首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein crystallography has become a major technique for understanding cellular processes. This has come about through great advances in the technology of data collection and interpretation, particularly the use of synchrotron radiation. The ability to express eukaryotic genes in Escherichia coli is also important. Analysis of known structures shows that all proteins are built from about 1000 primeval folds. The collection of all primeval folds provides a basis for predicting structure from sequence. At present about 450 are known. Of the presently sequenced genomes only a fraction can be related to known proteins on the basis of sequence alone. Attempts are being made to determine all (or as many as possible) of the structures from some bacterial genomes in the expectation that structure will point to function more reliably than does sequence. Membrane proteins present a special problem. The next 20 years may see the experimental determination of another 40,000 protein structures. This will make considerable demands on synchrotron sources and will require many more biochemists than are currently available. The availability of massive structure databases will alter the way biochemistry is done.  相似文献   

2.
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in structural biology.  相似文献   

3.
A selection of interesting papers that were published in the two months before our press date in major journals most likely to report significant results in structural biology.  相似文献   

4.
Rhythms abound in biological systems, particularly at the cellular level where they originate from the feedback loops present in regulatory networks. Cellular rhythms can be investigated both by experimental and modeling approaches, and thus represent a prototypic field of research for systems biology. They have also become a major topic in synthetic biology. We review advances in the study of cellular rhythms of biochemical rather than electrical origin by considering a variety of oscillatory processes such as Ca++ oscillations, circadian rhythms, the segmentation clock, oscillations in p53 and NF-κB, synthetic oscillators, and the oscillatory dynamics of cyclin-dependent kinases driving the cell cycle. Finally we discuss the coupling between cellular rhythms and their robustness with respect to molecular noise.  相似文献   

5.
The cellular biology of megakaryocytes   总被引:1,自引:0,他引:1  
Megakaryocytes show a pattern of cellular proliferation and maturation which is unique in mammalian biology. Cells mature to the point of cytoplasmic fragmentation in three major ploidy classes, 8n, 16n, and 32n and the three are fed from a precursor committed stem cell. Two-thirds of the cells belong in the 16n class, and approximately one-sixth in the 8n and 32n classes. The cytoplasm of cells in each ploidy class has a characteristic concentration of granules and demarcation membrane system which appears to be translated into the characteristic features of the platelet progeny from each class. These differ from normal young platelets. Megakaryocytes release fragments of cytoplasm into marrow sinusoids and these differ from platelets in that they do not have the peripheral microtubular bundle or sub-marginal dense tubular system. Transition from fragment to circulating platelet presumably takes place elsewhere in the circulation. With stimulation of platelet production, "stress" platelets are produced, from megakaryocytes which show changes with respect to content of polyribosomes, glycogen and membrane.  相似文献   

6.
7.
8.
9.
10.
NMR spectroscopy and X-ray crystallography in conjunction with extended X-ray absorption fine structure spectroscopy, have contributed to the elucidation of the structural biology of protein-mediated mechanisms of heavy metal homeostasis. Among the most striking aspects of these investigations are the remarkable similarity of metal-ion-transport and sequestering systems across different species, and the need to continue the research to confirm hypotheses for the molecular mechanisms of transfers of metal ions between proteins.  相似文献   

11.
Structural biology of chemokine receptors   总被引:2,自引:0,他引:2  
Chemokine receptors are G protein-coupled receptors that mediate migration and activation of leukocytes as an important part of a protective immune response to injury and infection. In addition, chemokine receptors are used by HIV-1 to infect CD4 positive cells. The structural bases of chemokine receptor recognition and signal transduction are currently being investigated. High-resolution X-ray diffraction and NMR spectroscopy of chemokines indicate that all these peptides exhibit a common folding pattern, in spite of its low degree of primary-sequence homology. Chemokines' functional motifs have been identified by mutagenesis studies, and a possible mechanism for receptor recognition and activation is proposed, but high-resolution structure data of chemokine receptors is not yet available. Studies with receptor chimeras have identified the putative extracellular domains as the major selectivity determinants. Single-amino acid substitutions in the extracellular domains produce profound changes in receptor specificity, suggesting that motifs in these domains operate as a restrictive barrier to a common activation motif. Similarly HIV-1 usage of chemokine receptors involve interaction of one or more extracellular domains of the receptor with conserved and variable domains on the viral envelope protein gp 120, indicating a highly complex interaction. Elucidating the structural requirements for receptor interaction with chemokines and with HIV-1 will provide important insights into understanding the mechanisms of chemokine recognition and receptor activation. In addition, this information can greatly facilitate the design of effective immunomodulatory and anti-HIV-1 therapeutic agents.  相似文献   

12.
13.
Tanner JJ 《Amino acids》2008,35(4):719-730
The proline catabolic enzymes proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase catalyze the 4-electron oxidation of proline to glutamate. These enzymes play important roles in cellular redox control, superoxide generation, apoptosis and cancer. In some bacteria, the two enzymes are fused into the bifunctional enzyme, proline utilization A. Here we review the three-dimensional structural information that is currently available for proline catabolic enzymes. Crystal structures have been determined for bacterial monofunctional proline dehydrogenase and Δ1-pyrroline-5-carboxylate dehydrogenase, as well as the proline dehydrogenase and DNA-binding domains of proline utilization A. Some of the functional insights provided by analyses of these structures are discussed, including substrate recognition, catalytic mechanism, biochemical basis of inherited proline catabolic disorders and DNA recognition by proline utilization A.  相似文献   

14.
Over the past few years the number of crystal structures available for heme monooxygenases has substantially increased. Those most closely related to one another are cytochrome P450, nitric oxide synthase, and heme oxygenase. The present mini-review provides a summary of some recently published work on how crystallography and solution studies have provided new insights on function and especially the oxygen activation process. It now appears that in all three monooxygenases highly ordered solvent in the active site serves as direct proton donors to the iron-linked dioxygen; a requirement for splitting the O-O bond. This is in sharp contrast to the related peroxidase family of enzymes where strategically positioned amino acid side chains serve the function of shuttling protons. The P450cam-oxy-complex as well as various mutants in a complex with either oxygen or carbon monoxide have enabled a fairly detailed picture to be developed on the role of specific amino acids and conformational changes in both electron transfer and oxygen activation.  相似文献   

15.
16.
Recent years have seen a rapid increase in structural information on proteins implicated in bacterial pathogenesis. The different modes by which bacteria establish contact with their host tissues are exemplified by the structures of bacterial adhesins in complex with their cognate host receptor. A more detailed structural understanding of the various Gram-negative secretion systems has emerged with the determination of the structures of type I and type IV secretion system components, and with the elucidation of the mechanism of fibre formation in the chaperone-usher pathway of pilus biogenesis. Finally, the structures of complexes of secreted virulence factors bound to their host targets have unravelled the mechanisms by which bacterial pathogens exploit cellular processes to their advantage.  相似文献   

17.
Malaria is a global disease infecting several million individuals annually. Malarial infection is particularly severe in the poorest parts of the world and is a major drain on their limited resources. Development of drug resistance and absence of a preventive vaccine have led to an immediate necessity for identifying new drug targets to combat malaria. Understanding the intricacies of parasite biology is essential to design novel intervention strategies that can prevent the growth of the parasite. The structural biology approach towards this goal involves the identification of key differences in the structures of the human and parasite enzymes and the determination of unique protein structures essential for parasite survival. This review covers the work on structural biology of plasmodial proteins carried out during the period of January 2006 to June 2007.  相似文献   

18.
S-adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and a subject of many structural and biochemical investigations for anti-cancer and anti-parasitic therapy. The enzyme undergoes an internal serinolysis reaction as a post-translational modification to generate the active site pyruvoyl group for the decarboxylation process. The crystal structures of AdoMetDC from Homo sapiens, Solanum tuberosum, Thermotoga maritima, and Aquifex aeolicus have been determined. Numerous crystal structures of human AdoMetDC and mutants have provided insights into the mechanism of autoprocessing, putrescine activation, substrate specificity, and inhibitor design to the enzyme. The comparison of the human and potato enzyme with the T. maritima and A. aeolicus enzymes supports the hypothesis that the eukaryotic enzymes evolved by gene duplication and fusion. The residues implicated in processing and activity are structurally conserved in all forms of the enzyme, suggesting a divergent evolution of AdoMetDC.  相似文献   

19.
Thanks to the extensive use of recombinant DNA technology and immunological methods, much insight into cellular functions of the human malaria parasite Plasmodium falciparum has been gained since it was learnt ten years ago how to grow this organism in culture. The amino acid sequence of over a dozen surface proteins of the parasite and of several proteins the parasite excretes into its most important host cell, the erythrocyte, have been determined. Interestingly many of these proteins show blocks of repeated amino acids. Several proteins have been shown to be involved in specific aspects of the complex hostparasite interaction, such as penetration of host cells or increased stickiness of infected red blood cells in the blood vessels. Some of the proteins described here may be protective antigens and may become important in vaccine development.  相似文献   

20.
The eukaryotic MCM2-7 complex is recruited onto origins of replication during the G1 phase of the cell cycle and acts as the main helicase at the replication fork during the S phase. Over the last few years a number of structural reports on MCM proteins using both electron microscopy and protein crystallography have been published. The crystal structures of two (almost) full-length archaeal homologs provide the first atomic pictures of a MCM helicase. However one of the structures is at low resolution and the other is of an inactive MCM. Moreover, both proteins are monomeric in the crystal, whereas the activity of the complex is critically dependent on oligomerization. Lower resolution structures derived from electron microscopy studies are therefore crucial to complement the crystallographic analysis and to assemble the multimeric complex that is active in the cell. A critical analysis of all the structural results elucidates the potential conformational changes and dynamic behavior of MCM helicase to provide a first insight into the gamut of molecular configurations adopted during the processes of DNA melting and unwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号