首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paucity of crystallographic data on the structure of intrinsic membrane proteins necessitates the development of additional techniques to probe their structures. The colicin E1 ion channel domain contains one prominent hydrophobic region near its COOH terminus that has been proposed to be an anchor for the assembly of the channel. Saturation site-directed mutagenesis of the hydrophobic anchor region of the colicin E1 ion channel was used to probe whether it spanned the bilayer once or twice. A nonpolar amino acid was replaced by a charged residue in 29 mutations made at 26 positions in the channel domain. Substitution of the charged amino acid at all positions except those in the center of the hydrophobic region and the periphery of the hydrophobic region caused a large decrease in the cytotoxicity of the purified mutant colicin E1 protein. This result implies that the hydrophobic domain spans the membrane bilayer twice in a helical hairpin loop, with the center of this domain residing in an aqueous or polar phase. The lengths of the trans-membrane helices appear to be approximately 18 and 16 residues. The absence of significant changes in ion selectivity in five of nine mutants indicated that these mutations did not cause a large change in the channel structure. The ion selectivity changes in four mutants and those previously documented for the flanking Lys residues imply that the hydrophobic hairpin is part of the channel lumen. Water may "abhor" the hydrophobic side of the channel, explaining the small effects of residue charge changes on ion selectivity.  相似文献   

2.
The acetylcholine receptor (AChR) is a cation selective channel whose biophysical properties as well as its molecular composition are fairly well characterized. Previous studies on the rat muscle alpha-subunit indicate that a threonine residue located near the cytoplasmic side of the M2 segment is a determinant of ion flow. We have studied the role of this threonine in ionic selectivity by measuring conductance sequences for monovalent alkali cations and bionic reversal potentials of the wild type (alpha beta gamma delta channel) and two mutant channels in which this threonine was replaced by either valine (alpha T264V) or glycine (alpha T264G). For the wild type channel we found the selectivity sequence Rb greater than Cs greater than K greater than Na. The alpha T264V mutant channel had the sequence Rb greater than K greater than Cs greater than Na. The alpha T264G mutant channel on the other hand had the same selectivity sequence as the wild type, but larger permeability ratios Px/PNa for the larger cations. Conductance concentration curves indicate that the effect of both mutations is to change both the maximum conductance as well as the apparent binding constant of the ions to the channel. A difference in Mg2+ sensitivity between wild-type and mutant channels, which is a consequence of the differences in ion binding, was also found. The present results suggest that alpha T264 form part of the selectivity filter of the AChR channel were large ions are selected according to their dehydrated size.  相似文献   

3.
We are studying structure-function relationships in the Diphtheria Toxin (DT) channel using a combination of site-directed mutagenesis and electrophysiology in artificial lipid bilayers. We made site-directed mutations of charged residues in the toxin's channel-forming B fragment, and after expressing the mutant proteins in Escherichia coli, we analyzed the single channels they formed in lipid bilayers. Changing aspartate 352, which is located in a short hydrophilic loop separating two hydrophobic stretches, to asparagine or lysine dramatically reduces the single-channel conductance of the pore at pH 5.3 cis, 7.2 trans (5.3/7.2). Lowering the pH on both sides of the membrane essentially eliminates the difference between wild-type and D352N; this finding is consistent with the idea that an aspartate with a (protonated) neutral side-chain and the always neutral asparagine have similar electrostatic influences on permeant ions. Using a high concentration of permeant buffer to clamp the pH of the cis compartment and the pore, and varying the pH on the trans side, we have located D352 at or near the trans compartment. We further find that D352N channels, in contrast to wild-type, display conductances independent of trans pH. This observation allows us to determine the titration curve of aspartate 352 in the wild-type toxin, establishing its pKa at approximately 5.5.  相似文献   

4.
Colicin E1 was altered by oligonucleotide-directed mutagenesis at the site of three charged residues on the COOH side of the 35-residue hydrophobic segment in the channel-forming domain. Asp-509 is one of five conserved acidic residues in the channel domain of colicins A, B, E1, Ia, and Ib and is the first charged residue following the hydrophobic segment, followed by the basic residues Lys-510 and Lys-512. Asp-509 and Lys-512 were changed to amber and ochre stop codons, respectively, while Lys-510 was mutated to a Met codon. Proteins truncated after residue 508 or 511, and missing the last 14 or 11 residues, were obtained from a nonsuppressing cell strain harboring the mutant plasmid while full-length colicin molecules with single residue changes at Asp-509 to Leu, Ser, and Gln, and Lys-512 to Tyr, were obtained by using appropriate suppressor strains. The truncated colicins displayed (i) a low cytotoxicity, approximately 1% of intact wild-type colicin, (ii) 10-fold less in vitro channel activity with liposomes, and (iii) reduced labeling of the colicin in liposomes by a phospholipid photoaffinity probe, showing that one or more of the residues following Asn-511 is necessary for both in vivo and in vitro activity and insertion into the bilayer. (iv) The truncated mutants also displayed an altered conformation at pH 6 that allowed greater binding and activity with liposomes at this pH relative to wild type. The cytotoxicity of single residue substitutions at Asp-509 showed a range of cytotoxicities, wild type greater than Ser-509 greater than Gln-509 greater than Leu-509, although none of these changes greatly affected the in vitro channel activity or pH dependence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The TolC protein of Escherichia coli comprises an outer membrane beta-barrel channel and a contiguous alpha-helical tunnel spanning the periplasm, providing an exit duct for protein export and multidrug efflux. It forms a single transmembrane pore that is open to the outside of the cell but constricted at the peri-plasmic tunnel entrance. This sole constriction is lined by a ring of six aspartate residues, two in each of the three identical monomers. When these were replaced by alanines, the resulting TolC(DADA) protein reconstituted normally in black lipid membranes but showed altered electrophysiological characteristics. In particular, it had lost the strong pH dependence of the wild type and had switched ion selectivity from cations to anions. The function of wild-type TolC as a membrane pore was severely inhibited by divalent and trivalent cations entering the channel tunnel from the channel ("extracurricular") side. Divalent cations bound reversibly to effect complete blocking of the transmembrane ion flux. Trivalent cations were more potent. Hexamminecobalt bound at nanomolar concentrations allowed visualization of single blocking events, whereas the smaller Cr(3+) cation bound irreversibly and could also access the cation binding site via the tunnel entrance. The inhibitory cations had no effect on the mutant TolC(DADA), supporting the view that the aspartate ring is the cation binding site. The electronegative entrance is widely conserved throughout the TolC family, which is essential for efflux and export my Gram-negative bacteria, suggesting that it could present a general target for drugs.  相似文献   

6.
Serotonin transporter (SERT) contains a single reactive external cysteine residue at position 109 (Chen, J. G., Liu-Chen, S., and Rudnick, G. (1997) Biochemistry 36, 1479-1486) and seven predicted cytoplasmic cysteines. A mutant of rat SERT (X8C) in which those eight cysteine residues were replaced by other amino acids retained approximately 32% of wild type transport activity and approximately 56% of wild type binding activity. In contrast to wild-type SERT or the C109A mutant, X8C was resistant to inhibition of high affinity cocaine analog binding by the cysteine reagent 2-(aminoethyl)methanethiosulfonate hydrobromide (MTSEA) in membrane preparations from transfected cells. Each predicted cytoplasmic cysteine residue was reintroduced, one at a time, into the X8C template. Reintroduction of Cys-357, located in the third intracellular loop, restored MTSEA sensitivity similar to that of C109A. Replacement of only Cys-109 and Cys-357 was sufficient to prevent MTSEA sensitivity. Thus, Cys-357 was the sole cytoplasmic determinant of MTSEA sensitivity in SERT. Both serotonin and cocaine protected SERT from inactivation by MTSEA at Cys-357. This protection was apparently mediated through a conformational change following ligand binding. Although both ligands bind in the absence of Na(+) and at 4 degrees C, their ability to protect Cys-357 required Na(+) and was prevented at 4 degrees C. The accessibility of Cys-357 to MTSEA inactivation was increased by monovalent cations. The K(+) ion, which is believed to serve as a countertransport substrate for SERT, was the most effective ion for increasing Cys-357 reactivity.  相似文献   

7.
Cysteine 111 in Dopa decarboxylase (DDC) has been replaced by alanine or serine by site-directed mutagenesis. Compared to the wild-type enzyme, the resultant C111A and C111S mutant enzymes exhibit Kcat values of about 50% and 15%, respectively, at pH 6.8, while the K(m) values remain relatively unaltered for L-3,4-dihydroxyphenylalanine (L-Dopa) and L-5-hydroxytryptophan (L-5-HTP). While a significant decrease of the 280 nm optically active band present in the wild type is observed in mutant DDCs, their visible co-enzyme absorption and CD spectra are similar to those of the wild type. With respect to the wild type, the Cys-111-->Ala mutant displays a reduced affinity for pyridoxal 5'-phosphate (PLP), slower kinetics of reconstitution to holoenzyme, a decreased ability to anchor the external aldimine formed between D-Dopa and the bound co-enzyme, and a decreased efficiency of energy transfer between tryptophan residue(s) and reduced PLP. Values of pKa and pKb for the groups involved in catalysis were determined for the wild-type and the C111A mutant enzymes. The mutant showed a decrease in both pK values by about 1 pH unit, resulting in a shift of the pH of the maximum velocity from 7.2 (wild-type) to 6.2 (mutant). This change in maximum velocity is mirrored by a similar shift in the spectrophotometrically determined pK value of the 420-->390 nm transition of the external aldimine. These results demonstrate that the sulfhydryl group of Cys-111 is catalytically nonessential and provide strong support for previous suggestion that this residue is located at or near the PLP binding site (Dominici P, Maras B, Mei G, Borri Voltattorni C. 1991. Eur J Biochem 201:393-397). Moreover, our findings provide evidence that Cys-111 has a structural role in PLP binding and suggest that this residue is required for maintenance of proper active-site conformation.  相似文献   

8.
The epithelial sodium channel (ENaC) is the prototype of a new class of ion channels known as the ENaC/Deg family. The hallmarks of ENaC are a high selectivity for Na(+), block by amiloride, small conductance, and slow kinetics that are voltage-independent. We have investigated the contribution of the second hydrophobic domain of each of the homologous subunits alpha, beta, and gamma to the kinetic properties of ENaC. Chimeric subunits were constructed between alpha and beta subunits (alpha-beta) and between gamma and beta subunits (gamma-beta). Chimeric and wild-type subunits were expressed in various combinations in Xenopus oocytes. Analysis of whole-cell and unitary currents made it possible to correlate functional properties with specific sequences in the subunits. Functional channels were generated without the second transmembrane domain from alpha subunits, indicating that it is not essential to form functional pores. The open probability and kinetics varied with the different channels and were influenced by the second hydrophobic domains. Amiloride affinity, Li(+)/Na(+) selectivity, and single channel conductance were also affected by this segment.  相似文献   

9.
Previous studies suggested that the cytoplasmic COOH-terminal portions of inward rectifier K channels could contribute significant resistance barriers to ion flow. To explore this question further, we exchanged portions of the COOH termini of ROMK2 (Kir1.1b) and IRK1 (Kir2.1) and measured the resulting single-channel conductances. Replacing the entire COOH terminus of ROMK2 with that of IRK1 decreased the chord conductance at V(m) = -100 mV from 34 to 21 pS. The slope conductance measured between -60 and -140 mV was also reduced from 43 to 31 pS. Analysis of chimeric channels suggested that a region between residues 232 and 275 of ROMK2 contributes to this effect. Within this region, the point mutant ROMK2 N240R, in which a single amino acid was exchanged for the corresponding residue of IRK1, reduced the slope conductance to 30 pS and the chord conductance to 22 pS, mimicking the effects of replacing the entire COOH terminus. This mutant had gating and rectification properties indistinguishable from those of the wild-type, suggesting that the structure of the protein was not grossly altered. The N240R mutation did not affect block of the channel by Ba(2+), suggesting that the selectivity filter was not strongly affected by the mutation, nor did it change the sensitivity to intracellular pH. To test whether the decrease in conductance was independent of the selectivity filter we made the same mutation in the background of mutations in the pore region of the channel that increased single-channel conductance. The effects were similar to those predicted for two independent resistors arranged in series. The mutation increased conductance ratio for Tl(+):K(+), accounting for previous observations that the COOH terminus contributed to ion selectivity. Mapping the location onto the crystal structure of the cytoplasmic parts of GIRK1 indicated that position 240 lines the inner wall of this pore and affects the net charge on this surface. This provides a possible structural basis for the observed changes in conductance, and suggests that this element of the channel protein forms a rate-limiting barrier for K(+) transport.  相似文献   

10.
Structure-function relations of the colicin E1 ion channel were studied through the effects of mutations in the 35-residue hydrophobic region of the channel polypeptide and neighboring residues in the channel domain. Mutation of neutral residues threonine 501 and glycine 502 to a more polar or charged glutamic acid generated a protein whose channel conductance properties in each case had a decreased selectivity for anions. There was no significant effect on ion selectivity caused by mutations that changed residue charge outside the hydrophobic domain at the neighboring aspartic acid 509 or at glycine 439. The Thr501----Glu and Gly502----Glu mutants possessed lower cytotoxic and in vitro activity. An altered thermolysin cleavage pattern and a greater binding to membrane vesicles at pH greater than 4.5 of the Gly502----Glu mutant indicated greater exposure of its COOH-terminal hydrophobic domain in solution. It is concluded that the hydrophobic nature of threonine 501 and glycine 502 is important in the structure of the channel lumen and the soluble colicin. Altering proline 462, a residue conserved in five sequenced channel-forming colicins, had no significant effect on channel properties. These conclusions are discussed in the context of sequence-structure-function concepts for channel proteins.  相似文献   

11.
By use of site-directed mutagenesis in combination with chemical modification of mutated proteins, the role of the six Cys residues in the transport function of the rat mitochondrial carnitine carrier (CAC) was studied. Several CAC mutants, in which one or more Cys residues had been replaced with Ser, were overexpressed in Escherichia coli, purified, and reconstituted in liposomes. The efficiency of incorporation into liposomes of the reconstituted proteins was lower for all constructs lacking Cys-23. Single, double, and quadruple replacement mutants showed V(max) comparable to that of the wild type. On the basis of the values of internal and external transport affinities (K(m)) for carnitine and of their comparison with those measured in mitochondria, the recombinant CAC is oriented unidirectionally in the liposomes, right side out compared to mitochondria. Substitution of Cys-136 with Ser caused a nearly complete loss of sensitivity of the CAC to N-ethylmaleimide, (2-aminoethyl)methanethiosulfonate hydrobromide (MTSES), and other hydrophilic SH reagents but not to the very hydrophobic N-phenylmaleimide. The wild-type CAC and the mutants containing Cys-136 showed substrate protection against NEM and MTSES inhibition and against NEM labeling. The data show that none of the native cysteines is essential for the transport mechanism and that Cys-136 is the major target of SH reagents and raise the hypothesis that Cys-136 is accessible from the external medium and is located at, or near, the substrate binding site. A model of the CAC is proposed in which the matrix hydrophilic loop containing Cys-136 protrudes into the membrane between the transmembrane domains of the protein.  相似文献   

12.
L J Perry  R Wetzel 《Biochemistry》1986,25(3):733-739
We have introduced an intramolecular disulfide bond into T4 lysozyme and have shown this molecule to be significantly more stable than the wild-type molecule to irreversible thermal inactivation [Perry, L.J., & Wetzel, R. (1984) Science (Washington, D.C.) 226, 555-557]. Wild-type T4 lysozyme contains two free cysteines, at positions 54 and 97, and no disulfide bonds. By directed mutagenesis of the cloned T4 lysozyme gene, we replaced Ile-3 with Cys. Oxidation in vitro generated an intramolecular disulfide bond; proteolytic mapping showed this bond to connect Cys-3 to Cys-97. While this molecule exhibited substantially more stability against thermal inactivation than wild type, its stability was further enhanced by additional modification with thiol-specific reagents. This and other evidence suggest that at basic pH and elevated temperatures Cys-54 is involved in intermolecular thiol/disulfide interchange with the engineered disulfide, leading to inactive oligomers. Mutagenic replacement of Cys-54 with Thr or Val in the disulfide-cross-linked variant generated lysozymes exhibiting greatly enhanced stability toward irreversible thermal inactivation.  相似文献   

13.
E Reuveny  Y N Jan    L Y Jan 《Biophysical journal》1996,70(2):754-761
Inwardly rectifying K+ channels are highly selective for K+ ions and show strong interaction with ions in the pore. Both features are important for the physiological functions of these channels and pose intriguing mechanistic questions of ion permeation. The aspartate residue in the second putative transmembrane segment of the IRK1 inwardly rectifying K+ channel, previously implicated in inward rectification gating due to cytoplasmic Mg2+ and polyamine block, is found in this study to be crucial for the channel's ability to distinguish between K+ and Rb+ ions. Mutation of this residue also perturbs the interaction between the channel pore and the Sr2+ blocking ion. Our studies suggest that this aspartate residue contributes to a selectivity filter near the cytoplasmic end of the pore.  相似文献   

14.
The X-ray structure of the soluble fumarate reductase from Shewanella frigidimarina [Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112] clearly shows the presence of an internally bound sodium ion. This sodium ion is coordinated by one solvent water molecule (Wat912) and five backbone carbonyl oxygens from Thr506, Met507, Gly508, Glu534, and Thr536 in what is best described as octahedral geometry (despite the rather long distance from the sodium ion to the backbone oxygen of Met507 (3.1 A)). The water ligand (Wat912) is, in turn, hydrogen bonded to the imidazole ring of His505. This histidine residue is adjacent to His504, a key active-site residue thought to be responsible for the observed pK(a) of the enzyme. Thus, it is possible that His505 may be important in both maintaining the sodium site and in influencing the active site. Here we describe the crystallographic and kinetic characterization of the H505A and H505Y mutant forms of the Shewanella fumarate reductase. The crystal structures of both mutant forms of the enzyme have been solved to 1.8 and 2.0 A resolution, respectively. Both show the presence of the sodium ion in the equivalent position to that found in the wild-type enzyme. The structure of the H505A mutant shows the presence of two water molecules in place of the His505 side-chain which form part of a hydrogen-bonding network with Wat48, a ligand to the sodium ion. The structure of the H505Y mutant shows the hydroxyl group of the tyrosine side-chain hydrogen-bonding to a water molecule which is also a ligand to the sodium ion. Apart from these features, there are no significant structural alterations as a result of either substitution. Both the mutant enzymes are catalytically active but show markedly different pH profiles compared to the wild-type enzyme. At high pH (above 8.5), the wild type and mutant enzymes have very similar activities. However, at low pH (6.0), the H505A mutant enzyme is some 20-fold less active than wild-type. The combined crystallographic and kinetic results suggest that His505 is not essential for sodium binding but does affect catalytic activity perhaps by influencing the pK(a) of the adjacent His504.  相似文献   

15.
Carnitine palmitoyltransferase (CPT) I catalyzes the conversion of long-chain fatty acyl-CoAs to acyl carnitines in the presence of l-carnitine, a rate-limiting step in the transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix. To determine the role of the 15 cysteine residues in the heart/skeletal muscle isoform of CPTI (M-CPTI) on catalytic activity and malonyl-CoA sensitivity, we constructed a 6-residue N-terminal, a 9-residue C-terminal, and a 15-residue cysteineless M-CPTI by cysteine-scanning mutagenesis. Both the 9-residue C-terminal mutant enzyme and the complete 15-residue cysteineless mutant enzyme are inactive but that the 6-residue N-terminal cysteineless mutant enzyme had activity and malonyl-CoA sensitivity similar to those of wild-type M-CPTI. Mutation of each of the 9 C-terminal cysteines to alanine or serine identified a single residue, Cys-305, to be important for catalysis. Substitution of Cys-305 with Ala in the wild-type enzyme inactivated M-CPTI, and a single change of Ala-305 to Cys in the 9-residue C-terminal cysteineless mutant resulted in an 8-residue C-terminal cysteineless mutant enzyme that had activity and malonyl-CoA sensitivity similar to those of the wild type, suggesting that Cys-305 is the residue involved in catalysis. Sequence alignments of CPTI with the acyltransferase family of enzymes in the GenBank led to the identification of a putative catalytic triad in CPTI consisting of residues Cys-305, Asp-454, and His-473. Based on the mutagenesis and substrate labeling studies, we propose a mechanism for the acyltransferase activity of CPTI that uses a catalytic triad composed of Cys-305, His-473, and Asp-454 with Cys-305 serving as a probable nucleophile, thus acting as a site for covalent attachment of the acyl molecule and formation of a stable acyl-enzyme intermediate. This would in turn allow carnitine to act as a second nucleophile and complete the acyl transfer reaction.  相似文献   

16.
The S1 subunit (Mr 28,000) of pertussis toxin expresses thiol-dependent enzymatic ADP-ribosyltransferase and NAD-glycohydrolase activities. Site-directed mutagenesis experiments were performed on the codon for Cys-41 of this subunit to investigate the role of this residue in both enzymatic activities. Deletion of Cys-41 caused a decrease in both activities below detectable levels, whereas replacement of this residue by serine, glycine, proline, or asparagine only slightly reduced the activities. The enzymatic activities of these mutants were thiol-independent. The deletion of Ser-40, adjacent to Cys-41, again caused reduction of the enzymatic activities to undetectable levels. Steady-state kinetic experiments showed that the kcat of the mutant protein in which Cys-41 was replaced by glycine was nearly identical to the kcat of the parent version. However, the Km for NAD of the mutant was significantly higher relative to that of the wild type version. These results indicate that the side-chain of Cys-41 is not essential for enzymatic activities and that Cys-41 is not involved in the rate of catalysis but is probably located at or close to the NAD-binding site. The introduction of a negative charge at position 41 through the replacement of Cys-41 by either aspartate or glutamate reduced the enzymatic activities to very low but measurable levels, suggesting a charge-charge repulsive interaction between these residues and possibly one or both of the phosphates of NAD. Cys-41 may therefore be located close to the phosphate subsite of the NAD-binding site.  相似文献   

17.
Guinamard R  Akabas MH 《Biochemistry》1999,38(17):5528-5537
The cystic fibrosis transmembrane conductance regulator forms an anion-selective channel. We previously showed that charge selectivity, the ability to discriminate between anions and cations, occurs near the cytoplasmic end of the channel. The molecular determinants of charge selectivity, however, are unknown. We investigated the role of Arg352, a residue flanking the predicted cytoplasmic end of the M6 segment, in the mechanism of charge selectivity. We determined the Cl- to Na+ permeability ratio (PCl/PNa) from the reversal potential measured in a 10-fold NaCl gradient. For the wild type, PCl/PNa was 36 (range of 28-51). For the R352H mutant, PCl/PNa was dependent on cytoplasmic pH. At pH 5.4, the PCl/PNa was 33 (range of 27-41), similar to that of the wild type, but at pH 7.2, where the histidine should be largely uncharged, PCl/PNa was 3 (range of 2.9-3.1). For the R352C and R352Q mutants, PCl/PNa was 7 (range of 6-8) and 4 (range of 3.5-4.4), respectively. Furthermore, Na+ which does not carry a significant fraction of the current through the wild type is measurably conducted through R352Q. Thus, the charge of the side chain at position 352 is a strong determinant of charge selectivity. In the wild type, the positive charge on Arg352 contributes to an electrostatic potential in the channel that forms a barrier to cation permeation. Mutation of Arg352 did not alter the halide selectivity sequence. Selectivity among halides must involve other residues.  相似文献   

18.
Hu X  Ma M  Dahl G 《Biophysical journal》2006,90(1):140-150
Gap junction channels are intercellular channels that mediate the gated transfer of molecules between adjacent cells. To identify the domain determining channel conductance, the first transmembrane segment (M1) was reciprocally exchanged between Cx46 and Cx32E(1)43. The resulting chimeras exhibited conductances similar to that of the respective M1 donor. Furthermore, a chimera with the carboxy-terminal half of M1 in Cx46 replaced by that of Cx32 exhibited a conductance similar to that of Cx32E(1)43, whereas the chimera with only the amino-terminal half of M1 replaced retained the unitary conductance of wild-type Cx46. Extending the M1 domain swapping to other connexins by replacing the carboxy-terminal half of M1 in Cx46 with that of Cx37 yielded a chimera channel with increased unitary conductance close to that of Cx37. Furthermore, a point mutant of Cx46, with leucine substituted by glycine in position 35, displayed a conductance much larger than that of the wild type. Thus, the M1 segment, especially the second half, contains important determinants of conductance of the connexin channel.  相似文献   

19.
The acid-sensing ion channel (ASIC) subunits ASIC1, ASIC2, and ASIC3 are members of the amiloride-sensitive Na+ channel/degenerin family of ion channels. They form proton-gated channels that are expressed in the central nervous system and in sensory neurons, where they are thought to play an important role in pain accompanying tissue acidosis. A splice variant of ASIC2, ASIC2b, is not active on its own but modifies the properties of ASIC3. In particular, whereas most members of the amiloride-sensitive Na+ channel/degenerin family are highly selective for Na+ over K+, ASIC3/ASIC2b heteromultimers show a nonselective component. Chimeras of the two splice variants allowed identification of a 9-amino acid region preceding the first transmembrane (TM) domain (pre-TM1) of ASIC2 that is involved in ion permeation and is critical for Na+ selectivity. Three amino acids in this region (Ile-19, Phe-20, and Thr-25) appear to be particularly important, because channels mutated at these residues discriminate poorly between Na+ and K+. In addition, the pH dependences of the activity of the F20S and T25K mutants are changed as compared with that of wild-type ASIC2. A corresponding ASIC3 mutant (T26K) also has modified Na+ selectivity. Our results suggest that the pre-TM1 region of ASICs participates in the ion pore.  相似文献   

20.
A conserved positive residue in the seventh transmembrane domain of the mammalian proton-coupled di- and tripeptide transporter PepT1 has been shown by site-directed mutagenesis to be a key residue for protein function. Substitution of arginine 282 with a glutamate residue (R282E-PepT1) gave a protein at the plasma membrane of Xenopus laevis oocytes that was able to transport the non-hydrolyzable dipeptide [3H]d-Phe-l-Gln, although unlike the wild type, the rate of transport by R282E-PepT1 was independent of the extracellular pH level, and the substrate could not be accumulated above equilibrium. The binding affinity of the mutant transport protein was unchanged from the wild type. Thus, R282E-Pept1 appears to have been changed from a proton-driven to a facilitated transporter for peptides. In addition, peptide transport by R282E-PepT1 still induced depolarization as measured by microelectrode recordings of membrane potential. A more detailed study by two-electrode voltage clamping revealed that R282E-PepT1 behaved as a peptide-gated non-selective cation channel with the ion selectivity series lithium > sodium > N-methyl-d-glucamine at pH 7.4. There was also a proton conductance (comparing pH 7.4 and 8.4), and at pH 5.5 the predominant conductance was for potassium ions. Therefore, it can be concluded that changing arginine 282 to a glutamate not only uncouples the cotransport of protons and peptides of the wild-type PepT1 but also creates a peptide-gated cation channel in the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号