首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Arrhenius plots were generated on the activity of rat liver mitochondrial cytochrome c oxidase from Metrecal-sucrose fed controls and Metrecal-alcohol fed experimentals. Chronic alcohol feeding resulted in diminished specific activity of cytochrome c oxidase and abolition of the discontinuity temperature at 17.5 degrees C found in the controls. Twenty-four hours after alcohol withdrawal, a discontinuity temperature reappeared at 14.4 degrees C; at 48 h it increased to 22.6 degrees C and returned to normal (17.4 degrees C) at 72 h. Such liver mitochondria also showed a decreased capacity to oxidize the acetyl group of acetyl carnitine immediately following prolonged alcohol feeding. When the assay was performed following withdrawal from alcohol 24 h later, oxidation was enhanced and this effect persisted for another 48 h. These latter results revealed a diminished capacity of such mitochondria to oxidize short chain fatty acids during alcohol feeding and the reverse during alcohol withdrawal. These results, complemented by thermographic data obtained through differential scanning calorimetry (DSC) reinforced the view that chronic alcoholic feeding induced adaptive changes in the fluidity of rat liver mitochondrial membrane lipids. Moreover, they demonstrated that in the microenvironment of the membrane-bound enzymes on withdrawal from ethanol, the membrane readapts to the new conditions without alcohol. This involved modulation of membrane structure and function and at the same time demonstrated a role for the membrane in the expression of tolerance and functional dependence on alcohol.  相似文献   

3.
Chronic ethanol intoxication oxidative stress participates in the development of many diseases. Nutrition and the interaction of food nutrients with ethanol metabolism may modulate alcohol toxicity. One such compound is blackcurrant, which also has antioxidant abilities. We investigated the effect of blackcurrant as an antioxidant on the composition and electrical charge of liver cell membranes in ethanol-intoxicated rats. Qualitative and quantitative phospholipid composition and the presence of integral membrane proteins were determined by high-performance liquid chromatography. Electrophoresis was used to determine the surface charge density of the rat liver cell membranes. Ethanol intoxication is characterized by changes in cell metabolism that alter the structure and function of cell membrane components. Ethanol increased phospholipid levels and altered the level of integral proteins as determined by decreased phenylalanine, cysteine, and lysine. Ethanol significantly enhanced changes in the surface charge density of the liver cell membranes. Administration of blackcurrant to rats intoxicated with ethanol significantly protected lipids and proteins against oxidative modifications. It is possible that the beneficial effect of blackcurrant is connected with its abilities to scavenge free radicals and to chelate metal ions.  相似文献   

4.
5.
6.
The effect of ethanol ingestion on aldehyde dehydrogenase activity in the subcellular fractions of livers from 14 pair-fed male Sprague-Dawley rats was tested. Enzymatic assays were performed at two different concentrations of propionaldehyde (0.068 and 13.6 mM) sufficient to saturate enzymes with high and low affinities for propionaldehyde, respectively. The effect of alcohol ingestion varied depending on the subcellular fraction tested and the propionaldehyde concentration used in the assay. There was a 60% increase in the activity of aldehyde dehydrogenase with high affinity for propionaldehyde in the mitochondrial membranes. Conversely there was a 50% decrease in the activity of aldehyde dehydrogenases with high affinity for propionaldehyde in the microsomal fraction. There was also a 58% decrease in the activity of enzymes from the mitochondrial matrix with low affinity for propionaldehyde. The results suggest that differences in the assay systems employed may account for the conflicting results obtained by previous investigators of the effect of ethanol feeding.  相似文献   

7.
Studies performed on adult female rats over a period of 10 weeks indicated that the consumption of alcohol (20% v/v) did not appear to disturb the zinc or copper balance, nor did it adversely affect tissue zinc or copper levels, even in zinc-restricted animals. On the contrary, higher plasma zinc levels were consistently observed in animals receiving alcohol together with the experimental diets.  相似文献   

8.
The effect of ethanol ingestion on aldehyde dehydrogenase activity in the subcellular fractions of livers from 14 pair-fed male Sprague-Dawley rats was tested. Enzymatic assays were performed at two different concentrations of propionaldehyde (0.068 and 13.6 mM) sufficient to saturate enzymes with high and low affinities for propionaldehyde, respectively. The effect of alcohol ingestion varied depending on the subcellular fraction tested and the propionaldehyde concentration used in the assay. There was a 60% increase in the activity of aldehyde dehydrogenase with high affinity for propionaldehyde in the mitochondrial membranes. Conversely there was a 50% decrease in the activity of aldehyde dehydrogenases with high affinity for propionaldehyde in the microsomal fraction. There was also a 58% decrease in the activity of enzymes from the mitochondrial matrix with low affinity for propionaldehyde. The results suggest that differences in the assay systems employed may account for the conflicting results obtained by previous investigators of the effect of ethanol feeding.  相似文献   

9.
10.
Rates of ADP stimulated respiration for various substrates were determined in mitochondria isolated from the livers of female Sprague-Dawley rats following 8 weeks of treatment with daily swimming, ethanol consumption, or both. All rats were fed an American Institute of Nutrition (AIN) type liquid diet with the ethanol treated rats receiving 35% of the calories as ethanol. Chronic exposure to ethanol depressed both state 3 respiration with glutamate as a substrate and cytochrome oxidase activity. Respiratory control ratios and P:O ratios, however, were unaffected by the ethanol exposure. Exercise alone had no effect on hepatic mitochondrial function. There were also no significant alterations in oxidative function of hepatic mitochondria from rats which were endurance-trained by swimming while receiving the ethanol diet. This lack of alteration in mitochondrial function was in spite of the fact that these rats consumed an identical amount of ethanol as those which incurred mitochondrial dysfunction. These results indicate that regular exercise has the potential to attenuate the ethanol induced decline in hepatic mitochondria.  相似文献   

11.
Epidemiological studies indicate that moderate ethanol consumption reduces cardiovascular mortality. Cellular and animal data suggest that ethanol confers beneficial effects on the vascular endothelium and increases the bioavailability of nitric oxide. The purpose of this study was to assess the effect of ethanol on endothelium-dependent, nitric oxide-mediated vasodilation in healthy human subjects. Forearm blood flow (FBF) was determined by venous occlusion plethysmography in healthy human subjects during intra-arterial infusions of either methacholine (0.3, 1.0, 3.0, and 10.0 mcg/min, n = 9), nitroprusside (0.3, 1.0, 3.0, and 10.0 mcg/min, n = 9), or verapamil (10, 30, 100, and 300 mcg/min, n = 8) before and during the concomitant intra-arterial infusions of ethanol (10% ethanol in 5% dextrose). Additionally, a time control experiment was conducted, during which the methacholine dose-response curve was measured twice during vehicle infusions (n = 5). During ethanol infusion, mean forearm and systemic alcohol levels were 227 +/- 30 and 6 +/- 0 mg/dl, respectively. Ethanol infusion alone reduced FBF (2.5 +/- 0.1 to 1.9 +/- 0.1 ml.dl(-1).min(-1), P < 0.05). Despite initial vasoconstriction, ethanol augmented the FBF dose-response curves to methacholine, nitroprusside, and verapamil (P < 0.01 by ANOVA for each). To determine whether this augmented FBF response was related to shear-stress-induced release of nitric oxide, FBF was measured during the coinfusion of ethanol and N(G)-nitro-L-arginine (L-NAME; n = 8) at rest and during verapamil-induced vasodilation. The addition of L-NAME did not block the ability of ethanol to augment verapamil-induced vasodilation. Ethanol has complex direct vascular effects, which include basal vasoconstriction as well as potentiation of both endothelium-dependent and -independent vasodilation. None of these effects appear to be mediated by an increase in nitric oxide bioavailability, thus disputing findings from preclinical models.  相似文献   

12.
The activity of 5'-nucleotidase of rat liver plasma membranes has been investigated in normal and acutely ethanol-intoxicated rats (7 g ethanol/Kg body wt). Ethanol was also added to the incubation mixture for 5'-nucleotidase assay. The alcohol modified the Km of the enzyme when added to plasma membranes of normal rats; moreover, it increased the activation energy of the reaction. The treatment with the alcohol in vivo lowered the Vmax, but no modifications of Km could be detected in this case, upon further addition of the toxic in vitro. It is concluded that ethanol is able to act by itself on 5'-nucleotidase activity of rat liver plasma membranes; however, ethanol produces other effects in vivo, probably due to its metabolism.  相似文献   

13.
Mitochondria are an important intracellular source and target of reactive oxygen species. The life span of a species is thought to be determined, in part, by the rate of mitochondrial damage inflicted by oxygen free radicals during the course of normal cellular metabolism. In the present study, we have investigated the protective effect of squalene supplementation for 15 days and 30 days on energy status and antioxidant defense system in liver mitochondria of 18 young and 18 aged rats. The dietary supplementation of 2% squalene significantly minimized aging associated alterations in mitochondrial energy status by maintaining the activities of TCA cycle enzymes (isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase and malate dehydrogenase) and respiratory marker enzymes (NADH dehydrogenase and cytochrome-c-oxidase) at higher level in the liver mitochondria of aged rats compared with unsupplemented controls. It exerted an antioxidant effect by inhibiting mitochondrial lipid peroxidation (malondialdehyde) in liver of young and aged rats. Supplementation with squalene also maintained the mitochondrial antioxidant defense system at higher rate by increasing the level of reduced glutathione and the activities of glutathione-dependent antioxidant enzymes (glutathione peroxidase and glutathione-S-transferase) and antiperoxidative enzymes (superoxide dismutase and catalase) in the liver of young and aged rats. The results of this study provide evidence that dietary supplementation with squalene can improve liver mitochondrial function during aging and minimize the age-associated disorders in which reactive oxygen species are a major cause.  相似文献   

14.
15.
16.
Previous studies have reported conflicting results regarding the effect of ethanol on hepatic regeneration. The purpose of the present study was to determine whether long-term, voluntary consumption of ethanol, within the range reported in humans, has an effect on hepatic regenerative activity in rats following partial hepatectomy. Ninety-four adult male Sprague-Dawley rats (n = 3-9/group) were studied. Based on the amount of 9% ethanol consumed over a 50-day period, low ethanol intake (0.1-1.9 g.kg-1.d-1) and high ethanol intake (2.0-4.0 g.kg-1.d-1) groups were identified. Control groups consisted of rats provided with propylene glycol in equivalent caloric amounts to the ethanol consumed by high ethanol intake rats (isocaloric group) and rats served water only (ad libitum group). An additional two groups from which ethanol was removed 5 days prior to surgery were also studied (low ethanol grace and high ethanol grace). Hepatic regeneration was determined by restitution of liver weight, [3H]thymidine incorporation into DNA, and [14C]leucine incorporation into protein 24, 48, and 72 h following partial (70%) hepatectomy. The results of the study revealed no significant differences in the rate of hepatic regeneration between low and high ethanol consuming rats or between either of these groups and isocaloric or ad-libitum fed control groups. Regeneration in low ethanol grace and high ethanol grace groups were also similar to each other and controls. Moreover, there was no correlation between mean ethanol consumption per rat and restitution of liver weight, [3H]thymidine incorporation into DNA, or [14C]leucine incorporation into protein by the regenerating liver (r = 0.0716, -0.1637, and 0.1395, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
1. The influence of ethanol on the metabolism of livers from fed and starved rats has been studied in liver-perfusion experiments. Results have been obtained on oxygen consumption and carbon dioxide production, on glucose release and uptake by the liver and on changes in the concentrations of lactate and pyruvate and of β-hydroxybutyrate and acetoacetate in the perfusion medium. 2. Oxygen consumption and carbon dioxide production were lower in livers from starved rats than in livers from fed rats. Ethanol had no effect on the oxygen consumption of either type of liver. After the addition of ethanol to the perfusion medium carbon dioxide production ceased almost completely, the change being faster in livers from starved rats. 3. With livers from fed rats glucose was released from the liver into the perfusion medium. This release was slightly greater when ethanol was present. With livers from starved rats no release of glucose was observed, and when ethanol was added a marked uptake of glucose from the medium was found. A simultaneous release of glycolytic end products, lactate and pyruvate, into the medium occurred. 4. Acetate was the main metabolite accumulating in the perfusion medium when ethanol was oxidized. With livers from starved rats a slightly increased formation of ketone bodies was found when ethanol was present. 5. The lactate/pyruvate concentration ratio in the perfusion medium increased from 10 to 87 with livers from fed rats and from 20 to 171 with livers from starved rats when the livers were perfused with ethanol in the medium. The β-hydroxybutyrate/acetoacetate concentration ratio increased from 0·8 to 7·6 with livers from fed rats and from 1·0 to 9·5 with livers from starved rats when ethanol was added to the medium. 6. The effects of ethanol are discussed and related to changes in the redox state of the liver that produce new conditions for some metabolic pathways.  相似文献   

18.
ABSTRACT: BACKGROUND: Binge ethanol in rats after chronic ethanol exposure augments necrosis and steatosis in the liver. In this study, two-dimensional gel electrophoresis proteomic profiles of liver of control, chronic ethanol, control-binge, and chronic ethanol- binge were compared. RESULTS: The proteomic analysis identified changes in protein abundance among the groups. The levels of carbonic anhydrase isoform 3 (CA3) were decreased after chronic ethanol and decreased further after chronic ethanol-binge. Ethanol binge alone in control rats had no effect on this protein suggesting its possible role in increased susceptibility to injury by binge after chonic ethanol treatment. A protein spot, in which both cytosolic isocitrate dehydrogenase (IDH1) and glutamine synthetase (GS) were identified, showed a small decrease after chronic ethanol binge but western blot demonstrated significant decrease only for glutamine synthetase in chronic ethanol treated rats. Level of gluathione S-transferase mu isoform (GSTM1) increased after chronic ethanol but the levels were lower after chronic ethanol-binge compared to chronic ethanol treatment. The protein levels of basic form protein disulfide isomerase associated protein 3 (PDIA3) were significantly decreased and acidic forms were increased after chronic ethanol- binge but not in chronic ethanol treated rats or ethanol binge in control rats. CONCLUSIONS: Given the role of CA3, IDH1 and GST in oxidative stress; PDIA3 in protein quality, apoptosis and DNA repair; and decreased glutamine synthetase as a sensitive marker of pericentral liver injury; this proteome study of chronic ethanol-binge rat model identifies these proteins for the first time as molecular targets with potential role in progression of liver injury by binge ethanol drinking.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号