首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The permeability of egg yolk lecithin (EYL) vesicles to Pr3+ has been measured by 31P nuclear magnetic resonance (nmr) spectroscopy. Measurable Pr3+ leakage into the internal aqueous compartment of EYL vesicles at ambient (21 degrees C) temperature required the presence of small (7--10 mol%) amounts of dicetyl phosphate (DCP). The permeability of DCP-containing vesicles is decreased by incorporation of sterol (cholesterol greater than ergosterol approximately 5.6-dihydroergosterol greater than zymosterol) into the lipid bilayer. Addition of the polyene macrolide antibiotic, nystatin, to DCP-containing EYL vesicles with and without sterol resulted in increased Pr3+ permeability at the three temperatures studied (21--37.5 degrees C). Permeability changes observed upon addition of nystatin to sterol-impregnated, DCP-containing vesicles varied with sterol structure: ergosterol approximately 5,6-dihydroergosterol greater than cholesterol approximately zymosterol. These results are compared with other polyene macrolide induced permeability changes on model and natural membrane systems. Permeability changes induced by nystatin in sterol-free EYL vesicles were generally greater than for comparable sterol-containing vesicles. This is attributed to a nonspecific interaction of the antibiotic with the latter vesicles.  相似文献   

2.
Depending on their phospholipid composition, liposomes are endocytosed by, or fuse with, the plasma membrane, of Acanthamoeba castellanii. Unilamellar egg lecithin vesicles are endocytosed by amoeba at 28 degrees C with equal uptake of the phospholipid bilayer and the contents of the internal aqueous space of the vesicles. Uptake is inhibited almost completely by incubation at 4 degrees C or in the presence of dinitrophenol. After uptake at 28 degrees C, the vesicle phospholipid can be visualized by electron microscope autoradiography within cytoplasmic vacuoles. In contrast, uptake of unilamellar dipalmitoyl lecithin vesicles and multilamellar dipalmitoyl lecithin liposomes is only partially inhibited at 4 degrees C, by dinitrophenol and by prior fixation of the amoebae with glutaraldehyde, each of which inhibits pinocytosis. Vesicle contents are taken up only about 40% as well as the phospholipid bilayer. Electron micrographs are compatible with the interpretation that dipalmitoyl lecithin vesicles fuse with the amoeba plasma membrane, adding their phospholipid to the cell surface, while their contents enter the cell cytoplasm. Dimyristoyl lecithin vesicles behave like egg lecithin vesicles while distearoyl lecithin vesicles behave like dipalmitoyl lecithin vesicles.  相似文献   

3.
A fluorescent assay for Clostridium perfringens phospholipase C is described using 1-palmitoyl-2-[6(pyren-1-yl)hexanoyl]-sn-glycero-3- phospho-N-(trinitrophenyl)aminoethanol (PPHTE) as the substrate. This method is based on the decrease of the quenching of pyrene monomer fluorescence when phospholipase C hydrolyzes PPHTE into pyrenediglyceride and phospho(trinitrophenyl)-aminoethanol. The hydrolysis of egg lecithin/PPHTE (25:1 molar ratio) substrate by C. perfringens phospholipase C was linear with time for at least 2 min. Optimal conditions for the hydrolysis by phospholipase C were 50 mM Tris-HCl pH 7.0-30 mM CaCl2/63 microM egg lecithin and 2.5 microM PPHTE. The Km and Vmax values for the hydrolysis of egg lecithin/PPHTE vesicles were 28 microM and 280 pmol min-1, respectively. The detection limit of the assay was 40 microU of C. perfringens phospholipase C. When diglyceride was included into egg lecithin/PPHTE vesicles up to 30 mol% the reaction velocity increased 13-fold. Higher molar proportions of diglyceride were inhibitory. When the hydrolysis of mixtures of different naturally occurring phospholipids and PPHTE was studied egg lecithin was found to be the best substrate. When dipalmitoylphospholipids with different polar head groups were used the reaction velocity decreased in the order egg lecithin greater than or equal to dipalmitoylphosphatidylserine greater than dipalmitoylphosphatidic acid greater than dipalmitoylphosphatidylcholine greater than dipalmitoylphosphatidylglycerol.  相似文献   

4.
We apply and quantify two techniques to incorporate carotenoids into liposomes: (i). preparation of unilamellar liposomes from mixtures of phospholipids and a carotenoid or cholesterol; (ii). insertion of carotenoids into prepared liposomes. Homogeneous liposomal fractions with a vesicle size diameter of approximately 50 nm were obtained by an extrusion method. The resulting vesicles were subjected to a three-dimensional light scattering cross-correlation measurement in order to evaluate their size distribution. The fluorescent dyes Laurdan, DiI-C(18), C(6)-NBD-PC were used to label the liposomes and to evaluate modulations of ordering, hydrophobicity and permeability to water molecules adjacent to the bilayer in the presence of carotenoids and/or cholesterol. Zeaxanthin incorporation (up to 0.1-1 mol%) attributes to the symmetric and ordered structure of the bilayer, causing both a strong hydrophobicity and a lower water permeability at the polar region of the membrane. The incorporation of lutein has similar effects, but its ordering effect is inferior in the polar region and superior in the non-polar region of the membrane. beta-Carotene, which can be incorporated at lower effective concentrations only, distributes in a more disordered way in the membrane, but locates preferentially in the non-polar region and, compared to lutein and zeaxanthin, it induces a less ordered structure, a higher hydrophobicity and a lower water permeability on the bilayer.  相似文献   

5.
Liposomes have been prepared from dipalmitoyllecithin, dimyristoyllecithin, egg lecithin, rat liver lecithin and beef brain sphingomyelin.Permeability properties of liposomes thus prepared were studied toward glucose. The glucose permeability of liposomes with saturated lecithins (dipalmitoyllecithin and dimyristoyllecithin) and sphingomyelin appears to be more strongly temperature dependent than that of liposomes with lecithin containing unsaturated fatty acyl chains (egg and rat liver lecithins). The permeability of glucose through vesicles of dipalmitoyllecithin or dimyristoyllecithin was enhanced drastically at their transition temperatures, while the incorporation of about 25 mole% of egg lecithin into liposomes of saturated lecithins suppressed the enhanced permeation rates of glucose above the transition temperatures.The incorporation of small amounts of cholesterol enhanced the temperature-dependent permeability of glucose through the bilayer of saturated lecithins or sphingomyelin. This tendency was best shown in the case of dipalmitoyl-lecithin, in which 20 mole% of cholesterol had the most stimulating effect on the temperature-dependent permeability. The introduction of more than 33 mole% of cholesterol showed, however, reduced effects on the temperature-dependent permeability through liposomes with saturated lecithins or sphingomyelin. It was also shown that cholesterol had a much larger effect on the regulation of the temperature-dependent permeability of liposomes prepared with saturated lecithins or sphingomyelin than on that of liposomes prepared with phospholipids containing unsaturated fatty acids.  相似文献   

6.
After studies on incorporation of Coenzyme-Q-homologs into mitochondrial membranes, we have undertaken the same investigation on phospholipid vesicles in order to know the behavior of different Ubiquinones in the biphasic system lipid membrane/H2O. Using concentrations of egg lecithin corresponding to the phospholipid content of 1 mg mitochondrial protein, it was found that some homologs are partitioned in lipid vesicles nearly the same as they are incorporated by mitochondria, while others behave differently. On the basis of the results it is possible to calculate approximately partition coefficients for each Q-homolog. This work shows that also membrane structure, besides the partition membrane/water, affects the incorporation of Ubiquinones.  相似文献   

7.
The hydration of dioleoyl lecithin (DOL) and dimyristoyl lecithin (DML) has been measured as a function of temperature between ?15 and ?30 °C, using low-temperature proton magnetic resonance. The hydration of DOL is considerably higher than that of DML. We detect 9 mol of unfrozen water/mol of phospholipid at ?25 °C (our “standard” temperature) for DOL, and only 6 mol of water/mol of phospholipid for DML. The gel-to-liquid crystalline phase transition in DOL centered at ca. ?19 °C is manifested by a 70% increase in hydration for both vesicles and dispersions. Preparations of either DML vesicles or vesicles of DOL which contain 33 mol% cholesterol would not be expected to undergo this phase transition, and the hydration increase observed for these preparations in the same range of temperature is less than 20%.  相似文献   

8.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37°C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20°C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20°C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freezethaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

9.
Human erythrocytes have been treated with lipid vesicles in order to alter the cholesterol content of the cell membrane. Erythrocytes have been produced with cholesterol concentrations between 33 and 66 mol% of total lipid. The rate of valinomycin-mediated uptake of rubidium into the red cells at 37 degrees C was lowered by increasing the cholesterol concentration of the cell membrane. Cholesterol increased the permeability to valinomycin at 20 degrees C of small (less than 50 nm), unilamellar egg phosphatidylcholine vesicles formed by sonication. Cholesterol decreased the permeability to valinomycin at 20 degrees C of large (up to 200 nm) unilamellar egg phosphatidylcholine vesicles formed by freeze-thaw plus brief sonication. It is concluded that cholesterol increases the permeability of small membrane vesicles to hydrophobic penetrating substances while above the transition temperature but has the opposite effect on large membrane vesicles and on the membranes of even larger cells.  相似文献   

10.
Spin probes have been used to study at the molecular level the influence of cholesterol on bilayers of egg lecithin and dipalmitoyl lecithin. Distinct differences between the two lecithin systems were revealed. Increasing amounts of cholesterol result in extension of the fatty acid chains and decreased amplitude of motion of the long axes of the fatty acids in egg lecithin. In dipalmitoyl lecithin cholesterol causes an increase in the mobility and amplitude of motion of the fatty acid side chains, presumably due to alteration of the molecular interactions between phospholipids by relaxing the close packing of these molecules. These data provide an explanation for the condensing and fluidizing effects of cholesterol in water-containing phases and monolayers of egg lecithin and dipalmitoyl lecithin, respectively, and for the permeability behavior of egg lecithin and dipalmitoyl lecithin liposomes in the presence and absence of cholesterol. Differences are revealed between the spin bilayer environments in hydrated phospholipid films and vesicles.  相似文献   

11.
Pure 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) or mixed DPPC:1,2-dipalmitoyl phosphatidyletanolamine (DPPE):1,2-dipalmitoyl diphosphatidylserine (DPPS) (17:5:3) liposomes were incorporated with 5 mol% dietary carotenoids (beta-carotene, lutein and zeaxanthin) or with cholesterol (16 and 48 mol%) in the absence or presence of 15 mol% carotenoids, respectively. The carotenoid incorporation yields ranged from 0.42 in pure to 0.72 in mixed phospholipid liposomes. They decreased significantly, from 3 to 14%, in the corresponding cholesterol-doped liposomes, respectively. Highest incorporation yields were achieved by zeaxanthin and lutein in phospholipid liposomes while in cholesterol-containing liposomes, lutein was highest incorporated. The effects on membrane structure and dynamics were determined by differential scanning calorimetry, steady-state fluorescence and anisotropy measurements. Polar carotenoids and cholesterol cause similar, dose-dependent effects: ordering and rigidification revealed by broadening of the transition peak, and increase of anisotropy. Membrane hydrophobicity is determined by cholesterol content and carotenoid polarity. In cholesterol-doped liposomes, beta-carotene is less incorporated than in cholesterol-free liposomes. Our observations suggest effects of carotenoids, even at much lower effective concentrations than cholesterol (8 to 80-fold), on membrane structure and dynamics. Although they are minor constituents of animal membranes, carotenoids may act as modulators of membrane phase transition, fluidity, polarity and permeability, and therefore, can influence the membrane physiology and pathology.  相似文献   

12.
The solubilization of cholesteryl oleate in sonicated phosphatidylcholine vesicles containing between 0 and 50 mol% cholesterol was studied by 13C-NMR using isotopically enriched [carbonyl-13C]cholesteryl oleate. The carbonyl-13C chemical shift from cholesteryl oleate in the phospholipid/cholesterol bilayer was significantly downfield from that for cholesteryl oleate in an oil phase and the peak area, relative to that of the phospholipid carbonyl, was used to determine bilayer solubility of the ester. The solubility (with respect to phospholipid) in the phospholipid bilayer without cholesterol (2.9 mol%) was only moderately reduced (to 2.3 mol%) at cholesterol levels up to 33 mol% but showed a more marked reduction to 1.4 mol% at 40 mol% cholesterol or 1.2 mol% at 50 mol% cholesterol. Since the vesicles containing 50 mol% cholesterol were larger (520 +/- 152 A diameter) than those with no cholesterol (291 +/- 97 A diameter), we measured the solubility of cholesteryl oleate in large vesicles with no cholesterol, prepared by extrusion through polycarbonate membrane filters, and found it similar to that in small, sonicated vesicles with no cholesterol. Therefore, the larger size of vesicles was not the factor responsible for the decreased cholesteryl oleate solubility at high cholesterol contents. A more direct effect of cholesterol is envisioned where the ester becomes displaced to deeper regions of the bilayer.  相似文献   

13.
Liposomes were prepared from dipalmitoyllecithin, dimyristoyllecithin, dioleoyllecithin, egg lecithin, and soybean lecithin, and the effects of incorporation of various quantities of alpha-tocopherol or its analogs on permeability of the liposomes to glucose were studied at various temperatures (4--40 degrees C). Results showed that increase in the quantity of alpha-tocopherol incorporated into dipalmitoyllecithin and dimyristoyllecithin liposomes lowered the transition temperature for marked release of glucose and also decreased the maximum rate of temperature-dependent permeability, alpha-Tocopherol also had similar but less marked effects on the permeability of dioleoyllecithin and egg lecithin liposomes, but little effect on those of soybean lecithin, which has a higher degree of unsaturation. In dipalmitoyllecithin liposomes phytol showed a similar effect of permeability to that of alpha-tocopherol, but phytanic acid caused a different pattern of temperature-dependent permeability. With analogs of alpha-tocopherol, the regulatory effect on permeability decreased with shortening and disappearance of the isoprenoid side chain. The significance of these observations is discussed in relation to the physiological functions of tocopherols in natural membranes.  相似文献   

14.
Retinol and retinoic acid have been incorporated into the artificial membrane systems, planar bimolecular lipid membranes and liposomes, and their effects on several membrane parameters have been measured. 1. Retinol and retinoic acid increased the permeability of egg lecithin liposomes to K+, I? and glucose when incorporated into the membranes at levels as low as 0.5 membrane mol%. Retinoic acid influenced permeability more than did retinol for each of the solutes tested. 2. Retinol and retinoic acid both decreased the electrical resistance of egg lecithin-planar bimolecular lipid membranes from 0.5 to 8 membrane mol%. Retinoic acid effected a larger change than did retinol. 3. Retinol and retinoic acid increased the permeability of dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine liposomes to water at 1.0 and 3.0 membrane mol%. A larger effect on water permeability was measured for retinoic acid than for retinol. 4. Retinol and retinoic acid at 1.0 and 3.0 membrane mol% were shown to lower the phase-transition temperature of liposomes composed of dimyristoylphosphatidylcholine or dipalmitoylphosphatidylcholine. Phase-transition temperatures were monitored by abrupt changes in water permeability and liposome size associated with the transition. Retinoic acid lowered the phase-transition temperature of dimyristoylphosphatidylcholine liposomes more than did retinol, while both retinoids had almost the same effect on dipalmitoylphosphatidylcholine liposomes.  相似文献   

15.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

16.
The effect of amphotericin B on the proton/hydroxide permeability of small unilamellar vesicles has been investigated by using potential-dependent paramagnetic probes. Amphotericin B at 1-10 molecules/vesicle causes a modest 4-8-fold increase in the background H+/OH- permeability of egg phosphatidylcholine (egg PC) vesicles. However, in the presence of cholesterol, amphotericin B promotes a dramatic increase in the H+/OH- permeability of more than 2 orders of magnitude. Surprisingly, this is not observed in vesicle membranes containing ergosterol. In membranes composed of 5-15 mol% ergosterol, amphotericin B is even less effective at promoting H+/OH- currents than in pure egg PC vesicles. The K+ current promoted by amphotericin B in vesicles formed from egg PC and from egg PC plus cholesterol or ergosterol was measured. No significant sterol dependence was found for the K+ current. These results strongly suggest that different mechanisms, or amphotericin B/sterol complexes, are responsible for the induction of H+/OH- and K+ currents. These results have important implications for understanding the therapeutic and toxic effects of amphotericin B.  相似文献   

17.
Sodium-22 efflux was measured in multilamellar liposomes composed of egg lecithin, dicetylphosphate, and various sterols. In a parallel series of experiments a spin labelled fatty acid ester was incorporated into similar vesicles and the molecular motion of the spin label monitored by electron spin resonance spectroscopy. Spin lable mobility was used as a measure of phospholipid hydrocarbon chain motion. There was a poor correlation between the effects of these sterols on sodium permeability and their effects on the motion of the lipid chains. It is postulated that sterols alter sodium transport not only through a reduction in the motional freedom of membrane lipids, but also through changes in the partitioning of sodium between membrane and aqueous phases.  相似文献   

18.
Amphotericin B transfer between single-walled vesicles of dipalmitoylphosphatidylcholine (DPPC) and of egg phosphatidylcholine, both containing 10 mol% cholesterol, has been studied concurrently by circular dichroism spectroscopy and permeability measurements. At 22°C amphotericin B is rapidly transferred from DPPC to DPPC vesicles as well as from egg phosphatidylcholine to egg phosphatidylcholine vesicles. On the other hand, although amphotericin B is rapidly transferred from egg phosphatidylcholine to DPPC vesicles, it is not transferred from DPPC to egg phosphatidylcholine vesicles. At 48°C, above the transition temperature of DPPC, transfer occurs rapidly both ways. These results are interpreted in terms of difference of association constant of amphotericin B with vesicle membranes in the gel and liquid-crystalline state.  相似文献   

19.
Band 3 protein was reconstituted with lipid vesicles consisting of 94:6 (molar ratio) egg phosphatidylcholine-bovine heart phosphatidylserine in a 2500:1 phospholipid:protein molar ratio by means of a Triton X-100/beads method. The SO2-4 permeability of the resulting vesicles was measured using an influx assay procedure in which the vesicles were sampled and subsequently eluted over Sephadex columns at appropriate time intervals. The accuracy of the assay was greatly increased by using an internal standard in order to correct for vesicle recovery. In agreement with previous work, it could be demonstrated that incorporation of band 3 in the vesicles caused an increase in SO2-4 permeability, which could be (partially) inhibited by high concentrations of DIDS or a competitive anion such as thiocyanate. However, the magnitude of the increased SO2-4 permeability was highly variable, even when vesicles were reconstituted using band 3 isolated from one batch of ghosts. In addition, the SO2-4 influx curves showed complex kinetics. These results are related to the existence of vesicle heterogeneity with respect to protein content and vesicle size as revealed by stractan density gradient centrifugation and freeze-fracture electron microscopy. Band 3 incorporation also increased the L-glucose permeability of the vesicles which could also be inhibited by DIDS. Glycophorin, which has no known transport function, reconstituted with lipid vesicles consisting of 94:6 (molar ratio) egg phosphatidylcholine-bovine heart phosphatidylserine in a 400:1 phospholipid:protein molar ration increased the bilayer permeability towards SO2-4 as well as towards L-glucose. Surprisingly, the SO2-4 permeability in the vesicles could also be inhibited by DIDS and thiocyanate. It is concluded that the use of DIDS and a competitive anion, thiocyanate, in order to prove that band 3 is functionally reconstituted, is highly questionable. The increased SO2-4 and L-glucose permeability of band 3-lipid as well as glycophorin-lipid vesicles and the inhibitory action of DIDS are discussed in the light of the presence of defects at the lipid/protein interface and protein aggregation, which may induce the formation of pores. Since the band 3-lipid vesicles are more permeable for SO2-4 than for L-glucose, in contrast to the glycophorin-containing vesicles, it is suggested that some anion specificity of the increased bilayer permeability in the band 3-lipid vesicles is still preserved.  相似文献   

20.
Protein S enhances the rate of Factor Va inactivation by activated Protein C (Walker, F. J. (1980) J. Biol. Chem. 255, 5521-5524). The activity of protein S is saturable, appearing to interact stoichiometrically with activated Protein C. Diisopropylphosphate-modified activated Protein C reversed the effect of Protein S, further indicating that a Protein S-activated Protein C interaction is required for expression of the activity of Protein S. In the absence of phospholipid, Protein S had no effect on the rate of activated Protein C-catalyzed inactivation of Factor Va. The activity of Protein S was only expressed in the presence of phospholipid vesicles, where it appeared to increase the affinity of the inactivation system for phospholipid. Protein S had no effect upon the rate of Factor Va inactivation in the presence of saturating levels of phospholipid vesicles. The effects of Protein S on the kinetics of Factor Va inactivation corresponded with its effect on the interaction between activated Protein C and phospholipid vesicles, measured by light scattering. In the presence of Protein S, the binding of activated Protein C to phospholipid vesicles was enhanced. Protein S had no effect upon the binding on the zymogen (Protein C to phospholipid vesicles). In conclusion, the stimulatory effect of Protein S on the inactivation of Factor Va by activated Protein C can be attributed, in part, to the enhancement of the binding of activated Protein C to phospholipid vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号