首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Submucosal glands secrete macromolecules and liquid that are essential for normal airway function. To determine the mechanisms responsible for airway gland secretion and the interaction between gland secretion and epithelial ion transport, studies were performed in porcine tracheal epithelia by using the hillocks and Ussing techniques. No significant baseline gland fluid flux (J(G)) was measured by the hillocks technique after 3 min, and the epithelia had an average potential difference of 7.5 +/- 0.5 mV (lumen negative) with a short-circuit current of 73 +/- 4 microA/cm(2), as measured by the Ussing technique. The secretagogue methacholine induced concentration-dependent increases in J(G) after 3 min from 0.003 microl. min(-1). cm(-2) at 0.1 microM to 0.41 +/- 0.04 microl. min(-1). cm(-2) at 1,000 microM, with a 0.9 +/- 0.1 mV hyperpolarization of the epithelium at 1,000 microM. When the epithelium was pretreated for 3 min with the sodium channel blocker amiloride, the methacholine (1,000 microM)-induced J(G) increased to 0.67 +/- 0.09 microl. min(-1). cm(-2), and the hyperpolarization increased to 2.2 +/- 0.5 mV over the amiloride-pretreated level. When pretreated for 3 min with the chloride channel blocker diphenylamine-2-carboxylic acid, the methacholine (1,000 microM)-induced J(G) was inhibited to 0.20 +/- 0.06 microl. min(-1). cm(-2), and the methacholine-induced hyperpolarization was abolished. These data indicate that, in porcine airways, methacholine-induced J(G) may be increased by inhibition of sodium absorption and decreased by inhibition of chloride secretion.  相似文献   

2.
Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1.2+/-0.3 to 2.4+/-0.4 mS x cm(-2) and slower increases in equivalent short circuit current, I(SC)(Eqv) = -G(T) x V(T), from 12.7+/-3.2 to 33.1+/-6.8 microA cm(-2), and J(V) from 0.72+/-0.17 to 3.01+/-0.49 nL cm(-2) s(-1). Amiloride in the outside solution abolished I(SC)(Eqv) (-1.6+/-0.1 microA cm(-2)) while J(V) decreased to 0.50+/-0.15 nL cm(-2) x s(-1), which is significantly different from zero. Isoproterenol decreased the osmotic concentration of the transported fluid, C(osm) approximately 2 x I(SC)(Eqv)/J(V), from 351+/-72 to 227+/-28 mOsm (Ringer's solution: 252.8 mOsm). J(V) depicted a saturating function of [Na+]out in agreement with Na+ self-inhibition of ENaC. Ouabain on the inside decreased I(SC)(Eqv) from 60+/-10 to 6.1+/-1.7 microA cm(-2), and J(V) from 3.34+/-0.47 to 1.40+/-0.24 nL cm(-2) x s(-1). Short-circuited preparations exhibited a linear relationship between short-circuit current and J(V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased deltaC(S,rev) to 7.5+/-1.5 mOsm. It is concluded that water uptake is accomplished by osmotic coupling in the lateral intercellular space (lis), and hypothesized that a small fraction of the Na+ flux pumped into lis is recirculated via basolateral NKCC transporters.  相似文献   

3.
We isolated and cultured fetal distal lung epithelial (FDLE) cells from 17- to 19-day rat fetuses and assayed for anion secretion in Ussing chambers. With symmetrical Ringer solutions, basal short-circuit currents (I(sc)) and transepithelial resistances were 7.9 +/- 0.5 microA/cm(2) and 1,018 +/- 73 Omega.cm(2), respectively (means +/- SE; n = 12). Apical amiloride (10 microM) inhibited basal I(sc) by approximately 50%. Subsequent addition of forskolin (10 microM) increased I(sc) from 3.9 +/- 0.63 microA/cm(2) to 7.51 +/- 0.2 microA/cm(2) (n = 12). Basolateral bumetanide (100 microM) decreased forskolin-stimulated I(sc) from 7.51 +/- 0.2 microA/cm(2) to 5.62 +/- 0.53, whereas basolateral 4,4'-dinitrostilbene-2,2'-disulfonate (5 mM), an inhibitor of HCO secretion, blocked the remaining I(sc). Forskolin addition evoked currents of similar fractional magnitudes in symmetrical Cl(-)- or HCO(-)(3)-free solutions; however, no response was seen using HCO(-)(3)- and Cl(-)-free solutions. The forskolin-stimulated I(sc) was inhibited by glibenclamide but not apical DIDS. Glibenclamide also blocked forskolin-induced I(sc) across monolayers having nystatin-permeablized basolateral membranes. Immunolocalization studies were consistent with the expression of cystic fibrosis transmembrane conductance regulator (CFTR) protein in FDLE cells. In aggregate, these findings indicate the presence of cAMP-activated Cl(-) and HCO(-)(3) secretion across rat FDLE cells mediated via CFTR.  相似文献   

4.
The clinical use of doxorubicin (DXR) is limited by cardiotoxicity partially due to interference with intracellular Ca(2+) homeostasis and involving the activation of the sarcoplasmic reticulum (SR) Ca(2+) release channels. It is known that docosahexaenoic acid (DHA) is able to potentiate the sensitivity of cancer cells to DXR. The aim of our study was to further evaluate the effects of DHA on [Ca(2+)](i) overload induced by DXR in adult rat ventricular cardiomyocytes in order to verify if DHA interferes with DXR-induced cardiotoxicity too. [Ca(2+)](i) was measured by microfluorimetry. Our data demonstrated that 100 microM DXR induced a statistically significant [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 560.2 +/- 49 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 551.1 +/- 35 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min significantly suppressed DXR [Ca(2+)](i)- increase in cells perfused with CaCl(2) Krebs solution (142.3 +/- 12 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (100.4 +/- 12 nM, n = 9, p < 0.01). Caffeine 10 mM significantly increased [Ca(2+)](i) in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 979.2 +/- 17.8 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 891.1 +/- 30 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min suppressed caffeine [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (174.2 +/- 28 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (161.9 +/- 34 nM, n = 9, p < 0.01). In conclusion, our results suggest that DHA is able to prevent acute modifications of calcium homeostasis induced by DXR probably interfering with SR Ca(2+) release channels.  相似文献   

5.
The aim of this study was to investigate the functional expression of cystic fibrosis transmembrane conductance regulator (CFTR) with electrophysiological and molecular technique in rat oviduct epithelium. In whole-cell patch clamp, oviduct epithelial cells responded to 100 microM 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) with a rise in inward current in Gap-free mode, which was inhibited successively by 5 microM CFTR(inh)-172, a CFTR specific inhibitor, and 1 mM diphenylamine-2-carboxylate (DPC), the Cl- channel blocker. The cAMP-activated current exhibited a linear current-voltage (I-V) relationship and time- and voltage-independent characteristics. The reversal potentials of the cAMP-activated currents in symmetrical Cl- solutions were close to the Cl- equilibrium, 0.5+/-0.2 mV (n=4). When Cl- concentration in the bath solution was changed from 140 mM to 70 mM and a pipette solution containing 140 mM Cl- was used, the reversal potential shifted to a value close to the new equilibrium for Cl-, 20+/-0.6 mV (n=4), as compared with the theoretic value of 18.7 mV. In addition, mRNA expression of CFTR was also detected in rat oviduct epithelium. Western blot analysis showed that CFTR protein is found in the oviduct throughout the cycle with maximal expression at estrus, and immunofluorescence and immunohistochemistry analysis revealed that CFTR is located at the apical membrane of the epithelial cells. These results showed that the cAMP-activated Cl- current in the oviduct epithelium was characteristic of CFTR, which provided direct evidence for the functional expression of CFTR in the rat oviduct epithelium. CFTR may play a role in modulating fluid transport in the oviduct.  相似文献   

6.
In apical membrane vesicles from beef tracheal epithelia expressing up to 30% of the proteins as functional cystic fibrosis transmembrane conductance regulator (CFTR)-- i.e. a voltage-independent and PKA-sensitive 36Cl- flux--an ATPase activity, different from P, F0F1 and V types, was reproducibly detected. Its specific activity averaged 20 micromol Pi h(-1) mg(-1) with an apparent affinity for ATP of 530 +/- 30 microM. Its possible involvement in CFTR functions was supported by (1) the linear relationship between the ATPase activity and the magnitude of 36Cl- fluxes (turnover rate: 3 ATP hydrolyzed per CFTR per second), (2) the same rank of potency of ATP, ITP, GTP, UTP and CTP to be hydrolyzed and to open CFTR chloride channels, (3) the similar and parallel inhibition of the ATPase and CFTR Cl- fluxes by NS004 (IC50: 60 microM) and (4) the potency of anti-R domain antibodies to increase by 18% the ATPase activity.  相似文献   

7.
Vocal fold hydration is critical to phonation. We hypothesized that the vocal fold generates bidirectional water fluxes, which are regulated by activity of the Na(+)-K(+)- ATPase. Western blots and immunohistochemistry demonstrated the presence of the alpha-subunit Na(+)-K(+)-ATPase in the canine vocal fold (n = 11). Luminal cells, basal and adjacent one to two layers of suprabasal cells within stratified squamous epithelium, were immunopositive, as well as basolateral membranes of submucosal seromucous glands underlying transitional epithelia. Canine (n = 6) and ovine (n = 14) vocal fold mucosae exhibited transepithelial potential differences of 8.1 +/- 2.8 and 9.3 +/- 1.3 mV (lumen negative), respectively. The potential difference and short-circuit current (ovine = 31 +/- 4 microA/cm(2); canine = 41 +/- 10 microA/cm(2)) were substantially reduced by luminal administration of 75 microM acetylstrophanthidin (P < 0.05). Ovine (n = 7) transepithelial water fluxes decreased from 5.1 +/- 0.3 to 4.3 +/- 0.3 microl x min(-1) x cm(-2) from the basal to luminal chamber and from 5.2 +/- 0.2 to 3.9 +/- 0.3 microl x min(-1) x cm(-2) from the luminal to basal chamber by luminal acetylstrophanthidin (P < 0.05). The presence of the Na(+)-K(+)-ATPase in the vocal fold epithelium and the electrolyte transport derived from its activity provide the intrinsic mechanisms to regulate cell volume as well as vocal fold hydration.  相似文献   

8.
Secretion of HCO(3)(-) by airway submucosal glands is essential for normal liquid and mucus secretion. Because the liquid bathing the airway surface (ASL) is acidic, it has been proposed that the surface epithelium may acidify HCO(3)(-)-rich glandular fluid. The aim of this study was to investigate the mechanisms by which intact distal bronchi, which contain both surface and glandular epithelium, modify pH of luminal fluid. Distal bronchi were isolated from pig lungs, cannulated in a bath containing HCO(3)(-)-buffered solution, and perfused continually with an aliquot of similar, lightly buffered solution (LBS) in which NaCl replaced NaHCO(3)(-) (pH 7 with NaOH). The pH of this circulating LBS initially acidified (by 0.053 +/- 0.0053 pH units) and transepithelial potential difference (PD) depolarized. The magnitude of acidification was increased when pH(LBS) was higher. This acidification was unaffected by luminal dimethylamiloride (DMA, 100 microM) but was inhibited by 100 nM bafilomycin A(1) (by 76 +/- 13%), suggesting involvement of vacuolar-H(+) ATPase. Addition of ACh (10 microM) evoked alkalinization of luminal LBS and hyperpolarization of transepithelial PD. The alkalinization was inhibited in HCO(3)(-)-free solutions containing acetazolamide (1 mM) and by DMA and was enhanced by bumetanide (100 microM), an inhibitor of Cl(-) secretion. The hyperpolarization was unaffected by these maneuvers. The anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoate (300 microM) and combined treatment with DMA and bumetanide blocked both the alkalinization and hyperpolarization responses to ACh. These results are consistent with earlier studies showing that ACh evokes glandular secretion of HCO(3)(-) and Cl(-). Isolated distal airways thus secrete both acid and base equivalents.  相似文献   

9.
Matched porcine tracheal rings were exposed to theophylline and increasing doses of carbachol in Krebs solution. Histological sections of each ring were traced and each of the following dimensions measured: the external perimeter (Pe) and external area (Ae) defined by the outer border of smooth muscle and inner surface of cartilage, and the internal perimeter (Pi) and internal area (Ai) defined by the luminal surface of the epithelium and the muscle length (L) along its outer border. Absolute wall area (WA = Ae - Ai) and relative wall area (PW = WA/Ae) were calculated. Carbachol-treated tracheal ring dimensions were compared with those of their matched theophylline-treated rings. In tracheal rings with intact cartilage, maximal smooth muscle shortening of 44% was achieved with 10(-2) M carbachol. In tracheal rings in which anterior and posterior segments of cartilage were excised, the trachealis muscle passively shortened by 20% and maximal shortening (10(-3) M carbachol) was 57%. Although Ai decreased with maximal smooth muscle shortening, there were no changes in the length of Pi or in WA. These data show that the cartilage in the porcine trachea exerts both a preload that passively stretches the trachealis muscle and an afterload that limits maximal smooth muscle shortening.  相似文献   

10.
cAMP-dependent activation of the cystic fibrosis transmembrane conductance regulator (CFTR) regulates fluid transport in many tissues. Secretion by the corneal endothelium is stimulated by cAMP and dependent on HCO(3)(-). We asked whether HCO(3)(-) can secondarily increase CFTR permeability in bovine corneal endothelial cells (BCEC) by activating soluble adenylyl cyclase (sAC). Immunofluorescence suggests that sAC is distributed throughout the cytoplasm. HCO(3)(-) (40 mM) increased cAMP concentration 42% in the presence of 50 microM rolipram (a phosphodiesterase 4 inhibitor), and a standard HCO(3)(-) Ringer solution (28.5 mM) increased apical Cl(-) permeability by 78% relative to HCO(3)(-)-free solution. The HCO(3)(-)-dependent increase in Cl(-) permeability was reduced 60% by 20 mM NaHSO(3) (a weak agonist of sAC). NaHSO(3) alone increased apical Cl(-) permeability by only 13%. The HCO(3)(-)-dependent increase in Cl(-) permeability was reduced 57% in the presence of 50 microM Rp-adenosine 3',5'-cyclic monophosphorothioate, and 86% by 50 microM 5-nitro-2-(3-phenylpropyl-amino)benzoic acid but unaffected by 200 microM apical H(2)DIDS. CFTR phosphorylation was increased 23, 150, and 32% by 20 mM HSO(3)(-), 28.5 mM HCO(3)(-), and 28.5 mM HCO(3)(-) + 20 mM HSO(3)(-), respectively. Activation of apical Cl(-) permeability by 5 microM genistein was increased synergistically by HCO(3)(-) over that due to genistein and HCO(3)(-) alone. We conclude that HCO(3)(-)-stimulated sAC is a form of autocrine signaling that contributes to baseline cAMP production, thereby affecting baseline CFTR activity in BCEC. This form of autocrine signaling may be important in tissues that express sAC and exhibit robust HCO(3)(-) influx (e.g., ocular ciliary epithelium, choroid plexus, and airway epithelium).  相似文献   

11.
The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in the fetal lung, but during lung development it gradually disappears in cells of future alveolar spaces. Recent studies have implicated the CFTR in fluid transport by the adult alveolar epithelium, but its presence has not been demonstrated directly. This study re-evaluated CFTR expression and activity in the adult pulmonary epithelium by using freshly isolated rat alveolar type II (ATII) cells. CFTR mRNA was detected by semiquantitative polymerase chain reaction on the day of cell isolation but was rapidly reduced by 60% after 24 h of cell culture. This was paralleled by a similar decrease of surfactant protein A expression and alkaline phosphatase staining, markers of the ATII cell phenotype. CFTR expression increased significantly on day 4 in cells grown on filters at the air-liquid interface compared with cells submerged or grown on plastic. Significantly higher CFTR expression was detected in distal lung tissue compared with the trachea. The CFTR was also found at the protein level in Western blot experiments employing lysates of freshly isolated alveolar cells. Whole cell patch-clamp experiments revealed cAMP-stimulated, 5-nitro-2-(3-phenylpropylamino)-benzoate-sensitive Cl(-) conductance with a linear current-voltage relationship. In cell-attached membrane patches with 100 microM amiloride in pipette solution, forskolin stimulated channels of approximately 4 pS conductance. Our results indicate that 50-250 of functional CFTR Cl(-) channels occur in adult alveolar cells and could contribute to alveolar liquid homeostasis.  相似文献   

12.
Human and pig airway submucosal glands secrete mucus in response to substance P (SubP), but in pig tracheal glands the response to SubP is >10-fold greater than in humans and shares features with cholinergically produced secretion. CFTR-deficient pigs provide a model for human cystic fibrosis (CF), and in newborn CF pigs the response of tracheal glands to SubP is significantly reduced (Joo et al. J Clin Invest 120: 3161-3166, 2010). To further define features of SubP-mediated gland secretion, we optically measured secretion rates from individual adult porcine glands in isolated tracheal tissues in response to mucosal capsaicin and serosal SubP. Mucosal capsaicin (EC(50) = 19 μM) stimulated low rates of secretion that were partially inhibited by tetrodotoxin and by inhibitors for muscarinic, VIP, and SubP receptors, suggesting reflex stimulation of secretion by multiple transmitters. Secretion in response to mucosal capsaicin was inhibited by CFTR(inh)-172, but not by niflumic acid. Serosal SubP (EC(50) = 230 nM) stimulated 10-fold more secretion than mucosal capsaicin, with a V(max) similar to that of carbachol. Secretion rates peaked within 5 min and then declined to a lower sustained rate. SubP-stimulated secretion was inhibited 75% by bumetanide, 53% by removal of HCO(3)(-), and 85% by bumetanide + removal of HCO(3)(-); it was not inhibited by atropine but was inhibited by niflumic acid, clotrimazole, BAPTA-AM, nominally Ca(2+)-free bath solution, and the adenylate cyclase inhibitor MDL-12330A. Ratiometric measurements of fura 2 fluorescence in dissociated gland cells showed that SubP and carbachol increased intracellular Ca(2+) concentration by similar amounts. SubP produced rapid volume loss by serous and mucous cells, expansion of gland lumina, mucus flow, and exocytosis but little or no contraction of myoepithelial cells. These and prior results suggest that SubP stimulates pig gland secretion via CFTR- and Ca(2+)-activated Cl(-) channels.  相似文献   

13.
A balance between alveolar liquid absorption and secretion is critical for maintaining optimal alveolar subphase liquid height and facilitating gas exchange in the alveolar space. However, the role of cystic fibrosis transmembrane regulator protein (CFTR) in this homeostatic process has remained elusive. Using a newly developed porcine model of cystic fibrosis, in which CFTR is absent, we investigated ion transport properties and alveolar liquid transport in isolated type II alveolar epithelial cells (T2AECs) cultured at the air-liquid interface. CFTR was distributed exclusively to the apical surface of cultured T2AECs. Alveolar epithelia from CFTR(-/-) pigs failed to increase liquid absorption in response to agents that increase cAMP, whereas cAMP-stimulated liquid absorption in CFTR(+/-) epithelia was similar to that in CFTR(+/+) epithelia. Expression of recombinant CFTR restored stimulated liquid absorption in CFTR(-/-) T2AECs but had no effect on CFTR(+/+) epithelia. In ex vivo studies of nonperfused lungs, stimulated liquid absorption was defective in CFTR(-/-) alveolar epithelia but similar between CFTR(+/+) and CFTR(+/-) epithelia. When epithelia were studied at the air-liquid interface, elevating cAMP levels increased subphase liquid height in CFTR(+/+) but not in CFTR(-/-) T2AECs. Our findings demonstrate that CFTR is required for maximal liquid absorption under cAMP stimulation, but it is not the rate-limiting factor. Furthermore, our data define a role for CFTR in liquid secretion by T2AECs. These insights may help to develop new treatment strategies for pulmonary edema and respiratory distress syndrome, diseases in which lung liquid transport is disrupted.  相似文献   

14.
A fluorescence method has been developed for accurate and instantaneous measurement of transepithelial diffusional water permeability (Pd) in perfused kidney tubules based on the sensitivity of the fluorophore aminonapthelane trisulfonic acid (ANTS) to solution H2O/D2O content. The fluorescence of ANTS was 3.2-fold lower in an H2O buffer than in a D2O buffer. The response of ANTS fluorescence to a change in solution H2O/D2O content occurred in less than 1 ms and was due to a collisional quenching mechanism. Isolated cortical (CCT) and outer medullary (OMCT) collecting tubules from rabbit were perfused with an isosmotic D2O buffer at specified lumen flow rates (2-100 nl/min); tubules were bathed in isosmotic H2O or D2O buffers in which vasopressin (VP) could be added rapidly. Lumen fluorescence was monitored by quantitative epifluorescence microscopy at 380 +/- 5 nm excitation and greater than 530 emission wavelengths. Pd was determined from tubule geometry, lumen flow, ANTS fluorescence, and ANTS fluorescence vs. H2O/D2O calibration relation. The instrument response time for a change in bath H2O/D2O content was less than 4 s. At 37 degrees C, Pd values (mean +/- SE in cm/s x 10(4] were 6.4 +/- 1.0 (-VP, n = 9) and 14.3 +/- 1.1 (+250 microU/ml bath VP, n = 9) in the CCT, and 5.8 +/- 1.0 (-VP, n = 6) and 15.3 +/- 2.0 (+VP, n = 6) in the OMCT; at 23 degrees C, Pd was 5.1 +/- 0.6 (-VP, n = 4) and 7.8 +/- 0.6 (+VP, n = 4) in the CCT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We studied the effect of maturation on contractile properties of tracheal smooth muscle from seventeen 2-wk-old swine (2ws) and fifteen 10-wk-old swine (10ws) in situ and in vitro. The response to parasympathetic stimulation was studied in situ in isometrically fixed segments. Contraction was elicited at lower frequencies [half-maximal response to electrical stimulation (ES50) = 6.7 +/- 0.05 Hz] in 2ws than in 10ws (ES50 = 9.1 +/- 0.4 Hz; P less than 0.01). Despite substantial differences in morphometrically normalized cross-sectional area in 2ws (0.012 +/- 0.003 cm2) and 10ws (0.028 +/- 0.001 cm2; P less than 0.01), maximal active tension elicited by parasympathetic stimulation was similar (12.4 +/- 3.2 g/cm in 2ws vs. 13.3 +/- 2.3 g/cm in 10ws; P = NS). In separate in vitro studies in 25 tracheal smooth muscle strips from 10 swine, concentration-response curves generated with potassium-substituted Krebs solution (KCl) were similar in 2ws and 10ws. In 58 other strips (10 swine), maximal active force elicited with acetylcholine (ACh) in 2ws was significantly greater than for 10ws (P less than 0.001). Removal of the epithelium had no effect. However, cholinesterase inhibition with 10(-7) M physostigmine augmented the response to ACh in 10ws (P less than 0.02) but not 2ws. We demonstrate increased force generation and sensitivity to vagal stimulation in 2ws vs. 10ws, which corresponds to increased reactivity to ACh in vitro. The relative hyperresponsiveness in 2ws is specific for cholinergic response and is attenuated at least in part by maturation of the activity of acetylcholinesterase enzyme.  相似文献   

16.
17.
Dog saphenous vein spiral strips were employed to determine whether an intracellular source of Ca2+ is used for contraction upon activation of the alpha 2-adrenoceptor by B-HT 920 in Ca2+-free Krebs solution containing 50 microM EGTA. The studies were carried out in parallel with the activation of the alpha 1-adrenoceptor by phenylephrine (Phe) under the condition that B-HT 920 (10(-5) M) and Phe (2 x 10(-6) M) gave rise to a similar level of responses in Ca2+-containing Krebs solution. A similar level of responses to these agonists at equieffective concentrations in Ca2+-free medium were also observed. Such responses to Phe and B-HT 920 were inhibited by 10(-7) M rauwolscine and 10(-7) M prazosin, respectively, and were not affected by 10(-7) M nifedipine or 5 mM Mn2+. The responses to B-HT 920 (10(-5) M) and submaximal concentration of Phe (2 x 10(-6) M) in Ca2+-free medium were additive. However, if the vascular strips were first contracted maximally with 10(-4) M Phe in Ca2+-free medium to deplete the intracellular Ca store, subsequent addition of B-HT 920 failed to induce additional response. Our results strongly suggest that activation of alpha 2-adrenoceptor in dog saphenous vein in Ca2+-free medium indeed utilizes intracellular Ca2+ for contraction. We also found that the failure of earlier studies to demonstrate the contractile effects of B-HT 920 in dog saphenous vein was due to experimental artifacts derived from the use of high concentration of EGTA and artificial pH-buffering reagent.  相似文献   

18.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein contains a canonical ATP-binding cassette (ABC) signature motif, LSGGQ, in nucleotide binding domain 1 (NBD1) and a degenerate LSHGH in NBD2. Here, we studied the contribution of the conserved residues G551 and G1349 to the pharmacological modulation of CFTR chloride channels by phloxine B using iodide efflux and whole-cell patch clamp experiments performed on the following green fluorescent protein (GFP)-tagged CFTR: wild-type, delF508, G551D, G1349D, and G551D/G1349D double mutant. We found that phloxine B stimulates and inhibits channel activity of wild-type CFTR (Ks = 3.2 +/- 1.6 microM: , Ki = 38 +/- 1.4 microM: ) and delF508 CFTR (Ks = 3 +/- 1.8 microM: , Ki = 33 +/- 1 microM: ). However, CFTR channels with the LSGDQ mutated motif (mutation G551D) are activated (Ks = 2 +/- 1.13 microM: ) but not inhibited by phloxine B. Conversely, CFTR channels with the LSHDH mutated motif (mutation G1349D) are inhibited (Ki = 40 +/- 1.01 microM: ) but not activated by phloxine B. Finally, the double mutant G551D/G1349D CFTR failed to respond not only to phloxine B stimulation but also to phloxine B inhibition, confirming the importance of both amino acid locations. Similar results were obtained with genistein, and kinetic parameters were determined to compare the pharmacological effects of both agents. These data show that G551 and G1349 control the inhibition and activation of CFTR by these agents, suggesting functional nonequivalence of the signature motifs of NBD in the ABC transporter CFTR.  相似文献   

19.
There is evidence implying an active role of airway epithelium in the modulation of bronchomotor tone. To study this phenomenon, we designed an in vitro system allowing pharmacological stimulation of either the inside or outside of the airway lumen. Rat tracheas were excised, cannulated, and their inside and outside perfused independently with Krebs solution. Two hooks were inserted through opposite sides of the tracheal wall, the lower one was attached to a fixed point, while the upper one was connected to a force transducer. Isometric contractions of the tracheal muscle were elicited by carbachol solution perfused in single and cumulative concentrations. In one-half of the preparations the epithelium was mechanically removed. Stimulation of the inside or outside of the trachea produced equal maximal tracheal muscle tension [1.55 +/- 0.14 and 1.2 +/- 0.09 (SE) g in and out, respectively]. The time course of tension development was longer when carbachol was administered inside the trachea: an effect that was abolished when the epithelium was removed. In addition, removal of the epithelium was found 1) to increase the maximal tension irrespective of the route of carbachol perfusion and 2) to increase the sensitivity of the preparation to carbachol stimulation.  相似文献   

20.
The goal of this study was to develop a primary culture model of differentiated murine tracheal epithelium. When grown on semipermeable membranes at an air interface, dissociated murine tracheal epithelial cells formed confluent polarized epithelia with high transepithelial resistances ( approximately 12 kOmega. cm(2)) that remained viable for up to 80 days. Immunohistochemistry and light and electron microscopy demonstrated that the cells were epithelial in nature (cytokeratin positive, vimentin and alpha-smooth muscle actin negative) and differentiated to form ciliated and secretory cells from day 8 after seeding onward. With RT-PCR, expression of the cystic fibrosis transmembrane conductance regulator (Cftr) and murine beta-defensin (Defb) genes was detected (Defb-1 was constitutively expressed, whereas Defb-2 expression was induced by exposure to lipopolysaccharide). Finally, Ussing chamber experiments demonstrated an electrophysiological profile compatible with functional amiloride-sensitive sodium channels and cAMP-stimulated CFTR chloride channels. These data indicate that primary cultures of murine tracheal epithelium have many characteristics similar to those of murine tracheal epithelium in vivo. This method will facilitate the establishment of primary cultures of airway epithelium from transgenic mouse models of human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号