首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study records the chromosome numbers of 10 species ofStreptocarpus; nine of the counts are new. With the exception ofS. buchananii of mainland Africa, all the results are for plants endemic to Madagascar and the Comoro Islands. While there is a strong correlation between basic number and growth form in the two subgenera of the genus on the African mainland (x = 15 among caulescent species in subgenusStreptocarpella; x = 16 among acaulescent species in subgenusStreptocarpus), the situation appears more complex among Madagascan and Comoro Island species. One notable example of deviation from this correlation is shown byS. papangae, a shrubby caulescent species, with 2n = 32 (x = 16). Polyploidy in the genus appears to be absent on mainland Africa, but is present in Madagascar and the Comoro Islands, ranging from tetraploidy to octoploidy. Evolutionary implications of the cytological observations are considered.  相似文献   

2.
The genus Streptocarpus comprises species with diverse body plans. Caulescent species produce leaves from a conventional shoot apical meristem (SAM), whereas acaulescent species lack a conventional SAM and produce only a single leaf (the unifoliate form) or clusters of leaves from the base of more mature leaves (the rosulate form). These distinct morphologies reflect fundamental differences in the role of the SAM and the process of leaf specification. A subfamily of KNOTTED-like homeobox (KNOX) genes are known to be important in regulating meristem function and leaf development in model species with conventional morphologies. To test the involvement of KNOX genes in Streptocarpus evolution, two parologous KNOX genes (SSTM1 and SSTM2) were isolated from species with different growth forms. Their phylogenetic analysis suggested a gene duplication before the subgeneric split of Streptocarpus and resolved species relationships, supporting multiple evolutionary origins of the rosulate and unifoliate morphologies. In S. saxorum, a caulescent species with a conventional SAM, KNOX proteins were expressed in the SAM and transiently downregulated in incipient leaf primordia. The ability of acaulescent species to initiate leaves from existing leaves was found to correlate with SSTM1 expression and KNOX protein accumulation in leaves and to reflect genetic differences at two loci. Neither locus corresponded to SSTM1, suggesting that cis-acting differences in SSTM1 regulation were not responsible for evolution of the rosulate and unifoliate forms. However, the involvement of KNOX proteins in leaf formation in rosulate species suggests that they have played an indirect role in the development of morphological diversity in Streptocarpus.  相似文献   

3.
In common with most Old World Gesneriaceae; Streptocarpus Lindl. shows anisocotylous growth, i.e., the continuous growth of one cotyledon after germination. Linked to this phenomenon is an unorthodox behaviour of the shoot apical meristem (SAM) that determines the growth pattern of acaulescent species (subgenus Streptocarpus). In contrast caulescent species develop a conventional central post-embryonic SAM (mainly subgenus Streptocarpella). We used S. rexii Lindl. as a model to investigate anisocotyly and meristem initiation in Streptocarpus by using histological techniques and analyses of the expression pattern of the meristematic marker SrSTM1 during ontogeny. In contrast to Arabidopsis thaliana (L.) Heynh., S. rexii does not establish a SAM during embryogenesis, and the first evidence of a SAM-like structure occurs during post-embryonic development on the axis (the petiolode) between the two cotyledons. The expression pattern of SrSTM1 suggests a function in maintaining cell division activity in the cotyledons before becoming localized in the basal meristem, initially at the proximal ends of both cotyledons, later at the base of the continuously growing macrocotyledon, and the groove meristem on the petiolode. The latter is equivalent to a displaced SAM seemingly originating de novo under the influence of endogenous factors. Applied cytokinin retains SrSTM1expression in the small cotyledon, thus promoting isocotyly and re-establishment of a central post-embryonic SAM. Hormone-dependent delocalization of the process of meristem development could underlie anisocotyly and the unorthodox SAM formation in Streptocarpus. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
Two morphogenetic patterns have contributed to phylogenetic diversification within the Gesneriaceae: accrescence of one of the paired cotyledons (anisocotyly), which serves to differentiate the subfamily Cyrtandroideae; sustained growth of the accrescent cotyledon accompanied by prolonged suppression and displacement of the embryonic apical meristem, which gives rise to an acaulescent, dorsiventral vegetative plant body (phyllomorph) and further serves to differentiate species of Cyrtandroideae found in two tribes and several genera including Streptocarpus. It was possible to prevent cotyledonary accrescence and induce caulescence at will, either by supplying exogenous GA3 or inhibiting auxin transport in species of Streptocarpus that normally manifest an extreme, phyllomorphic morphology. It was also possible to induce sustained, phyllomorphic development of cotyledons that are normally non-accrescent with exogenous cytokinin. Therefore morphogenetic capacities previously thought to be “lost” or “lacking” in subgenus Streptocarpus and, with respect to isocotyly, the tribe Cyrtandroideae, are, in fact, present but suppressed. An hypothesis regarding the role of hormones with respect to morphogenesis and phylogeny of Streptocarpus is suggested.  相似文献   

5.
Floral development and inflorescence structure within Streptocarpus and Saintpaulia were investigated using Scanning Electron Microscopy (SEM). We discuss the structure and development of the pair-flowered cyme and the floral ontogeny found in the Gesneriaceae in a phylogenetic context with particular reference to an East African clade of Streptocarpus and Saintpaulia. Current phylogenetic hypotheses divide the caulescent East African Streptocarpus species into two distinct clades, in relation to which the position of Saintpaulia is not yet clear. Variation in the branching of the inflorescence showed phylogenetic significance and included dichasial, monochasial and unbranched patterns. In four of the East African Streptocarpus species sampled a single lateral bracteole was present on the first to third axes, after which the inflorescence was ebracteolate. Our results indicate that there may be some link between bracteole suppression and an alteration in the order of sepal initiation. The loss or suppression of lateral bracteoles also appears to result in the precocious development of the lateral cyme meristem.  相似文献   

6.
Euglena viridis (subgenus Euglena) serves as the type species for the genus Euglena. In this study, molecular phylogenetic analyses using a small subunit (SSU) and a combined SSU–partial large subunit rDNA data set for members of the genus Euglena showed that strains identified as E. viridis on the basis of morphology are distributed between two separate nonsister clades. Although all the E. viridis strains examined were morphologically indistinguishable and possessed spherical mucocysts and stellate chloroplasts with one paramylon center, there was a high degree of sequence divergence between the E. viridis strains in different clades, making this a cryptic species. Like E. viridis, all taxa from the subgenus Euglena are characterized by having one or more stellate chloroplasts with paramylon grains clustered around the center of the chloroplast. These additional taxa were divided into four clades in all the molecular analyses. Strains of Euglena stellata formed two nonsister clades whose members had a single aggregate chloroplast with paramylon center and spindle‐shaped mucocysts. A geniculata clade included species with one or two stellate chloroplasts with paramylon centers and spherical mucocysts, and the cantabrica clade had members with one stellate chloroplast with paramylon center and spherical mucocysts often arranged in spiral rows. Interspersed among these were three additional clades bearing taxa from the subgenus Calliglena that contains members with discoid plastids and pyrenoids that may or may not be capped with paramylon. These taxa formed a laciniata clade, mutabilis clade, and gracilis clade. This study demonstrates that E. viridis and E. stellata are cryptic species that can only be distinguished at the molecular level. Because E. viridis is the designated type species for the genus Euglena, we designated an epitype for E. viridis.  相似文献   

7.
Hypotheses of evolutionary relationships among the Australian wild perennial relatives of soybean (Glycine subgenus Glycine) are based largely on patterns of meiotic pairing in intra- and interspecific experimental hybrids. This evidence has indicated a number of genome groupings within the subgenus but has not resolved most phylogenetic relationships. Restriction-endonuclease site variation of chloroplast DNA (cpDNA) within the perennial subgenus is reported here, representing a sampling of approximately 3% of the approximately 150-kilobase plastome. Seven hundred twenty-one unique restriction sites were compared within Glycine using 29 restriction endonucleases; 157 sites varied within the genus. Distance and parsimony methods using these data yielded congruent results, recognizing the existence of three major groups within subgenus Glycine: the species-rich and geographically diverse A clade consisting of G. canescens and related taxa; the B clade, which includes the stoloniferous species; and the C group, containing two species with distinctive curved pods. These results are in general agreement with hypotheses based on genome analysis; inconsistencies involve the inclusion of genetically divergent taxa such as G. falcata in well-supported plastome clades comprised of otherwise interfertile species. Such findings are not unexpected if crossing barriers are considered to be unique features of such anomalous species, paralleling their often numerous morphological and cpDNA autapomorphies. Consideration of cpDNA divergence within the three major clades of subgenus Glycine indicates that the rate of plastome evolution is uncoupled from rates of morphological or ecological diversification.  相似文献   

8.
Although some species of Streptocarpus (Gesneriaceae) do not possess a layered shoot apical meristem (SAM), but three individual meristems, the basal meristem (BM), the petiolode meristem (PM) and the groove meristem (GM) on the petiolode from which additional phyllomorphs are formed. To gain insights into the processes involved, we examined the development of seedlings from germination to the formation of the primary phyllomorph in S. rexii, a rosulate species. Our specific focus was to examine the relationship between the functional activity of the GM and meristematic activity, which was assessed by a combined analysis of toluidine blue staining of histological sections and the incorporation of BrdU into meristematic tissues. The results were integrated into 3-D graphics, which suggests a complex spatial and temporal interaction within the GM. The significance of our observations is discussed and compared to the SAM observed in most other angiosperms.  相似文献   

9.
Sequences from the ribosomal DNA internal transcribed spacer‐2 (ITS‐2) were compared among species of Sargassaceae including the genera Sargassum and Hizikia. Species of different subgenera and sections of Sargassum were used to assess the taxonomic relationships within the genus, especially the subdivisions of the subgenus Bactrophycus. Sequences were aligned in accordance with their common secondary structure. Phylogenetic trees were constructed using neighbor‐joining, maximum likelihood and maximum parsimony methods with three species of Turbinaria as outgroups. The resulting phylogenetic trees showed that the genus Sargassum is divided into three clades corresponding to the subgenera Phyllotrichia, Sargassum and Bactrophycus. This last subgenus is further divided into four distinct groups: a Spongocarpus clade, a Teretia clade, a Hizikia clade, and a Halochloa/ Repentia clade. The position of the section Phyllo‐cystae, excluded from the subgenus Bactrophycus and included within the subgenus Sargassum is once again confirmed by the present study. Current results strongly support the assignation of Hizikia fusiformis to the genus Sargassum. Based on morphological differences and a distinct position in the molecular trees, Hizikia should be recognized as a section in the subgenus Bactrophycus so that Hizikia (Okamura) Yoshida, stat. nov. is proposed. A remarkably low divergence of ITS‐2 sequences was observed for the species in the sections Repentia and Halochloa, suggesting very recent radiation of these species. The subgenus Sargassum is divided into three clades corresponding to the three known sections: Acanthocarpicae, Malacocarpicae and Zygocarpicae, previously recognized by the morphology of receptacles. The position of Sargassum duplicatum, S. carpophyllum, S.yendoi, S. piluliferum and S. patens within the subgenus Sargassum is discussed.  相似文献   

10.
The mutually exclusive relationship between ARP and KNOX1 genes in the shoot apical meristem and leaf primordia in simple leaved plants such as Arabidopsis has been well characterized. Overlapping expression domains of these genes in leaf primordia have been described for many compound leaved plants such as Solanum lycopersicum and Cardamine hirsuta and are regarded as a characteristic of compound leaved plants. Here, we present several datasets illustrating the co-expression of ARP and KNOX1 genes in the shoot apical meristem, leaf primordia, and developing leaves in plants with simple leaves and simple primordia. Streptocarpus plants produce unequal cotyledons due to the continued activity of a basal meristem and produce foliar leaves termed “phyllomorphs” from the groove meristem in the acaulescent species Streptocarpus rexii and leaves from a shoot apical meristem in the caulescent Streptocarpus glandulosissimus. We demonstrate that the simple leaves in both species possess a greatly extended basal meristematic activity that persists over most of the leaf’s growth. The area of basal meristem activity coincides with the co-expression domain of ARP and KNOX1 genes. We suggest that the co-expression of ARP and KNOX1 genes is not exclusive to compound leaved plants but is associated with foci of meristematic activity in leaves.  相似文献   

11.
The West Indian species Liabum oblanceolatum Urb. & Ekman was established on the basis of sterile young specimens represented by acaulescent herbs with rosulate leaves. However, these specimens have important traits that do not correspond to Liabum Adans. More than 90 genera of Asteraceae occur in Hispaniola (= Santo Domingo), but only 14 of them include species represented by acaulescent herbs with rosulate or grouped leaves at the base of the stem. From these genera, Chaptalia Vent. and Liabum are the most similar to the types of L. oblanceolatum . Habit, leaf arrangement, lamina shape, leaf margin, leaf surface, leaf margin intrasection, leaf venation, leaf pubescence, leaf trichomes, stomata and upper surface leaf cuticle were analysed in the type specimens of L. oblanceolatum and in species of Chaptalia and Liabum of Hispaniola. The vegetative trichomes are described in detail. The analysis reveals that the type specimens of L. oblanceolatum fit with all the vegetative traits of Chaptalia angustata Urb. © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 150 , 479–486.  相似文献   

12.
Thanwisai A  Kuvangkadilok C  Baimai V 《Genetica》2006,128(1-3):177-204
The sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) were determined for 40 black fly species from Thailand, belonging to 4 subgenera of the genus Simulium, namely Gomphostilbia (12 species), Nevermannia (5 species), Montisimulium (1 species), Simulium sensu stricto (21 species), and an unknown subgenus with one species (Simulium baimaii). The length of the ITS2 ranged from 247 to 308 bp. All black fly species had high AT content, ranging from 71 to 83.8%. Intraindividual variation (clonal variation) occurred in 13 species, ranging from 0.3 to 1.1%. Large intrapopulation and interpopulation heterogeneities exist in S. feuerboni from the same and different locations in Doi Inthanon National Park, northern Thailand. Phylogenetic relationships among 40 black fly species were examined using PAUP (version 4.0b10) and MrBAYS (version 3.0B4). The topology of the trees revealed two major monophyletic clades. The subgenus Simulium and Simulium baimaii were placed in the first monophyletic clade, whereas the subgenera Nevermannia + Montisimulium were placed as the sister group to the subgenus Gomphostilbia in the second monophyletic clade. Our results suggest that S. baimaii belongs to the malyschevi-group or variegatum-group in the subgenus Simulium. The molecular phylogeny generally agrees with existing morphology-based phylogenies.  相似文献   

13.
The biogeography of Gunnera L.: vicariance and dispersal   总被引:2,自引:1,他引:1  
Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty‐six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well‐known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade.  相似文献   

14.
Two new rosulate species of Streptocarpus are described from the eastern seaboard of South Africa. The first is endemic to Mpumalanga Province. This species has almost actinomorphic corollas with small cylindrical tubes and was previously included within Streptocarpus parviflorus. However, molecular and morphological data and habitat preference do not support this classification. The second species is from the Msikaba River Gorge in the Eastern Cape Province. It adds to the already impressive list of endemic plant species from this region and is allied to other rosulate species of the Eastern Cape. It approaches Streptocarpus rexii in flower size but differs in its much shorter corolla tubes, which lack purple nectar guides. In addition, the corolla floors are marked with yellow bars reminiscent of Streptocarpus cyaneus and also seen in sympatric populations of the small‐flowered Streptocarpus modestus. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 743–748.  相似文献   

15.
 Intrageneric phylogeny among ten representative Ceanothus species was investigated using DNA sequences of the chloroplast encoded ndhF and rbcL genes. Parsimony analysis of the ndhF sequences identified two main clades corresponding to two subgenera Ceanothus and Cerastes. The phylogenetic results suggest that three monophyletic clades within the subgenus Ceanothus can be delimited on the basis of (1) evergreen or (2) deciduous leaves and (3) thorn presence within the evergreen clade. The estimated divergence time based on rbcL sequences suggests that the two subgenera diverged 18–39 million years ago whereas species within each subgenus diverged more recently. Taken together, the results support the division of Ceanothus into two monophyletic subgenera and are consistent with the postulated recent divergence of many species within each subgenus. Received: 25 September 1996/Accepted: 8 November 1996  相似文献   

16.
A strict consensus tree based on chloroplast and nuclear sequences (rbcL, matK, trnL, FLint2) from 46 Amorphophallus species, two Pseudodracontium species and six outgroups is used to develop a hypothesis for the evolution of ornamentation and ectexine ultrastructure in the pollen of Amorphophallus. There are four main clades: an exclusively African, largely psilate clade (‘African clade’), an Asian, largely psilate clade (‘Asian psilate clade’) and an Asian, largely striate clade consisting of a mainly continental SE Asian clade (‘continental SE Asian striate clade’) and one centred in Malesia (‘Malesian striate clade’). Ultrastructure provides a valuable contribution towards understanding pollen ornamentation in Amorphophallus. Pollen with a thin psilate ectexine without dark granules might be plesiomorphic in Amorphophallus. Then the diverse striate type would be derived. Within both striate clades, reversals to the psilate type occur. Striate pollen with psilate caps, which is nested in the continental SE Asian striate clade, is a synapomorphy of Pseudodracontium. The fossulate type is also diverse, and its distribution in the tree indicates a polyphyletic origin. Areolate, echinate and verrucate ornamentation, occur in single species in the tree, but are found also in species not included in the molecular analysis. All three are heterogeneous and probably polyphyletic too. Reticulate, scabrate and striate/scabrate ornamentation are autapomorphies, of which the reticulate type and the striate/scabrate type may derive from psilate and striate ornamentation, respectively. Of the four main clades, the Asian psilate and African clade seem to be basal, while both striate clades might have evolved from the Asian psilate clade via a species like A. rhizomatosus. Dark granules evolved more than once, which might explain their diverse size, shape and distribution.  相似文献   

17.
The lizard genus Liolaemus and different clades within it have been the focus of several recent phylogenetic studies mainly based on morphology and mtDNA. Although there is general consensus for recognizing two clades (subgenera) within the genus, [Liolaemus (sensu stricto) and Eulaemus], phylogenetic relationships within each subgenus remain difficult to elucidate, given incomplete taxonomic sampling and large discordance between published studies. Here, new phylogenetic relationships for the Eulaemus subgenus are proposed based on the largest molecular data set ever used for this clade, which includes 188 individuals and 14 loci representing different parts of the genome (mtDNA, anonymous nuclear loci and nuclear protein‐coding loci). This data set was analysed using two species tree approaches (*beast and MDC). Levels of discordance among methods were found, and with previously published studies, but results are robust enough to propose new phylogenetic hypotheses for the Eulaemus clade. Specifically well‐resolved and well‐supported novel hypotheses are provided within the lineomaculatus section, and we formally recognize the zullyae clade, the sarmientoi clade and the hatcheri group. We also resolve species relationships within the montanus section, and particularly within the melanops series. We found discordance between mitochondrial and nuclear trees and discussed alternative hypotheses for the lineomaculatus and montanus sections, as well as the challenge in resolving phylogenetic relationships for large clades in general.  相似文献   

18.
四照花亚属(Cornus subg.Syncarpea)隶属于山茱萸科山茱萸属(Cornus),我国该亚属共有5种8亚种。为探讨四照花亚属nrDNA ITS序列的致同进化不完全现象及假基因产生的可能原因,分析了该亚属4种(每种1~2个居群)共21个个体的nrDNA ITS序列。结果表明,这些类群的nrDNA ITS存在多态性,通过分析这些nrDNA ITS克隆序列的G+C含量、5.8S保守基序和二级结构最小自由能,推测其可能存在假基因。系统发育研究结果显示所有nrDNA ITS序列分成5个分支,同一个体的不同拷贝被分别置于两个甚至多个分支中,且不同分支显示了不同种间关系。四照花亚属物种个体内部存在nrDNA ITS不完全致同进化,可能归咎于不完全的世系分选(incomplete lineage sorting)、种间杂交或多倍化等进化事件,从而导致基因组内nrITS区序列出现多态性,同时也导致难以通过外部形态来划分亚属内种间界限。  相似文献   

19.
The genus Leucheria Lag. (Asteraceae Bercht. and J. Presl, tribe Nassauvieae Cass.) comprises 45 species and three infraspecific taxa distributed in the Andean region from southern Chile and Argentina to Peru. Six species are annual herbs. The genus has had a long taxonomic history involving the transference of species described originally under many different genera. The main objectives of this paper were to determine the phylogenetic relationships of species of Leucheria, examine the hypothesis that the ancestor of Leucheria would have originated in a forested habitat and examine the validity of nine morphologically defined evolutionary lines recognized in earlier work on the genus. Additionally we investigated whether the annual species of Leucheria are derived. We extracted DNA from leaf material for 45 taxa (94%) of Leucheria. We used Bayesian inference and plastid and nuclear genes to construct a phylogenetic hypothesis. Results show that Leucheria is monophyletic and is comprised of two main clades. One clade comprises perennial acaulescent/subacaulescent species, all with a solitary capitulum. We recognized three lineages in the second clade comprised of caulescent species that exhibit multiple capitula. Optimization of life-form over the phylogeny showed that five of the six annual species studied are derived in our tree. We conclude that the appearance of the annual habit is associated with the colonization of arid conditions in the winter rainfall coastal desert of northern Chile. Our result shows that species of Leucheria from forested habitats are derived. Discrepancies with previously recognized morphologically defined evolutionary lines were detected.  相似文献   

20.
In an attempt to reconstruct the natural taxonomic system for Nitella, 17 species of Nitella subgenus Tieffallenia were reexamined using SEM observations of the internal morphology of the oospore wall (IMOW) and phylogenetic analyses of 4553 base pairs from multiple DNA markers (atpB, rbcL, psaB, and ITS‐5.8S rRNA genes). Our SEM observations identified three types of IMOW: homogeneous (HG), weakly spongy (W‐SG), and strongly spongy (S‐SG) types. Based on differences in the IMOW, species with reticulate or tuberculate oospore wall ornamentation in the external morphology of the oospore wall (EMOW) were subdivided into two distinct groups (characterized by the HG or S‐SG types of IMOW, respectively), which were robustly separated from each other in our molecular phylogenetic analyses. In our molecular phylogeny, the subgenus Tieffallenia consisted of four robust monophyletic groups—three clades of the HG type and a spongy (S‐SG and W‐SG) type clade—that were characterized by differences in the IMOW and EMOW. In addition, our SEM observations and sequence data verified the distinct status of five species (N. japonica Allen, N. oligospira A. Braun, N. vieillardii stat. nov., N. imperialis stat. nov., and N. morongii Allen) that R. D. Wood had assigned as infraspecific taxa. Moreover, our SEM observations of the IMOW also suggested that N. megaspora (J. Groves) Sakayama originally identified by LM includes at least two distinct species, characterized by W‐SG and S‐SG types of IMOW, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号