Dietzia sp. CQ4 accumulated the C(40) beta-cyclic carotenoids (canthaxanthin and echinenone) and the C(50) beta-cyclic carotenoid (C.p.450 monoglucoside). A plant-type lycopene beta-cyclase gene crtL was identified for beta-cyclization of the C(40) carotenoids. A carotenoid synthesis gene cluster was identified away from the crtL gene, which contained the crtEBI genes for the synthesis of lycopene followed by the lbtABC genes for lycopene elongation and beta-cyclization of the C(50) carotenoids. This C(50) beta-cyclic carotenoid synthesis gene cluster from Dietzia sp. CQ4 showed high homology with the gene clusters for synthesizing the C(50) epsilon-cyclic carotenoids (decaprenoxanthin and glucosides) from Corynebacterium glutamicum and Agromyces mediolanus. One unique feature of the C(50) beta-cyclic carotenoid synthesis genes in Dietzia sp. CQ4 was that the gene encoding a C(50) carotenoid beta-cyclase subunit and the gene encoding the lycopene elongase appeared to be fused as a single gene (lbtBC). Expression of the gene (lbtA) encoding another subunit of the C(50) carotenoid beta-cyclase and the lbtBC gene in lycopene-accumulating Escherichia coli produced almost exclusively the C(50) beta-cyclic carotenoid C.p.450. One gene (crtX) with high homology to glycosyl transferases was transcribed in the opposite orientation downstream of the lbtBC gene. The crtX gene was likely involved in C.p.450 glucosylation in Dietzia sp. CQ4. The pathway analogous to the synthesis of the C(50) epsilon-cyclic carotenoids was proposed for the synthesis of the C(50) beta-cyclic carotenoids. 相似文献
Large numbers of thin-walled vesicles, 0.5 to 10 μ in diameter, can be formed by permitting a thinly spread layer of hydrated phospholipids to swell slowly in distilled water or an aqueous solution of nonelectrolytes. Electron micrographs and phospholipid analyses indicate that the walls consist of a single or a few bilayers. The vesicles can be centrifuged and resuspended in another medium, making them a useful system for studying permeability. The osmolarity of the solution in the interior of the vesicles can be estimated by immersion refractometry. The osmolarity of the internal aqueous phase is linearly related to the osmolarity of the external medium. 相似文献
Complement components C5b-6 and C7 assemble to form C5b-7, which then interacts with membranes and commits the membrane attack complex to a target site. This protein-membrane association event was investigated to determine possible structural features that could contribute to a selective membrane attack. This system may also suggest general properties of protein-membrane insertion events. Initial binding of C5b-6 to membranes could potentially determine the site of assembly. However, binding of C5b-6 to membranes required phosphatidylglycerol or phosphatidic acid produced from egg phosphatidylcholine while binding of C5b-6 to phosphatidylcholine, phosphatidylserine, or phosphatidylinositol was undetectable. Binding to phosphatidic acid was irreversible, and the bound C5b-6 could no longer interact with C7. In contrast, C5b-7 interacted with all phospholipids tested. The rate-limiting process was the interaction of C5b-6 and C7, which displayed bimolecular properties and an activation energy of 37 kcal/mol. The C5b-7 complex showed 20-fold selectivity for small unilamellar phospholipid vesicles over large unilamellar vesicles. Vesicles carrying high negative charge densities were selected over neutral vesicles by a factor of about 5. Vesicles formed from phospholipids with short, saturated hydrocarbon side chains (dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine) were about 5-fold less effective than those formed from phospholipids with natural fatty acid distributions. The gel vs. fluid state had little influence on C5b-7 insertion.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
The in vitro mechanism by which polyamines affect protein kinase C (PK C) activation process was investigated in a reconstituted system consisting of purified enzyme and phospholipid vesicles of various phosphatidylserine content. It was found that the addition of spermine greatly interferes with the association of PK C to liposomes. This tetramine, at micromolar concentrations, was most potently effective while other polyamines such as spermidine and putrescine were almost ineffective; therefore the modulatory action appeared to be structure specific. The spermine effect is dramatically influenced by the density of the phosphatidylserine present on the liposome, suggesting the complex formation with the acidic component on phospholipid vesicles to be the mechanism by which this polyamine exerts its modulatory action. 相似文献
At least 700 natural carotenoids have been characterized; they can be classified into C(30), C(40) and C(50) subfamilies. The first step of C(40) pathway is the combination of two molecules of geranylgeranyl pyrophosphate to synthesize phytoene by phytoene synthase (CrtB or PSY). Most natural carotenoids originate from different types and levels of desaturation by phytoene desaturase (CrtI or PDS+ZDS), cyclization by lycopene cyclase (CrtY or LYC) and other modifications by different modifying enzyme (CrtA, CrtU, CrtZ or BCH, CrtX, CrtO, etc.) of this C(40) backbone. The first step of C(30) pathway is the combination of two molecules of FDP to synthesize diapophytoene by diapophytoene synthase (CrtM). But natural C(30) pathway only goes through a few steps of desaturation to form diaponeurosporene by diapophytoene desaturase (CrtN). Natural C(50) carotenoid decaprenoxanthin is synthesized starting from the C(40) carotenoid lycopene by the addition of 2 C(5) units. Concerned the importance of carotenoids, more and more attention has been concentrated on achieving novel carotenoids. The method being used successfully is to construct carotenoids biosynthesis pathways by metabolic engineering. The strategy of metabolic engineering is to engineer a small number of stringent upstream enzymes (CrtB, CrtI, CrtY, CrtM, or CrtN), then use a lot of promiscuous downstream enzymes to obtain large number of novel carotenoids. Two key enzymes phytoene desaturase (CrtI(m)) and lycopene cyclase (CrtY(m)) have been modified and used with a series of downstream modifying enzymes with broad substrate specificity, such as monooxygenase (CrtA), carotene desaturase (CrtU), carotene hydroxylase (CrtZ), zeaxanthin glycosylase (CrtX) and carotene ketolase (CrtO) to extend successfully natural C(30) and C(40) pathways in E. coli. Existing C(30) synthase CrtM to synthesize carotenoids with different chain length have been engineered and a series of novel carotenoids have been achieved using downstream modifying enzymes. C(35) carotenoid biosynthesis pathway has been constructed in E. coli as described. C(45) and C(50) carotenoid biosynthesis pathways have also been constructed in E. coli, but it is still necessary to extend these two pathways. Those novel acyclic or cyclic carotenoids have a potential ability to protect against photooxidation and radical-mediated peroxidation reactions which makes them interesting pharmaceutical candidates. 相似文献
The aim of this study was to determine any age-related changes in phospholipid polyunsaturated fatty acid composition, in particular C20 and C22 fatty acids in rat liver, brain, kidney and heart, and to assess and compare the effects of dietary supplementation (42.5 mg/kg body weight/day) of the natural antioxidant thyme oil and its major component thymol throughout the rat life span. The fatty acid composition in the various tissues from young (7 months) and aged (28 months) rats was determined and compared. Livers from aged control, thyme oil and thymol treated rats exhibited an increase in 22:6(n-3). In contrast, 22:6(n-3) content of brain, kidney and heart declined in aged rats in all three dietary groups. However, aged rats treated with thyme oil and thymol displayed significantly higher levels of 22:6(n-3) than the respective age-matched controls. Tissue compositions of 20:4(n-6) were found to be significantly lower in the liver and kidney from aged control rats but not those fed either thyme oil or thymol. In aged rats, the composition of 20:4(n-6) in all tissues was highest in rats fed either thyme oil or thymol. These results show that dietary supplementation with thyme oil tended to maintain higher PUFA levels in all tissues studied. The majority of protection provided by thyme oil was by virtue of its thymol component, which comprises 49% of the whole oil. Thymol administered alone did not provide significantly higher protection than the whole oil, suggesting that other components within thyme oil are also contributing antioxidant activity. 相似文献
The technique of surgical repair for zone two flexor tendon injuries has been debated extensively throughout the years, yet adhesion formation, suture rupture, and suture locking on the pulley edge remain possible consequences of a poor repair. The partially lacerated tendon is especially challenging to treat since there can be justification for not intervening surgically. In a partial laceration canine model we measured failure load and suture gap formation for tendons repaired with the Lee, modified four-strand Savage, Kessler, modified Kessler, and Augmented Becker core suture techniques and with a simple running peripheral suture. The modified Kessler (106.3 N, SD 18.8 N) and modified Savage (108.2 N, SD 19.9 N) repair techniques had a significantly higher failure load than the Lee (85.0 N, SD 20.6 N) suture method (P < 0.05), while there were no differences among the other techniques. There were no significant differences in resistance to gap formation among the repair techniques, with the mean values ranging from 38.9 N/mm (SD 15.7 N/mm) using the simple running suture to 53.2 N/mm (SD 25.8 N/mm) with the Kessler repair. The mean load to produce a 1.5 mm repair site gap ranged from 71.1 N (SD 21.5 N) in the Lee repair to 91.3 N (SD 22.2 N) in the Augmented Becker repair although there were no significant differences among repair methods. All repair methods were much weaker than tendons left unrepaired (184.7 N, SD 41.3 N). 相似文献
Two types of cytochrome P-450, P-450LM2 and P-450LM3, have been purified from rabbit liver microsomes and incorporated into phospholipid vesicles by a cholate gel filtration technique together with purified preparations of NADPH-cytochrome P-450 reductase. The catalytic properties of the vesicles have been compared with a system reconstituted with small amounts of dilauroylphosphatidylcholine (DLPC). 6 beta-Hydroxylation of androstenedione proceeded at a rate 10 times higher in the vesicles compared to the DLPC-system. The kinetics for the reaction were the same in the vesicles as in intact microsomes i.e. sigmoidal substrate curves were obtained and Hill-coefficients of about 1.4 were calculated in these systems. In contrast, Michaelis-Menten kinetics were obtained for 6 beta-hydroxylation in the DLPC-system. The results could indicate cooperativity between different P-450 molecules in the intact membrane but not in the DLPC-system. P-450LM2-catalyzed 16-hydroxylation of androstenedione was in contrast to the situation with P-450LM3 inhibited in the vesicles as compared to the DLPC system. It is suggested that for evaluation of substrate specificity and other properties of different types of liver microsomal P-450, phospholipid vesicles may be a more relevant integration level than the DLPC-system. 相似文献
Proton nuclear magnetic resonance spectra at 360 MHz of small sonicated distearoyl phosphatidylcholine vesicles show easily distinguishable resonances due to choline N-methyl head-group protons located in the inner and outer bilayer halves. A study of the chemical shift of these resonances as a function of temperature reveals that the splitting between them increases below the phase transition. This occurs as a result of an upfield shift of the inner layer resonance at the phase transition. Consideration of the possible causes of this effect results in the conclusion that, at the phase transition, there is a change in the organization of the inner layer head-groups which does not occur for the outer layer head-groups. 相似文献
To improve the practicality and safety of a novel explosive dihydroxylamm onium 5,5′-bis (tetrazole)-1,1′-diolate (TKX-50), polyvinylidene difluoride (PVDF) and polychlorotrifluoroe-thylene (PCTFE) were respectively added to the TKX-50, forming the polymer-bonded explosives (PBX). Interfacial and mechanical properties of PBX were investigated through molecular dynamics (MD) method, desensitizing mechanisms of fluorine-polymers for TKX-50 were researched by compression and bulk shear simulations. Results show that the binding energies (Ebind) between polymers (PVDF or PCTFE) and TKX-50 surfaces all rank in order of (011)?>?(100)?>?(010), shorter interatomic distance and the resulted higher potentials lead to higher Ebind on TKX-50/PVDF interfaces than that on PCTFE/TKX-50 interfaces. Compared with TKX-50, the ductility of PBX is improved due to the isotropic mechanical property and flexibility of fluorine-polymers especially the PCTFE. Desensitizing effect of fluorine-polymers for TKX-50 is found under loading condition, which is attributed to the enhanced compressibility and buffer capacity against external pressure in compression, as well as the improved lubricity to reduce the sliding potentials in bulk shear process.
Graphical Abstract Comparisons of the internal stress and slide potentials of the novel explosive,TKX-50 and its based PBX. Desensitizing effects can be found by the adding of fluorine-polymers, it owes to their better flexibility and lubricity as well as the amorphous nature.
Although the sport of lacrosse has evolved dramatically over the last few decades and is presently the fastest growing team sport in the United States, the current specifications for balls date back to 1943. The purpose of this study was to see if various commercially available field lacrosse balls meet these specifications and to determine additional mechanical properties of the ball that may more completely characterize ball performance. Eight models from several manufacturers were tested. Seven models were designated for game play, while one model was promoted as a practice ball. In accordance with the specifications, the mass, circumference, and rebound height were recorded for one dozen balls from each model. The load required to compress the balls 0.0125 m and the coefficient of restitution (COR) with an incident speed of 26.80 m/s were also determined. We found that some balls met several of the specifications, but none of the models had every ball meet all the specifications. For the two measures of ball liveliness, rebound height had a weak correlation with COR. Ball compression loads averaged about 750 N over most models, but were almost 85% less for the practice model. It appears that current governing body specifications are outdated, as no ball model we tested met these specifications. The determination of ball liveliness at more realistic speeds should also be taken into account. Since balls with low compression loads can pass through face protectors worn by lacrosse players, the sport's governing bodies may wish to consider a specification on ball compression. 相似文献
The dipole potentials, ψd, of phospholipid vesicles composed of pure dimyristoylphosphatidylcholine (DMPC) or vesicles in which 50 mol% of the DMPC
was substituted by dimyristoylphosphatidylserine (DMPS), dimyristoylphosphatidylglycerol (DMPG), dimyristoylethanolamine (DMPE),
dimyristoylphosphatidic acid (DMPA) or monomyristoylphosphatidylcholine (MMPC) were measured via a fluorescent ratiometric
method utilizing the probe di-8-ANEPPS. The PS and PG headgroups were found to cause only minor changes in ψd. PE caused an increase in ψd of 51 mV. This could be explained by a decrease in the dielectric constant of the glycerol backbone region as well as a movement
of the P−–N+ dipole of the less bulky PE headgroup to a position more parallel to the membrane surface than in PC. The negatively charged
PA headgroup increases ψd by 215 mV relative to PC alone. This indicates that the positive pole of the dipole predominantly responsible for the dipole
potential is located at a position closer to the interior of the membrane than the phosphate group. The increase in the charge
of the negative pole of the dipole by the phosphate group of PA increases the electrical potential drop across the lipid headgroup
region. The incorporation of the single chain lipid MMPC into the membrane causes a decrease in ψd of 142 mV. This can be explained by a decrease in packing density within the membrane of carbonyl dipoles from the sn-2 chain of DMPC. The results presented should contribute to a better understanding of the electrical effect of lipid headgroups
on the functioning of membrane proteins. 相似文献
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 °C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer. 相似文献
Protein kinase C is activated by a 1,2-sn-diacylglycerol and phospholipid at low calcium concentrations. Of the various phospholipids studied, phosphatidylserine has been shown to be the most effective one and is usually used in assaying the enzyme (Kaibuchi, K., Takai, Y., and Nishizuka, Y. (1981) J. Biol. Chem. 256, 7146-7149). It is shown here that under the conditions of the enzymatic assay, phosphatidylserine does not form typical fluid bilayer structures as seen by electron microscopy and fluorescence polarization. On the other hand, 1:4 phosphatidylserine/phosphatidylcholine bilayer vesicles can be formed which support protein kinase C activation. They have the advantage in that they are characterizable, form physiologically relevant bilayer structures, and are readily and reproducibly formed. In addition, they do not support protein kinase C activation in the absence of added diacylglycerol, a property that makes them invaluable in studying the role of diacylglycerol structure in protein kinase C activation. It is further demonstrated that the rat brain enzyme is activated by 1,2-sn-diolein but not by 2,3-sn-diolein nor 1,3-diolein, demonstrating the high specificity of the kinase toward the glycerol backbone. 1,2-rac-Dielaidin, 1,2-rac-distearin, and 1,2-sn-dipalmitin are all active, which is consistent with the idea that the specificity of protein kinase C is not directed toward the fatty acid side chain of the diacylglycerols. 相似文献
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 degrees C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer. 相似文献
Liposomes containing bovine heart cytochrome c oxidase (COV) prepared by the cholate dialysis technique were purified from those devoid of the enzyme using discontinuous sucrose density ultra centrifugation to eliminate interference in proton-pumping assays. This technique was also used to purify liposomes containing cytochrome c oxidase depleted in subunit III (COV-III), a COX enzyme preparation with altered subunit structure, to assess if the technique could be applied to COX enzymes in which structural and functional changes have occurred. Upon discontinuous sucrose density ultra gradient ultracentrifugation, either COV or COV-III were separated into two bands. Liposomes devoid of enzyme sedimented into the 12% sucrose layer, whereas enzyme-containing liposomes (pCOV or pCOV-III) were found in the 13% sucrose layer. The yield of both pCOV or pCOV-III was greater than 60% (based on heme aa(3) content), suggesting a similar distribution of cytochrome c oxidase (COX) and subunit III-depleted enzyme (COX-III) in the purified liposomes. The number of COX or COX-III molecules per phospholipid vesicle in purified fractions was estimated to be two. Removal of subunit III (M(r)=29,918) from COX resulted in a 30% decrease in electron transfer activity (either in COV-III or pCOV-III) when compared with COV and pCOV, respectively. Both pCOV and pCOV-III exhibited low endogenous proton permeability, as assessed by possessing high respiratory control ratios (14 and greater) and by having similar valinomycin concentration dependencies for stimulation of electron transfer activity in the presence of saturating amounts of CCCP. COV-III and pCOV-III exhibited a 39-44% decrease in proton-pumping activity when compared with COV and pCOV. These results showed that the separation of COX containing liposomes from those lacking enzyme by sucrose density gradient centrifugation can be used to characterize the biophysical properties of these liposomes. 相似文献
The effects of the polyene pore-forming agent nystatin were investigated on individual giant unilamellar phospholipid vesicles (GUVs), made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in different methanol-water solutions using phase-contrast optical microscopy. Three characteristic effects were detected in three different nystatin concentration ranges: vesicle shape changes (between 150 and 250μM); transient, nonspecific, tension pores (between 250 and 400μM); and vesicle ruptures (above 400μM). Both the appearance of the transient tension pores and the vesicle ruptures were explained as being a consequence of the formation of size-selective nystatin channels, whose membrane area density increases with the increasing nystatin concentrations. Our results also show that nystatin is able to form pores in the absence of sterols. In addition, study of the cross-interactions between nystatin and methanol revealed mutually antagonizing effects on the vesicle behavior for methanol volume fractions higher than 10%. 相似文献