共查询到20条相似文献,搜索用时 15 毫秒
1.
Neprilysin (NEP) is a rate-limiting amyloid beta peptide (Abeta)-degrading enzyme in the brain. We demonstrated previously that overexpression of neprilysin in primary cortical neurons remarkably decreased not only extracellular but also intracellular Abeta levels. To investigate the subcellular compartments where neprilysin degrades Abeta most efficiently, we expressed neprilysin chimeric proteins containing various subcellular compartment-targeting domains in neurons. Sec12-NEP, beta-galactoside alpha2,6-sialyltransferase-NEP, transferrin receptor-NEP, and growth-associated protein 43-NEP were successfully sorted to the endoplasmic reticulum, trans-Golgi network, early/recycling endosomes, and lipid rafts, respectively. We found that intracellularly, wild-type neprilysin and all the chimeras showed equivalent Abeta40-degrading activities. Abeta40 was more effectively cleared than Abeta42, and this tendency was greater for intracellular Abeta than for extracellular Abeta. Wild-type and trans-Golgi network-targeted ST-NEP cleared more intracellular Abeta42 than the other chimeras. Wild-type neprilysin cleared extracellular Abeta more effectively than any of the chimeras, among which endoplasmic reticulum-targeted Sec12-NEP was the least effective. These observations indicate that different intracellular compartments may be involved in the metabolism of distinct pools of Abeta (Abeta40 and Abeta42) to be retained or recycled intracellularly and to be secreted extracellularly, and that the endogenous targeting signal in wild-type neprilysin is well optimized for the overall neuronal clearance of Abeta. 相似文献
2.
Elisabet Barbero-Camps Vicente Roca-Agujetas Isabel Bartolessis Cristina de Dios Jose C. Fernández-Checa Montserrat Marí 《Autophagy》2018,14(7):1129-1154
Macroautophagy/autophagy failure with the accumulation of autophagosomes is an early neuropathological feature of Alzheimer disease (AD) that directly affects amyloid beta (Aβ) metabolism. Although loss of presenilin 1 function has been reported to impair lysosomal function and prevent autophagy flux, the detailed mechanism leading to autophagy dysfunction in AD remains to be elucidated. The resemblance between pathological hallmarks of AD and Niemann-Pick Type C disease, including endosome-lysosome abnormalities and impaired autophagy, suggests cholesterol accumulation as a common link. Using a mouse model of AD (APP-PSEN1-SREBF2 mice), expressing chimeric mouse-human amyloid precursor protein with the familial Alzheimer Swedish mutation (APP695swe) and mutant presenilin 1 (PSEN1-dE9), together with a dominant-positive, truncated and active form of SREBF2/SREBP2 (sterol regulatory element binding factor 2), we demonstrated that high brain cholesterol enhanced autophagosome formation, but disrupted its fusion with endosomal-lysosomal vesicles. The combination of these alterations resulted in impaired degradation of Aβ and endogenous MAPT (microtubule associated protein tau), and stimulated autophagy-dependent Aβ secretion. Exacerbated Aβ-induced oxidative stress in APP-PSEN1-SREBF2 mice, due to cholesterol-mediated depletion of mitochondrial glutathione/mGSH, is critical for autophagy induction. In agreement, in vivo mitochondrial GSH recovery with GSH ethyl ester, inhibited autophagosome synthesis by preventing the oxidative inhibition of ATG4B deconjugation activity exerted by Aβ. Moreover, cholesterol-enrichment within the endosomes-lysosomes modified the levels and membrane distribution of RAB7A and SNAP receptors (SNAREs), which affected its fusogenic ability. Accordingly, in vivo treatment with 2-hydroxypropyl-β-cyclodextrin completely rescued these alterations, making it a potential therapeutic tool for AD. 相似文献
3.
J. B. Strosznajder 《Journal of neurochemistry》2003,85(S2):11-11
Brain platelet-activating factor (PAF) is a lipid mediator involved in neurotransmission and in LTP. It has been reported that the induction of LTP by high frequency stimulation increases the activity of the enzymes responsible for its synthesis by a still unknown mechanism ( 1 ). One of the two biosynthetic pathways is Ca2+ -dependent and transforms a membrane ether phospholipid into PAF by a sequence of two reactions being the first one, catalyzed by a phospholipase A2 (PLA2 ), rate limiting. Overproduction of PAF, taking place in pathological conditions, contributes to brain damage. Various PLA2 s are present in brain tissue and, particularly, sPLA2 -IIA is very likely involved in the production of PAF as its expression increases in pathological conditions. Recently, we have found the release of sPLA2 -IIA from rat brain cortex mitochondria and its association with nuclear membranes, which might be an intracellular target for the enzyme. 相似文献
4.
The fully developed lesion of Alzheimer's Disease is a dense plaque composed of fibrillar amyloid beta-proteins with a characteristic and well-ordered beta-sheet secondary structure. Because the incipient lesion most likely develops when these proteins are first induced to form beta-sheet secondary structure, it is important to understand factors that induce amyloid beta-proteins to adopt this conformation. In this investigation we used a novel form of infrared spectroscopy that can characterize the conformation, orientation, and rate of accumulation of the protein on various lipid membranes to determine whether oxidatively damaged phospholipid membranes induce the formation of beta-sheet secondary structure in a 42-residue amyloid beta-protein. We found that membranes containing oxidatively damaged phospholipids accumulated amyloid beta-protein significantly faster than membranes containing only unoxidized or saturated phospholipids. Accelerated accumulation was also seen when 3 mol % G(M1) ganglioside was incorporated into a saturated phosphatidylcholine membrane. The accumulated protein more completely adopted a beta-sheet conformation on oxidized membranes, and the plane of the beta-sheet was oriented parallel to the plane of the membrane. These results indicate that oxidatively damaged phospholipid membranes promote beta-sheet formation by amyloid beta-proteins, and they suggest a possible role for lipid peroxidation in the pathogenesis of Alzheimer's Disease. 相似文献
5.
6.
Senile plaques in the cerebral parenchyma are a pathognomonic feature of Alzheimer's disease (AD) and are mainly composed of aggregated fibrillar amyloid beta (Abeta) proteins. The plaques are associated with neuronal degeneration, lipid membrane abnormalities, and chemical evidence of oxidative stress. The view that Abeta proteins cause these pathological changes has been challenged by suggestions that they have a protective function or that they are merely byproducts of the pathological process. This investigation was conducted to determine whether Abeta proteins promote or inhibit oxidative damage to lipid membranes. Using a mass spectrometric assay of oxidative lipid damage, the 42-residue form of Abeta (Abeta42) was found to accelerate the oxidative lipid damage caused by physiological concentrations of ascorbate and submicromolar concentrations of copper(II) ion. Under these conditions, Abeta42 was aggregated, but nonfibrillar. Ascorbate and copper produced H(2)O(2), but Abeta42 reduced H(2)O(2) concentrations, and its ability to accelerate oxidative damage was not affected by catalase. Lipids could be oxidized by H(2)O(2) and copper(II) in the absence of ascorbate, but only at significantly higher concentrations, and Abeta42 inhibited this reaction. These results indicate that the ability of Abeta42 to promote oxidative damage is more potent and more likely to be manifest in vivo than its ability to inhibit oxidative damage. In conjunction with prior results demonstrating that oxidatively damaged membranes cause Abeta42 to misfold and form fibrils, these results suggest a specific chemical mechanism linking Abeta42-promoted oxidative lipid damage to amyloid fibril formation. 相似文献
7.
Murray IV Liu L Komatsu H Uryu K Xiao G Lawson JA Axelsen PH 《The Journal of biological chemistry》2007,282(13):9335-9345
Evidence of oxidative stress and the accumulation of fibrillar amyloid beta proteins (Abeta) in senile plaques throughout the cerebral cortex are consistent features in the pathology of Alzheimer disease. To define a mechanistic link between these two processes, various aspects of the relationship between oxidative lipid membrane damage and amyloidogenesis were characterized by chemical and physical techniques. Earlier studies of this relationship demonstrated that oxidatively damaged synthetic lipid membranes promoted amyloidogenesis. The studies reported herein specify that 4-hydroxy-2-nonenal (HNE) is produced in both synthetic lipids and human brain lipid extracts by oxidative lipid damage and that it can account for accelerated amyloidogenesis. Abeta promotes the copper-mediated generation of HNE from polyunsaturated lipids, and in turn, HNE covalently modifies the histidine side chains of Abeta. HNE-modified Abeta have an increased affinity for lipid membranes and an increased tendency to aggregate into amyloid fibrils. Thus, the prooxidant activity of Abeta leads to its own covalent modification and to accelerated amyloidogenesis. These results illustrate how lipid membranes may be involved in templating the pathological misfolding of Abeta, and they suggest a possible chemical mechanism linking oxidative stress with amyloid formation. 相似文献
8.
We previously found that pathophysiological concentrations (< or = 10 nm) of an amyloid beta protein (Abeta25-35) reduced the plasma membrane phosphatidylinositol monophosphate level in cultured rat hippocampal neurons with a decrease in phosphatidylinositol 4-monophosphate-dependent Cl- -ATPase activity. As this suggested an inhibitory effect of Abeta25-35 on plasma membrane phosphatidylinositol 4-kinase (PI4K) activity, in vitro effects of Abetas on PI4K activity was examined using rat brain subcellular fractions and recombinant human type II PI4K (PI4KII). Abeta25-35 (10 nm) inhibited PI4KII activity, but neither PI 3-kinase (PI3K) nor type III PI4K (PI4KIII) activity, in microsomal fractions, while 100 nm Abeta25-35 inhibited PI3K activity in mitochondrial fractions. In plasma membrane-rich fractions, Abetas (> 0.5 nm) dose-dependently inhibited PI4KII activity, the maximal inhibition to 77-87% of control being reached around 10 nm of Abetas without significant changes in apparent Km values for ATP and PI, suggesting non-competitive inhibition by Abetas. The inhibition by 10 nm Abeta25-35 was reversible. In recombinant human PI4KIIalpha, inhibition profiles of Abetas were similar to those in rat brain plasma membranes. Therefore, pathophysiological concentrations of Abetas directly and reversibly inhibited plasma membrane PI4KII activity, suggesting that plasma membrane PI4KII is a target of Abetas in the pathogenesis of Alzheimer's disease. 相似文献
9.
Vaccinations against amyloid β protein (AβP) reduce amyloid deposition and reverse learning and memory deficits in mouse models of Alzheimer’s disease. This has raised the question of whether circulating antibodies, normally restricted by the blood–brain barrier (BBB), can enter the brain [Nat. Med. 7 (2001) 369–372]. Here, we show that antibody directed against AβP does cross the BBB at a very low rate. Entry is by way of the extracellular pathways with about 0.11% of an intravenous (i.v.) dose entering the brain by 1 h. Clearance of antibody from brain increasingly dominates over time, but antibody is still detectable in brain 72 h after i.v. injection. Uptake and clearance is not altered in mice overexpressing AβP. This ability to enter and exit the brain even in the presence of increased brain ligand supports the use of antibody in the treatment of Alzheimer’s and other diseases of the brain. 相似文献
10.
Lewis PA Piper S Baker M Onstead L Murphy MP Hardy J Wang R McGowan E Golde TE 《Biochimica et biophysica acta》2001,1537(1):58-62
In order to develop transgenic animal models that selectively overexpress various Abeta peptides, we have developed a novel expression system that selectively expresses Abeta40 or Abeta42 in the secretory pathway. This system utilizes fusion constructs in which the sequence encoding the 23-amino-acid ABri peptide at the carboxyl terminus of the 266-amino-acid type 2 transmembrane protein BRI is replaced with a sequence encoding either Abeta40 or Abeta42. Constitutive processing of the resultant BRI-Abeta fusion proteins in transfected cells results in high-level expression and secretion of the encoded Abeta peptide. Significantly, expression of Abeta42 from the BRI-Abeta42 construct resulted in no increase in secreted Abeta40, suggesting that the majority of Abeta42 is not trimmed by carboxypeptidase to Abeta40 in the secretory pathway. 相似文献
11.
《生物化学与生物物理学报:生物膜》2018,1860(9):1639-1651
The beta amyloid protein (Aβ) plays a central role in Alzheimer's disease (AD) pathogenesis and its interaction with cell membranes in known to promote mutually disruptive structural perturbations that contribute to amyloid deposition and neurodegeneration in the brain. In addition to protein aggregation at the membrane interface and disruption of membrane integrity, growing reports demonstrate an important role for the membrane in modulating Aβ production and uptake into cells. The aim of this review is to highlight and summarize recent literature that have contributed insight into the implications of altered membrane composition on amyloid precursor protein (APP) proteolysis, production of Aβ, its internalization in to cells via permeabilization and receptor mediated uptake. Here, we also review the various membrane model systems and experimental tools used for probing Aβ-membrane interactions to investigate the key mechanistic aspects underlying the accumulation and toxicity of Aβ in AD. 相似文献
12.
Sharmili Vidyadaran Yin Yin Ooi Alireza Badiei Rajesh Ramasamy 《Cellular immunology》2009,259(1):105-110
A challenge for studies involving microglia cultures is obtaining sufficient cells for downstream experiments. Macrophage colony-stimulating factor (M-CSF) has been used to improve yield of microglia in culture. However, the effects of M-CSF on activation profiles of microglia cultures are still unclear. Microglia activation is characterised by upregulation of co-stimulatory molecules and an inflammatory phenotype. The aim of this study is to demonstrate whether M-CSF supplementation alters microglial responses in resting and activated conditions. Microglia derived from mixed glia cultures and the BV-2 microglia cell line were cultivated with/without M-CSF and activated with lipopolysaccharide (LPS) and beta amyloid (Aβ). We show M-CSF expands primary microglia without affecting microglial responses to LPS and Aβ, as shown by the comparable expression of MHC class II and CD40 to microglia grown without this growth factor. M-CSF supplementation in BV-2 cells had no effect on nitric oxide (NO) production. Therefore, M-CSF can be considered for improving microglia yield in culture without introducing activation artefacts. 相似文献
13.
Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide 总被引:1,自引:0,他引:1
Chen K Iribarren P Hu J Chen J Gong W Cho EH Lockett S Dunlop NM Wang JM 《The Journal of biological chemistry》2006,281(6):3651-3659
The human G-protein-coupled formyl peptide receptor-like 1 (FPRL1) and its mouse homologue mFPR2 mediate the chemotactic activity of a variety of polypeptides associated with inflammation and bacterial infection, including the 42-amino acid form of amyloid beta peptide (Abeta42), a pathogenic factor in Alzheimer disease. Because mFPR2 was inducible in mouse microglial cells by proinflammatory stimulants, such as bacterial lipopolysaccharide, a ligand for the Toll-like receptor 4 (TLR4), we investigated the role of TLR2 in the regulation of mFPR2. We found that a TLR2 agonist, peptidoglycan (PGN) derived from Gram-positive bacterium Staphylococcus aureus, induced considerable mFpr2 mRNA expression in a mouse microglial cell line and primary microglial cells. This was associated with a markedly increased chemotaxis of the cells in response to mFPR2 agonist peptides. In addition, activation of TLR2 markedly enhanced mFPR2-mediated uptake of Abeta42 by microglia. Studies of the mechanistic basis showed that PGN activates MAPK and IkappaBalpha, and the effect of PGN on induction of mFPR2 was dependent on signaling pathways via ERK1/2 and p38 MAPKs. The use of TLR2 on microglial cells by PGN was supported by the fact that N9 cells transfected with short interfering RNA targeting mouse TLR2 failed to show increased expression of functional mFPR2 after stimulation with PGN. Our results demonstrated a potentially important role for TLR2 in microglial cells of promoting cell responses to chemoattractants produced in lesions of inflammatory and neurodegenerative diseases in the brain. 相似文献
14.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1984,792(2):186-191
The serum amyloid A proteins (SAA) occur in plasma in six polymorphic forms that are associated with the high-density lipoproteins (HDL). We studied two of the SAA proteins, SAA1 and SAA4, which have the same amino- and carboxy-terminal residues but different solution properties and electrophoretic mobilities, to determine whether they are interconverted in plasma in vivo. They were radioiodinated in vitro, incorporated into HDL, and administered to cynomolgus monkeys. Both remained associated with HDL for at least 6 h, had similar plasma die-away curves, and retained their characteristic electrophoretic mobilities, suggesting they are not related as precursor and product. The plasma clearance of the most prevalent SAA species, SAA4, was also simultaneously compared with the human A-I and C-III-2 apolipoproteins. Human apolipoprotein A-I decayed from plasma at a rate comparable to that of monkey HDL proteins. Apolipoprotein C-III-2 was cleared more rapidly and SAA4 at an even greater rate. These findings suggest that SAA are either dissociated from HDL before clearance from plasma or that SAA are contained in an HDL subspecies with metabolic fate different from that of most HDL particles. 相似文献
15.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014,1843(6):1150-1161
Abnormal accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). In addition to neurotoxic effects, Aβ also damages brain endothelial cells (ECs) and may thus contribute to the degeneration of cerebral vasculature, which has been proposed as an early pathogenic event in the course of AD and is able to trigger and/or potentiate the neurodegenerative process and cognitive decline. However, the mechanisms underlying Aβ-induced endothelial dysfunction are not completely understood. Here we hypothesized that Aβ impairs protein quality control mechanisms both in the secretory pathway and in the cytosol in brain ECs, leading cells to death. In rat brain RBE4 cells, we demonstrated that Aβ1–40 induces the failure of the ER stress-adaptive unfolded protein response (UPR), deregulates the ubiquitin–proteasome system (UPS) decreasing overall proteasome activity with accumulation of ubiquitinated proteins and impairs the autophagic protein degradation pathway due to failure in the autophagic flux, which culminates in cell demise. In conclusion, Aβ deregulates proteostasis in brain ECs and, as a consequence, these cells die by apoptosis. 相似文献
16.
J M Pasternack M R Palmert M Usiak R Wang H Zurcher-Neely P A Gonzalez-De Whitt M B Fairbanks T Cheung D Blades R L Heinrikson 《Biochemistry》1992,31(44):10936-10940
The 39-43 amino acid beta amyloid protein (A beta) that deposits as amyloid in the brains of patients with Alzheimer's disease (AD) is encoded as an internal sequence within a larger membrane-associated protein known as the amyloid protein precursor (APP). In cultured cells, the APP is normally cleaved within the A beta to generate a large secreted derivative and a small membrane-associated fragment. Neither of these derivatives can produce amyloid because neither contains the entire A beta. Our study was designed to determine whether the soluble APP derivatives in human brain end within the A beta as described in cell culture or whether AD brain produces potentially amyloidogenic soluble derivatives that contain the entire A beta. We find that both AD and control brain contain nonamyloidogenic soluble derivatives that end at position 15 of the A beta. We have been unable to detect any soluble derivatives that contain the entire A beta in either the AD or control brain. 相似文献
17.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients. 相似文献
18.
Robert Schwarcz 《Life sciences》1981,28(10):1147-1154
Glutamate uptake appears to be stable when measured in rat striatal synaptosomes from tissue stored for up to four hours post-mortem at 25°C. Between four and eight hours storage at room temperature there is a sharp 70% decrease in uptake. Freezing of tissue on dry ice, storage at 4°C for up to 7 days and at ?80°C for 5 days results in 20–30% residual glutamate uptake. Quantitatively similar data can be obtained in eight extrastriatal brain areas. Kinetic analysis of glutamate uptake in stored and frozen tissue reveals the loss of the majority of both sodium-dependent high affinity and temperature-sensitive low affinity sites (vmax-values) while the respective Km-values are not significantly changed. Pharmacological properties of the high affinity uptake versus a number of specific and metabolic uptake inhibitors remain unaltered by the storage and freezing procedure. The tissue treatment chosen for the present study roughly corresponds with the preparation of human post-mortem brain tissue for enzyme-, receptor-binding- or neuro-transmitter assays. It therefore seems conceivable that meaningful uptake studies can be performed on human autopsy material, thus adding an important parameter to the battery of neurochemical markers already accessible for post-mortem examination. 相似文献
19.
Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is characterized by the extracellular deposition of beta-amyloid and intracellular hyperphosphorylation of tau in the cortex and hippocampus of the brain. These characterizations are caused by abnormal expression, modification and deposition of certain proteins. Post-translational modifications of proteins including oxidation and nitration might be involved in the pathogenesis of AD. In this study, AD-related proteins were identified in the cortex of Tg2576 mice used as a model for studying AD. Tg2576 mice express high levels of the Swedish mutated form of human beta-amyloid precursor protein (APP) and generated high levels of beta-amyloid in the brains. Using Western blotting and two-dimensional electrophoresis, proteins with differences in expression, oxidation and nitration in the cortex of Tg2576 mice brains were compared to littermate mice brains used as a control. The proteins with different expression levels were identified using matrix-assisted laser desorption/ionization-time of flight and liquid chromatography-tandem mass spectrometry analyses. As a result, 12 proteins were identified among 37 different proteins using the PDQuest program. Furthermore, two proteins, laminin receptor and alpha-enolase, were more susceptible to oxidative modification in the brains of Tg2576 mice compared to those of littermates. Similarly, alpha-enolase, calpain 12, and Atp5b were more modified by nitration in brains of Tg2576 mice than those of littermates. Taken together, these proteins and their modifications may play an important role in the plaque deposition of Tg2576 mice brains. 相似文献
20.
Developmental and differential expression of beta amyloid protein precursor mRNAs in mouse brain. 总被引:4,自引:0,他引:4
Y Ohyagi K Takahashi M Kamegai T Tabira 《Biochemical and biophysical research communications》1990,167(1):54-60
S1 nuclease analysis was used to determine the levels and patterns of three beta amyloid protein precursor (BPP) mRNAs in mouse developmental brain and in primary neuronal and glial cultures. BPP695 mRNA lacking the Kunitz proteinase inhibitor (KPI) domain was detected exclusively in neuronal cultures and increased considerably in late embryonic and early postnatal periods. On the other hand, BPP751 and 770 mRNAs with KPI domain were detected predominantly in astrocyte- and microglia-enriched cultures and increased slightly only in embryonic stages. These results suggest that the product of each BPP mRNA may play a different role in the brain. 相似文献