine (METH) is a psychomotor stimulant strongly associated with increases in sexual drive and behavior in women and men. Even though men and women are equally as likely to be addicted to or use METH, studies of sexual behavior often focus on male users. The paucity in studies examining the effect of METH in women is of great concern, when one considers the high correlation with sexually transmitted diseases such as HIV/AIDS and unplanned pregnancies. In fact, why METH so profoundly increases sexual drive is unknown. We have demonstrated that repeated exposure to METH enhances both receptivity and proceptivity in hormonally primed female rats. The current study examined whether a repeated exposure to METH enhanced female-initiated sexual behaviors in hormonally primed rats. In a paced mating paradigm, METH treatment significantly decreased the female's return latency following a mount (57%) and an ejaculation (44%), and the likelihood to leave the male following an intromission (37%) compared to controls. The METH-induced changes in paced mating behavior were accompanied by a 60% increase in spinophilin levels in the medial amygdala following hormonal priming and METH treatment. Taken together, these findings suggest that METH increases female sexual motivation and behavior in the rat potentially via changes in the neural substrate that require repeated exposure to the drug.  相似文献   

7.
The endogenous brain opioid system is believed to play an important role in mediating reward mechanisms. Opioid innervation is high in many limbic regions and reinforcing actions of many drugs of abuse, including cocaine, are thought to be mediated via endogenous opioid system. The aim of the present study was to indicate whether the anti-opioid peptide, neuropeptide FF (NPFF; FLFQPQRF-NH2) was able to modify the rewarding effect of cocaine (5 mg/kg) measured in the expression of conditioned place preference (CPP) test in rats and the expression of sensitization to hyperlocomotor effect of cocaine (10 mg/kg) in mice. Our results indicate that NPFF (5, 10, and 20 nmol) given intracerebroventricularly (i.c.v.) inhibited the expression of cocaine-induced CPP at the dose of 10 nmol (P < 0.01) and 20 nmol (P < 0.001). Moreover, NPFF inhibited the expression of cocaine-induced sensitization to its hyperlocomotor effect at the dose of 20 nmol (P < 0.05) and acute hyperlocomotor effect of cocaine at doses of 5 nmol (P < 0.01), 10 nmol (P < 0.01), and 20 nmol (P < 0.05). Our study suggests that NPFF may participate in a rewarding effect of cocaine measured in the CPP paradigm. On the other hand, our experiments indicate that NPFF is involved in the mechanism of expression of sensitization to cocaine hyperlocomotion but this effect seems to be non-specific because NPFF also inhibited the acute hyperlocomotor effect of cocaine.  相似文献   

8.
Gao C  Che LW  Chen J  Xu XJ  Chi ZQ 《Cell research》2003,13(1):29-34
The present study was designed to determine the changes of phosphorylation of cAMP-response element binding protein(CREB)in hippocampus induced by ohmefentanyl stereoisomers(F9202 and F9204) in conditioned place preference(CPP)paradigm.The results showed that mice receiving F9202 and F9204 displayed obvious CPP.They could all significantly stimulate CREB phosphorylation and maintained for a long time without affecting total CREB protein levels.The effect of F9204 was similar to morphine which effect was more potent and longer than F9202.We also examined the effects of ketamine,a noncompetitive N-mthyl-D-asartate receptor(NR)antagonist,on morphine-,F9202-and F9204-induced CPP and phosphorylation of CREB in hippocampus.Ketamine could suppress not only the place preference but also the phosphorylation of CREB produced by morphine,F9202 and F9204.These findings suggest that alterations in the phosphorylation of CREB be relevant to opiates signaling and the development of opiates dependence.NR antagonists may interfere with opiates dependence and may have potential therapeutic implications.  相似文献   

9.
Opioid regulation of reproduction has been widely studied. However, the role of opioid receptor-like 1 receptor (NOP; also referred to as ORL-1 and OP4) and its endogenous ligand orphanin FQ/nociceptin (OFQ/N) have received less attention despite their extensive distribution throughout nuclei of the limbic-hypothalamic system, a circuit that regulates reproductive behavior in the female rat. Significantly, the expression of both receptor and ligand is regulated in a number of these nuclei by estradiol and progesterone. Activation of NOP in the ventromedial nucleus of the hypothalamus (VMH) of estradiol-primed nonreceptive female rats facilitates lordosis. NOPs are also expressed in the medial preoptic nucleus (MPN), however, their roles in reproductive behavior have not been studied. The present experiments examined the role of NOP in the regulation of lordosis in the MPN and tested whether endogenous OFQ/N in the MPN and VMH mediates reproductive behavior. Activation of NOP by microinfusion of OFQ/N in the MPN facilitated lordosis in estradiol-primed sexually nonreceptive female rats. Passive immunoneutralization of OFQ/N in either the MPN or the VMH reduced lordosis in estradiol-primed females, but had no effect on lordosis in estradiol+progesterone-primed sexually receptive rats. These studies suggest that OFQ/N has a central role in estradiol-only induced sexual receptivity, and that progesterone appears to involve additional circuits that mediate estradiol+progesterone sexual receptivity.  相似文献   

10.

Background

MicroRNA (miRNA) emerges as important player in drug abuse. Yet, their expression profile in neurological disorder of cocaine abuse has not been well characterized. Here, we explored the changes of miRNA expression in rat hippocampus following repeated cocaine exposure and subsequent abstinence from cocaine treatment.

Results

Conditioned place preference (CPP) procedure was used to assess the acquisition and extinction of cocaine-seeking behavior in rats. MiRNA microarray was performed to examine miRNAs levels in rat hippocampus. Quantitative RT-PCR was conducted to further confirm results in microarray study. Finally, bioinformatic predictions were made to suggest potential target genes of cocaine-responsive miRNA in this study. MiRNA array found that 34 miRNA levels were changed in rat hippocampus while acquiring cocaine CPP and 42 miRNAs levels were altered after the cocaine-induced CPP were extinguished, as compared to normal controls. The findings from qRT-PCR study support results from microarray analysis.

Conclusions

The current study demonstrated dynamic changes in miRNA expression in rat hippocampus during the acquisition and extinction of cocaine-induced CPP. Some miRNAs which have been previously reported to be involved in brain disorders and drug abuse, including miR-133b, miR-134, miR-181c, miR-191, miR-22, miR-26b, miR-382, miR-409-3p and miR-504, were found to be changed in their expression following repeated cocaine exposure and subsequent abstinence from cocaine treatment. These findings may extend our understanding of the regulatory network underlying cocaine abuse and may provide new targets for the future treatment of drug abuse.  相似文献   

11.
Many data indicate that endogenous opioid system is involved in amphetamine-induced behavior. Neuropeptide FF (NPFF) possesses opioid-modulating properties. The aim of the present study was to determine whether pharmacological modulation of NPFF receptors modify the expression of amphetamine-induced conditioned place preference (CPP) and amphetamine withdrawal anxiety-like behavior, both processes relevant to drug addiction/abuse. Intracerebroventricular (i.c.v.) injection of NPFF (5, 10, and 20 nmol) inhibited the expression of amphetamine CPP at the doses of 10 and 20 nmol. RF9, the NPFF receptors antagonist, reversed inhibitory effect of NPFF (20 nmol, i.c.v.) at the doses of 10 and 20 nmol and did not show any effect in amphetamine- and saline conditioned rats. Anxiety-like effect of amphetamine withdrawal was measured 24h after the last (14 days) amphetamine (2.5mg/kg, i.p.) treatment in the elevated plus-maze test. Amphetamine withdrawal decreased the percent of time spent by rats in the open arms and the percent of open arms entries. RF9 (5, 10, and 20 nmol, i.c.v.) significantly reversed these anxiety-like effects of amphetamine withdrawal and elevated the percent of time spent by rats in open arms at doses of 5 and 10 nmol, and the percent of open arms entries in all doses used. NPFF (20 nmol) pretreatment inhibited the effect of RF9 (10 nmol). Our results indicated that stimulation or inhibition of NPFF receptors decrease the expression of amphetamine CPP and amphetamine withdrawal anxiety, respectively. These findings may have implications for a better understanding of the processes involved in amphetamine dependence.  相似文献   

12.
Tzschentke TM 《Amino acids》2000,19(1):211-219
Summary. This review will briefly summarize experimental evidence for an involvement of the medial prefrontal cortex (mPFC) in reward-related mechanisms in the rat brain. The mPFC is part of the mesocorticolimbic dopaminergic system. It receives prominent dopaminergic input from the ventral tegmental area (VTA) and, via the mediodorsal thalamus, inputs from other subcortical basal ganglia structures. In turn it projects back to the VTA and the nucleus accumbens septi (NAS), which are generally considered as main components of the brain reward system. Evidence for the involvement of the mPFC in reward-related mechanisms comes mainly from three types of studies, conditioned place preference (CPP), intracranial self-stimulation (ICSS), and self-administration. Work will be summarized that has shown that certain drugs injected into the mPFC can produce CPP or that lesions of the mPFC can disrupt the development of CPP, that ICSS is obtained with the stimulating electrode placed in the mPFC, and that certain drugs are self-administered into the mPFC or that lesions of the mPFC disrupt the peripheral self-administration of certain drugs. However, it has also been shown that the role of the mPFC in reward is not uniform. For example, the mPFC appears to be particularly important for the rewarding actions of cocaine, while it appears not to be important for the rewarding actions of amphetamine. Also, different subareas of the mPFC appear to be differentially involved in the rewarding actions of different drugs. Taken together, the available evidence shows that some drugs can produce reward directly within the mPFC, and that some drugs, even though not having direct rewarding effects within the mPFC, depend on the function of the mPFC for the mediation of their rewarding effects. Received August 31, 1999 Accepted September 20, 1999  相似文献   

13.
Herzig V  Schmidt WJ 《Amino acids》2005,28(3):309-317
Summary. In addiction research, the conditioned place preference (CPP) paradigm is a widely used animal model of conditioned reward. Usually, CPP development is studied, while only few studies examine CPP expression. In the present study, the suitability of a schedule allowing repeated testing of CPP expression was evaluated. Two groups of rats were either conditioned with cocaine or morphine then the repeated-testing-schedule was applied. This schedule consisted of four repeated applications of a sequence of drug- (i.e. cocaine or morphine), saline- and anti-craving-drug- (i.e. acamprosate, naloxone, their joint administration or saline as internal control) tests. Methodologically, the repeated-testing-schedule produced stable CPP expression in both groups over 12 subsequent tests. In conclusion, it is suggested as a useful method to study effects of anti-craving-drugs on CPP expression, thereby reducing the overall number of experimental animals. The evaluation of the anti-craving-drug effects revealed that neither acamprosate and naloxone given separately nor their combined administration significantly reduced cocaine- or morphine-CPP expression. Thus, we suggest that these anti-craving-drugs are unlikely to be effective for relapse prevention in cocaine- or morphine-addicts.  相似文献   

14.
It has been shown that orexin A in the ventral tegmental area (VTA) is necessary for development of morphine place preference. Additionally, D1 and D2 dopamine receptors in the nucleus accumbens (NAc) have critical roles in motivation and reward. However, little is known about the function of orexin in conditioned place preference (CPP) in rats and involvement of D1/D2 receptors in the NAc. In the present study, we investigated the effect of direct administration of orexin A into the VTA, and examined the role of intra-accumbal dopamine receptors in development (acquisition) of reward-related behaviors in the rats. Adult male Wistar rats were unilaterally implanted by two separate cannulae into the VTA and NAc. The CPP paradigm was used, and, conditioning score and locomotor activity were recorded by Ethovision software. The results showed that unilateral intra-VTA administration of orexin A (27, 53 and 107ng/0.3μl saline) during conditioning phase induced CPP in a dose-dependent manner. The most effective dose of intra-VTA orexin-A in eliciting CPP was 107ng. However, intra-NAc administration of SCH 23390 (0.25, 1 and 4μg/0.5μl saline), a D1 receptor antagonist, and sulpiride (0.25, 1 and 4μg/0.5μl DMSO), a D2 receptor antagonist, inhibited the development of orexin-induced CPP. The inhibitory effect of D2 but not D1 receptor antagonist was exerted in a dose-dependent manner. It is supposed that the activation of VTA dopaminergic neuron by orexin impresses the D2 receptors more than D1 receptors in the NAc.  相似文献   

15.
Relapse to smoking occurs at higher rates in women compared with men, especially when triggered by stress. Studies suggest that sex‐specific interactions between nicotine reward and stress contribute to these sex differences. Accordingly, novel treatment options targeting stress pathways, such as guanfacine, an α2‐adrenergic receptor agonist, may provide sex‐sensitive therapeutic effects. Preclinical studies are critical for elucidating neurobiological mechanisms of stress‐induced relapse and potential therapies, but rodent models of nicotine addiction are often hindered by large behavioral variability. In this study, we used nicotine conditioned place preference to investigate stress‐induced reinstatement of nicotine preference in male and female mice, and the effects of guanfacine on this behavior. Our results showed that overall, nicotine induced significant place preference acquisition and swim stress‐induced reinstatement in both male and female mice, but with different nicotine dose‐response patterns. In addition, we explored the variability in nicotine‐dependent behaviors with median split analyses and found that initial chamber preference in each sex differentially accounted for variability in stress‐induced reinstatement. In groups that showed significant stress‐induced reinstatement, pretreatment with guanfacine attenuated this behavior. Finally, we evaluated neuronal activation by Arc immunoreactivity in the infralimbic cortex, prelimbic cortex, anterior insula, basolateral amygdala, lateral central amygdala and nucleus accumbens core and shell. Guanfacine induced sex‐dependent changes in Arc immunoreactivity in the infralimbic cortex and anterior insula. This study demonstrates sex‐dependent relationships between initial chamber preference and stress‐induced reinstatement of nicotine conditioned place preference, and the effects of guanfacine on both behavior and neurobiological mechanisms.  相似文献   

16.
Liang J  Li Y  Ping X  Yu P  Zuo Y  Wu L  Han JS  Cui C 《Peptides》2006,27(12):3307-3314
Previous studies suggested that electroacupuncture (EA) can suppress opioid dependence by the release of endogenous opioid peptides. To explore the site of action and the receptors involved, we tried to inject highly specific agonists for μ-, δ- and κ-opioid receptors into the CNS to test whether it can suppress morphine-induced conditioned place preference (CPP) in the rat. Male Sprague–Dawley rats were trained with 4 mg/kg morphine, i.p. for 4 days to establish the CPP model. This CPP can be prevented by (a) i.p. injection of 3 mg/kg dose of morphine, (b) intracerebroventricular (i.c.v.) injection of micrograms doses of the selective μ-opioid receptor agonist DAMGO, δ-agonist DPDPE or κ-agonist U-50,488H or (c) microinjection of DAMGO, DPDPE or U50488H into the shell of the nucleus accumbens (NAc). The results suggest that the release of endogenous μ-, δ- and κ-opioid agonists in the NAc shell may play a role for EA suppression of opiate addiction.  相似文献   

17.
Association between the reward caused by consuming drugs and the context in which they are consumed is essential in the formation of morphine-induced conditioned place preference (CPP). Glucocorticoid receptor (GRs) activation in different regions of the brain affects reward-based reinforcement and memory processing. A wide array of studies have demonstrated that blockage of GRs in some brain areas can have an effect on reward-related memory; however, to date there have been no systematic studies about the involvement of glucocorticoids (GCs) in morphine-related reward memory. Here, we used the GR antagonist RU38486 to investigate how GRs blockage affects the sensitization and CPP behavior during different phases of reward memory included acquisition, retrieval and reconsolidation. Interestingly, our results showed RU38486 has the ability to impair the acquisition, retrieval and reconsolidation of reward-based memory in CPP and sensitization behavior. But RU38486 by itself cannot induce CPP or conditioned place aversion (CPA) behavior. Our data provide a much more complete picture of the potential effects that glucocorticoids have on the reward memory of different phases and inhibit the sensitization behavior.  相似文献   

18.
Environment-induced relapse is a major concern in drug addiction because of the strong associations formed between drug reward and environment. Cocaine-conditioned place preference is an ideal experimental tool to examine adaptations in the molecular pathways that are activated upon re-exposure to an environment previously paired with drug reward. To better understand the mechanism of cocaine-conditioned place preference we have used western blot analysis to examine changes in phosphorylation of cAMP-response element binding protein (CREB), dopamine- and cyclic AMP-regulated phosphoprotein 32 (DARPP-32), extracellular signal-regulated kinase (ERK) and GluR1, key molecular substrates altered by cocaine, in the nucleus accumbens (NAc) and dorsal hippocampus (DHC) of C57BL/6 mice. Our studies revealed that re-exposing mice to an environment in which they were previously given cocaine resulted in increased levels of Ser133 phospho-CREB and Thr34 phospho-DARPP-32 with a corresponding decrease in Thr75 phospho-DARPP-32 in the NAc. In DHC there were increased levels of phospho-CREB, Thr183/Tyr185 phospho-ERK, and Ser845 phospho-GluR1. These data suggest that the formation of contextual drug reward associations involves recruitment of the DHC-NAc circuit with activation of the DARPP-32/CREB pathway in the NAc and the ERK/CREB pathway in the DHC.  相似文献   

19.
In many rodent species, including Syrian hamsters, the expression of appropriate social behavior depends critically on the perception and identification of conspecific odors. The behavioral response to these odors is mediated by a network of steroid-sensitive ventral forebrain nuclei including the medial amygdala (Me), posterior bed nucleus of the stria terminalis (BNST), and medial preoptic area (MPOA). Although it is well-known that Me, BNST, and MPOA are densely interconnected and each uniquely modulates odor-guided social behaviors, the degree to which conspecific odor information and steroid hormone cues are directly relayed between these nuclei is unknown. To answer this question, we injected the retrograde tracer, cholera toxin B (CTB), into the BNST or MPOA of male subjects and identified whether retrogradely-labeled cells in Me and BNST 1) expressed immediate early genes (IEGs) following exposure to male and/or female odors or 2) expressed androgen receptor (AR). Although few retrogradely-labeled cells co-localized with IEGs, a higher percentage of BNST- and MPOA-projecting cells in the posterior Me (MeP) expressed IEGs in response to female odors than to male odors. The percentage of retrogradely-labeled cells that expressed IEGs did not, however, differ between and female and male odor-exposed groups in the anterior Me (MeA), posterointermediate BNST (BNSTpi), or posteromedial BNST (BNSTpm). Many retrogradely-labeled cells co-localized with AR, and a higher percentage of retrogradely-labeled MeP and BNSTpm cells expressed AR than retrogradely-labeled MeA and BNSTpi cells, respectively. Together, these data demonstrate that Me, BNST, and MPOA interact as a functional circuit to process sex-specific odor cues and hormone information in male Syrian hamsters.  相似文献   

20.
Summary The Na+/K+ ionophore monensin is known to arrest the intracellular transport of newly synthesized proteins in the Golgi complex. In the present investigation the effect of monensin on the secretion of 3H-galactose-labeled and 3H-sialic acid-labeled thyroglobulin was studied in open thyroid follicles isolated from porcine thyroid tissue.Follicles were incubated with 3H-galactose at 20° C for 1 h; at this temperature the labeled thyroglobulin remains in the labeling compartment (Ring et al. 1987a). The follicles were then chased at 37° C for 1 h in the absence or presence of 1 M monensin. Without monensin substantial amounts of labeled thyroglobulin were secreted into the medium, whereas in the presence of the ionophore secretion was inhibited by 80%. Since we have previously shown (Ring et al. 1987 b) that monensin does not inhibit secretion of thyroglobulin present on the distal side of the monensin block we conclude that galactose is incorporated into thyroglobulin on the proximal side of this block.Secretion was also measured in follicles continuously incubated with 3H-galactose for 1 h at 37° C in the absence or presence of monensin. In these experiments secretion of labeled thyroglobulin was inhibited by about 85% in the presence of monensin. Identically designed experiments with 3H-N-acetylmannosamine, a precursor of sialic acid, gave similar results, i.e., almost complete inhibition of secretion of labeled thyroglobulin in the presence of monensin. The agreement between the results of the galactose and sialic acid experiments indicates that sialic acid, like galactose, is incorporated into thyroglobulin on the proximal side of the monensin block.Considering observations made in other cell systems the present results suggest that galactosylation and sialylation of thyroglobulin are completed within the Golgi complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号