首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preovulatory bovine follicles (n = 28) were collected at different times after the onset of standing oestrus until shortly before ovulation. In-vitro conversion of tritiated androstenedione in the presence of NADPH by homogenates of the follicular wall was compared in phases relative to the LH peak. During phase 0 (before the LH surge) conversion into oestradiol-17 beta was high and production of oestrone was about 8-fold lower. During phases 1 (0-6 h after the LH peak) and 2A (6-14 h after the LH peak) the production of oestradiol and oestrone remained constant; the percentage of remaining androstenedione increased. In phase 2B (14-20 h after the LH peak) conversion into oestradiol and oestrone had decreased to about one third correlating with a higher percentage of remaining androstenedione. In phase 3 (20 h after the LH peak until ovulation) conversion into oestradiol and oestrone remained constant. The ratio between the production of oestrone and oestradiol remained constant throughout the phases of preovulatory development (0.13), indicating a concurrent inhibition of aromatase and 17 beta-hydroxysteroid dehydrogenase activities. Conversion into 19-hydroxyandrostenedione showed a pattern similar to that of oestradiol, and testosterone was produced in minute quantities. The results indicate that in preovulatory bovine follicles eventual inhibition of aromatization takes place at about 14 h after the preovulatory LH peak.  相似文献   

2.
Follicles isolated 1 and 2 days after pentobarbitone sodium injection at pro-oestrus were incubated with C-21 steroids or aromatizable C-19 steroids. Addition of testosterone or androstenedione (50 ng/ml) increased oestradiol production by ovulation-blocked follicles, while addition of progesterone or 17 alpha-hydroxyprogesterone was ineffective. LH-stimulated oestradiol production was lower in follicles isolated 1 and 2 days after pentobarbitone sodium injection, but progesterone production was elevated compared to pro-oestrous follicles. Total steroidogenesis, measured by pregnenolone production in the presence of inhibitors of pregnenolone conversion, did not differ on the 3 days. The activity of C17-20 lyase, measured in follicular homogenates, decreased between pro-oestrus and the next day. Aromatase and 17 alpha-hydroxylase activities also decreased, but the activity of these enzymes was always considerably higher than that of C17-20 lyase. It is concluded that the decrease in follicular oestradiol production after injection of pentobarbitone sodium was due primarily to a decrease in the activity of the enzyme system responsible for the conversion of 17 alpha-hydroxyprogesterone to androstenedione, thereby limiting the amount of substrate available for aromatization to oestrogen.  相似文献   

3.
Holstein-Friesian cows (n=56) were synchronized with Syncro-Mate B, and those cows (n=47) developing a normal progesterone pattern were further treated im with 3,000 I.U. eCG at Day 10 and 22.5 mg PGF2alpha 48 h later. Blood samples were collected every hour from 30 until 49 h after PG administration. Cows (n=17, 36.2%) with fewer than 8 follicles larger than 8 mm in diameter at 28 to 30 h after PG treatment and animals without an LH peak (n=7, 23%) were excluded from the study. Transvaginal ultrasound-guided puncture of the follicles was carried out two times per cow, at 30 h after PG injection (4 to 5 follicles) and again at 1 to 5 (n=6), 12 (n=8) or 22 h (n=9) after the LH peak. No differences in the concentrations of progesterone and LH were observed among the 3 groups. An average of 18 follicles per cow was punctured (total of 415 punctures, n=23); 116 cumulus-oocyte-complexes and 370 follicular fluid samples were obtained producing average recovery rates of 28.0% and 89.2%. The number of cumulus-oocyte-complexes varied between puncture times; shortly before ovulation, at 22 h after the LH peak, the recovery rate was significantly 5 times higher than immediately after the LH peak. Overall, in 75 punctures the cumulus-oocyte-complex was accompanied by a pure follicular fluid sample (3.3 per cow). In conclusion, the transvaginal ultrasound-guided puncture of preovulatory-size follicles can be used to collect follicular fluids to study changes in the microenvironment of maturing oocytes upon superovulation. However, further research is required in order to obtain an equivalent number of accompying cumulus-oocyte-complexes.  相似文献   

4.
1. Larvae of the fleshfly Sarcophaga bullata were injected with several 3H C21 and C19 steroids. After different incubation times, the larvae were homogenized and the metabolites were extracted and fractionated by Sephadex LH 20-, paper- and thin-layer chromatography. The chromatographic mobility of the labeled zones was compared with that of standard steroids. 2. Progesterone and 17 alpha-hydroxypregnenolone were metabolized to 17 alpha-hydroxyprogesterone. Androstenedione, 17 alpha-hydroxyprogesterone and dehydroepiandrosterone were converted to testosterone. Transformation of pregnenolone to progesterone or 17 alpha-hydroxypregnenolone was not observed. 3. C21 or C19 steroid formation from cholesterol could not be demonstrated. 4. Sixteen metabolites, different from all our standard substances have been found. Their structure remains to be elucidated.  相似文献   

5.
A Makris  D Olsen  K J Ryan 《Steroids》1983,42(6):641-651
Isolated hamster granulosa cells and theca from preovulatory follicles were incubated in vitro for 2 and 6 h in the absence/or presence of LH and steroid substrates. The purpose of the experiments was to determine, in theca, the relative activities of the delta 5 and delta 4 pathways under controlled conditions, and to compare the ability of granulosa cells and theca to form progesterone from exogenous pregnenolone. The results of the experiments show that the delta 5 pathway in theca predominates before and up to 2 h after LH stimulation. The delayed effect of LH after 2 h is a switch from delta 5 to delta 4 as the major metabolic pathway. Progesterone formation from exogenous pregnenolone is 7 to 10 times greater in unstimulated granulosa cells than in theca. Acute effects of LH lead to increased conversion of exogenous pregnenolone to progesterone in granulosa cells but not theca. LH does, however, acutely stimulate the thecal conversion of DHEA to androstenedione. The longer term effect of LH in both cell types is to increase pregnenolone conversion to progesterone.  相似文献   

6.
The steroid secreting activities of dispersed granulosa and theca interna cells from preovulatory follicles of prepubertal gilts 72 h after pregnant mare's serum gonadotropin treatment (750 IU) were compared. The cells were cultured for 24 h with or without steroid substrate (10(-8) to 10(-5) M progesterone, 17 alpha-hydroxyprogesterone, or androstenedione), FSH (100 ng/mL), LH (100 ng/mL), and cyanoketone (0.25 microM, an inhibitor of 3 beta-hydroxysteroid dehydrogenase). Granulosa cells cultured alone secreted mainly progesterone. Theca interna cells secreted mainly 17 alpha-hydroxyprogesterone and androstenedione, with secretion being markedly enhanced by LH. In the presence of cyanoketone, which inhibited endogenous progesterone production, theca interna but not granulosa cells were able to convert exogenous progesterone to 17 alpha-hydroxyprogesterone and androstenedione, and exogenous 17 alpha-hydroxyprogesterone to androstenedione and estradiol-17 beta in high yield. The secretion of the latter steroids from exogenous substrates was unaffected by LH. Theca interna cells secreted more estradiol-17 beta than did granulosa cells in the absence of aromatizable substrate, but estradiol-17 beta secretion by the latter was markedly increased after the addition of androstenedione. These apparent differences in steroid secreting activity between the cell types suggest that the enzymes responsible for conversion of C21 to C19 steroids, i.e., 17 alpha-hydroxylase and C17,20-lyase, reside principally in the theca interna cells. However, aromatase activity appears to be much higher in granulosa cells.  相似文献   

7.
The present study reports steroid metabolism by corpora lutea (CL) obtained from skunks with diapausing embryos ('delay' CL) and with activated embryos (activated CL). CL from both reproductive periods were incubated with various radioactive precursors. Control incubations without any tissue or with 50 microliter of packed skunk blood cells were also conducted simultaneously. Incubation of skunk CL with [3H]-pregnenolone for 3 h resulted in 36% of the precursor accumulating as progesterone. Metabolism of [3H]dehydroepiandrosterone (DHEA) to androstenedione proceeded with approximately the same amount of product accumulating (34-46%) as was observed in the conversion of pregnenolone to progesterone. These results suggest that delta 5 isomerase, 3 beta-hydroxysteroid dehydrogenase, is the most prominent enzyme in skunk CL. Metabolism of [3H]pregnenolone to 17 alpha-hydroxypregnenolone and [3H]progesterone to 17 alpha-hydroxyprogesterone occurred at low rates (1-7%), suggesting the presence of C21 steroid 17 alpha-hydroxylase in skunk CL. Aromatase activity, as estimated by measuring accumulation of oestradiol-17 beta from [3H]testosterone, was demonstrated in activated CL. These results suggest that skunk CL appear to metabolize steroids in a manner similar to CL of other mustelids such as the ferret and American badger.  相似文献   

8.
Laparoscopy, in combination with a rapid radioimmunoassay for plasma-LH determination, has been used to predict and observe ovulation in heifers. Experiments on three animals with typical progesterone levels, LH levels and apex formation are described. Ovulation was observed from 25 h to 29 h after the beginning of LH rise and from 17 h to 19 h after LH peak. The LH peak lasted for 9 h to 11 h. Cow ovulation was observed and photographed. The preovulatory follicle, apex formation, ovulation and freshly ruptured follicles are illustrated. The results presented here demonstrate that laparoscopy could offer valuable diagnostic assistance in clinical veterinary medicine.  相似文献   

9.
In vitro exposure for 2 h to 250 ng/ml of pregnenolone led to increased production of progesterone and 17 alpha-hydroxyprogesterone (17 alpha-OHP) by hamster ovaries on Days 5, 10 and 15 of age. Similar incubations with 250 ng/ml progesterone or androstenedione caused significant increases in 17 alpha-OHP or testosterone, respectively. When testosterone was added in doses of 32.5, 250 and 500 ng/ml to ovaries on Days 5-30, as early as Day 5 the ovaries aromatized the androgen to estradiol. Day 30 ovaries were the most efficient in the conversion because antral follicles, the principal site for aromatization, were then present. In terms of progesterone production, 400 ng/ml of luteinizing hormone (LH) during 4 h of in vitro incubation stimulated ovaries on Days 5, 10 and 15. Cyclic adenosine 3':5' monophosphate (cAMP) at a dose of 1 mM and 5 mM stimulated progesterone production by Days 5 and 10 ovaries more efficiently than LH. However, Day 15 ovaries produced more progesterone in response to LH compared to cAMP. These experiments establish that the steroidogenic enzymes differentiate at a very early age in the hamster ovary, even before the appearance of gonadotropin receptors. The inability of the early postnatal ovary to produce steroids is apparently attributable to lack of precursors such as cholesterol or cholesterol side chain cleavage enzymes.  相似文献   

10.
Normally cyclic heifers received 2500 i.u. PMSG i.m. at Day 10 of the oestrous cycle and 15 mg prostaglandin (PG) i.m. 48 h later. From 30 h after PG the LH concentration in the peripheral blood was estimated every hour using a rapid RIA method which allowed the LH concentration to be known within 4 h. Monoclonal antibody against PMSG was injected in the jugular vein of 29 heifers at 4.8 h after the maximum of the preovulatory LH peak; 28 heifers were not treated with anti-PMSG (controls). Peripheral blood concentrations of PMSG, LH, progesterone and oestradiol were compared. Ovaries were collected by ovariectomy at fixed times, 22-30 h after the LH peak, and numbers were counted of small (2-10 mm), large (greater than 10 mm) and ovulated follicles, and of follicles with a stigma. In anti-PMSG-treated cows, the PMSG concentration fell sharply to non-detectable levels within 2 h of the treatment, indicating that PMSG was neutralized in these cows at the onset of final follicular maturation. In all cows, the concentration of oestradiol showed a significant decrease at about 8 h after the LH peak. After anti-PMSG treatment ovulations took place from 24 until 30 h after the LH peak, whereas in control cows follicles had already ovulated at or before 22 h and ovulations continued until 30 h. At 30 h 90% of the follicles had ovulated in anti-PMSG-treated cows vs 72% in the controls, resulting in 15 and 8 ovulations per cow respectively (P less than 0.05). Also, administration of monoclonal antibody against PMSG synchronized final follicular maturation and shortened the period of multiple ovulations. In conclusion, neutralization of PMSG shortly after the preovulatory LH peak suppresses adverse effects of PMSG on final follicular maturation, leading to an almost 2-fold increase of the ovulation rate.  相似文献   

11.
Prepubertal female rats were injected s.c. with 5.0 IU eCG, and ovaries were collected 24 and 48 h post-eCG, on Day 25, as well as from an untreated group also on Day 25. Large antral follicles were manually dissected, and the ovarian remnants were incubated with collagenase overnight to liberate preantral follicles from adhering stromal cells. The viability of the follicles was established by normal histology and lack of pyknotic granulosa cells (GCs) and by their ability to secrete steroids. After a 1-h baseline incubation, either 10 ng LH or 100 ng FSH was added for an additional hour, and the media-before and after gonadotropin administration-were used to measure progesterone, androstenedione, and estradiol by RIA. A distinct hierarchy existed in steroid synthesis, with the maximal production by the largest (700 microm) antral follicles. The major steroid that had accumulated after addition of LH at 48 h post-eCG was androstenedione (1099 pg/follicle per hour), followed by equal amounts of progesterone (155 pg/follicle per hour) and estradiol (191 pg/follicle per hour). There was a precipitous drop in steroid production by 550-microm and 400-microm antral follicles, especially in estradiol for the latter-sized follicles (0.08 pg/follicle per hour). Preantral follicles also produced progesterone and androstenedione after addition of LH. For example, follicles 222 microm in diameter with 4-5 layers of GCs and well-developed theca responded to LH at 48 h post-eCG by accumulating androstenedione (37 pg/follicle per hour) and progesterone (6 pg/follicle per hour) but negligible estradiol. The smallest follicles secreting steroids, 110-148 microm in diameter, had 2-4 layers of GCs. However, primary follicles (1 layer of GCs and no theca) did not synthesize appreciable amounts of any steroid. Although small preantral follicles were consistently stimulated by LH, FSH was ineffective. This result differs from findings in the hamster showing that intact preantral follicles with 1-4 layers of GCs and no theca respond to FSH by secreting progesterone in vitro (Roy and Greenwald, Biol Reprod 1987; 31:39-46). The technique developed to collect intact rat follicles should be useful for numerous investigations.  相似文献   

12.
Using human term placental mitochondrial preparations, optimal conversion of [3H]pregnenolone to [3H]progesterone was obtained at 30 min incubation and with a mitochondrial protein content of 2.5-3.5 mg/ml. Estradiol, estrone, progesterone and testosterone in a dose range of 0.03-8.66 mumol inhibited the in vitro conversion of [3H]pregnenolone to [3H]progesterone by placental homogenates. All four steroids inhibited the pregnenolone to progesterone conversion in a dose-dependent manner. The ID50 (dose required to inhibit conversion of pregnenolone to progesterone by 50%) was 0.04 mumol for estradiol, 0.13 mumol for testosterone, 0.3 mumol for progesterone and 1.0 mumol for estriol. Neither gonadotropin releasing hormone (50-1000 ng) nor human chorionic gonadotropin (5-500 IU) affected the placental basal conversion rate of pregnenolone to progesterone in vitro. Our findings indicate that steroid hormones such as estradiol, estrone, testosterone and progesterone can inhibit local placental progesterone biosynthesis through inhibition of the enzyme complex 5-ene-3 beta-hydroxysteroid dehydrogenase.  相似文献   

13.
We characterized the in vitro control of germinal vesicle breakdown (GVBD) by 17 alpha,20 beta,21-trihydroxy-4-pregnen-3-one (20 beta-S) in intact ovarian follicles of gonadotropin-primed Atlantic croaker. 20 beta-S-induced GVBD was determined in relation to ovarian (oocyte) morphology, duration of incubation, steroid metabolism, and interaction with other steroids. The rate of GVBD in vitro in the absence of exogenous steroid was positively correlated with initial stage of ovarian morphological development. Maximal responsiveness to 20 beta-S was seen in ovaries with oocytes showing the first signs of morphological maturation. Dose-response experiments with 20 beta-S and 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17 alpha,20 beta-P) over a range of incubation times yielded similar results for both steroids, suggesting that conversion of 17 alpha,20 beta-P to 20 beta-S is not required for 17 alpha,20 beta-P-induced GVBD. The ED50 of these steroids markedly decreased with increasing incubation times. Comparisons between patterns of follicular transformation of various radiolabelled steroids to 20 beta-S and their respective activities (using unlabelled steroids) in the GVBD bioassay suggested that, in addition to 17 alpha,20 beta-P, progesterone has some intrinsic maturational activity. However, the maturational effects of 11-deoxycortisol and pregnenolone may be explained by their conversion to 20 beta-S. For the first time in any vertebrate, we showed that the proposed maturation-inducing steroid (20 beta-S) is not significantly transformed to any extractable, potentially active metabolite by intact, maturing ovarian follicles. These findings strongly suggest that 20 beta-S is the terminal product of the MIS biosynthetic pathway in Atlantic croaker ovaries. Estradiol had no acute effects on 20 beta-S-induced GVBD. However, testosterone decreased and cortisol augmented the maturational activity of 20 beta-S. Excess progesterone reduced the activity of a maximally effective dose of 20 beta-S, but pregnenolone was without effect. The effects of these steroids on 20 beta-S-induced GVBD are discussed in relation to their possible interactions with 20 beta-S at the MIS receptor level.  相似文献   

14.
The preovulatory increase in follicular prostaglandins (PG) stimulated by luteinizing hormone (LH) is dependent upon 3'-5'-cyclic adenosine monophosphate (cAMP) and is essential for ovulation. It has been proposed that follicular PG stimulate a second rise in cAMP, independent of LH. This study examined the temporal relationships among PGE2, PGF2 alpha 6-keto-PGF1 alpha, estradiol-17 beta, progesterone, testosterone, androstenedione and the biphasic increases of cAMP in follicles of rabbits. Does received indomethacin (IN, 20 mg/kg, i.v.; n = 30) or phosphate buffer (C; n = 30), 0.5 h before 50 ug of LH. At laparotomy at 0, 0.5, 1, 2, 4 or 8 h after LH, blood was collected from each ovarian vein and two follicles per ovary were aspirated of fluid and excised. Plasma and follicular tissue and fluid were assayed for PG and steroids. Tissue and fluid were assayed for cAMP. In C does, cAMP (pmol/follicle) in tissue increased from 11.3 at 0 h to 14.2 at 0.5 h, decreased at 1 h (5.4) and increased linearly through 8 h to 14.5. In IN-treated does, cAMP remained high from 0.5 (13.2) to 2 h (16.3), decreased at 4 h (7.9) then increased again by 8 h (15.5). Indomethacin decreased all PG in follicular tissue but 6-keto-PGF1 alpha rose after 2 h, whereas PGE2 and PGF2 alpha did not. Estradiol-17 beta, progesterone, and androstenedione did not vary with treatment; testosterone was increased (P less than .05) by IN. PGE2 or PGF2 alpha may terminate the first phase of cAMP production, rather than initiate the second phase.  相似文献   

15.
Granulosa cells were aspirated 3--4 h before the expected time of ovulation from 10 follicles of 4 patients treated with gonadotrophins: 4 of the follicles were immediately preovulatory. The granulosa cells were cultured for 10 h with 17alpha-hydroxypregnenolone or dehydroepiandrosterone and samples of medium removed at 3 and 10 h were assayed for 6 steroids. Granulosa cells were unable to synthesize androgens from endogenous substrate or undertake conversions via the delta5 pathway, but cells from all follicles were capable of aromatizing exogenous androgens to oestrogens although this capability was reduced in cells from follicles beginning to luteinize. Granulosa cells from preovulatory follicles synthesized more progesterone from endogenous substrate than cells from follicles which had not begun to luteinize. The results provide further support for the two-cell theory of oestrogen biosynthesis whereby granulosa cells aromatize androgens which are synthesized by the thecal cells in vivo.  相似文献   

16.
Follicular and oocyte maturation in cows treated for superovulation   总被引:2,自引:0,他引:2  
The maturational stage of oocytes and their follicles was assessed at 24 26 h after the preovulatory luteinizing hormone (LH) peak by means of morphological criteria. Follicles were obtained from cows treated for superovulation (PMSG/PG) with additional anti-PMSG to neutralize the residual PMSG. Follicular fluid was also recovered and analyzed for progesterone and estradiol levels. Seventy-two percent of the oocytes were at the Metaphase II (M(II)) stage of meiosis, whereas only 28% of the follicular walls were at the proper maturational stage; assessed on morphological characteristics, 78% of the follicles were progesterone-dominated. Earlier maturational stages of oocytes and follicles were also present, including those that are restricted to periods shortly after the LH peak in the normally cyclic cow. It is concluded that upon treatment for superovulation not all oocytes and follicles mature synchronously, and that not all oocytes mature in harmony with their follicles.  相似文献   

17.
Dispersed granulosa and theca interna cells were recovered from follicles of prepubertal gilts at 36, 72 and 108 h after treatment with 750 i.u. PMSG, followed 72 h later with 500 i.u. hCG to stimulate follicular growth and ovulation. In the absence of aromatizable substrate, theca interna cells produced substantially more oestrogen than did granulosa cells. Oestrogen production was increased markedly in the presence of androstenedione and testosterone in granulosa cells but only to a limited extent in theca interna cells. The ability of both cellular compartments to produce oestrogen increased up to 72 h with androstenedione being the preferred substrate. Oestrogen production by the two cell types incubated together was greater than the sum produced when incubated alone. Theca interna cells were the principal source of androgen, predominantly androstenedione. Thecal androgen production increased with follicular development and was enhanced by addition of pregnenolone or by LH 36 and 72 h after PMSG treatment. The ability of granulosa and thecal cells to produce progesterone increased with follicular development and addition of pregnenolone. After exposure of developing follicles to hCG in vivo, both cell types lost their ability to produce oestrogen. Thecal cells continued to produce androgen and progesterone but no longer responded to LH in vitro. These studies indicate that several functional changes in the steroidogenic abilities of the granulosa and theca interna compartments occur during follicular maturation.  相似文献   

18.
Previously described models for avian ovarian steroidogenesis, using mature, 25-40-mm preovulatory follicles as the source of tissues, were based on the assumption that interaction of the granulosa layer, as the predominant source of progesterone, with adjacent theca cells is required for maximal production of C21, C19, and C18 steroids. In the present study, we evaluated the steroidogenic capacity of ovarian cells isolated from less mature, 6-8-mm and 9-12-mm follicles in the chicken ovary (representative of a stage of development 2-3 wk prior to ovulation) to determine at which stage of follicular development granulosa and/or theca cells become steroidogenically competent. Granulosa cells collected from 6-8-mm follicles were found to be virtually incompetent to produce steroids, containing extremely low basal levels of progesterone (12 pg/5 x 10(5) cells) and failing to respond with increased steroid output following a 3-h exposure to ovine LH (oLH; 0.1 and 100 ng/0.5 ml), ovine FSH (oFSH; 100, 500, and 1,000 ng/0.5 ml), 8-bromo-cyclic adenosine monophosphate (8-bromo-cAMP; 0.33 and 3.33 mM) or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, addition of pregnenolone (20 and 200 ng/0.5 ml) to granulosa incubations resulted in significantly increased progesterone levels. Granulosa cells of 6-8-mm follicles also failed to increase cAMP formation in the presence of oLH (10, 100, and 1,000 ng/0.5 ml) and 3-isobutyl-1-methylxanthine (IBMX; 10 microM), but responded to stimulation with 1,000 ng oFSH (4.4-fold increase over basal) or 10 microM forskolin (32-fold increase over basal) in the presence of IBMX. In contrast, granulosa cells isolated from 9-12-mm follicles and incubated for 3 h in vitro were found to contain basal progesterone levels 200-fold higher than those found in granulosa cells of 6-8-mm follicles. Furthermore, granulosa cells of 9-12-mm follicles markedly increased progesterone production following incubation in the presence of oFSH (100-1,000 ng/0.5 ml), 8-bromo-cAMP (0.33 and 3.33 mM), or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, these granulosa cells remained unresponsive to oLH (0.1, 10, and 100 ng/0.5 ml), failing to increase cAMP accumulation (in the presence of IBMX) and progesterone output. Theca cells of small yellow follicles were found to produce measurable basal levels of progesterone, androstenedione, and estradiol, and levels of each steroid were significantly increased following a 3-h challenge with oLH, 8-bromo-cAMP, 25-hydroxycholesterol, and pregnenolone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Insertion of osmotic minipumps containing 1 mg ovine LH on Day 1 (oestrus) elevated circulating serum concentrations of LH, progesterone and androstenedione when compared with values at pro-oestrus. Ovulation was blocked for at least 2 days at which time there were twice the normal numbers of preovulatory follicles. Follicular and thecal progesterone production in vitro was elevated when compared with that in pro-oestrous controls. Follicular and thecal androstenedione production in vitro was lower than in controls even though serum concentrations of androstenedione were elevated; the higher androstenedione values may be due to the increase in number of preovulatory follicles when compared with pro-oestrous controls. Follicles from LH-treated hamsters aromatized androstenedione to oestradiol and follicular production of oestradiol was similar to that in pro-oestrous follicles despite low follicular androstenedione production in the LH-treated group. Treatment with 20 i.u. hCG on Days 4 or 6 after insertion of an LH osmotic minipump on Day 1 induced ovulation of approximately 30 ova, indicating that the blockade of ovulation was not due to atresia of the preovulatory follicles. Serum progesterone concentrations on Days 2, 4 and 6 in LH-treated hamsters were greater than 17 nmol/l, suggesting that the blockade of ovulation might have been due to prevention of the LH surge by high serum progesterone concentrations.  相似文献   

20.
The preovulatory surge of gonadotropins induces meiotic maturation of the oocyte, the follicular/luteal phase shift in hormone production, and ovulation. This complex and rapid series of developmental changes is difficult to study in large mammals, such as primates and ruminants, because variability in the length of individual reproductive cycles makes it virtually impossible to predict the time of the LH surge. We have validated an experimental model for inducing the LH surge and ovulation in cattle and used it to study the sequence of changes in hormone secretion and some of the mechanisms of these changes. Luteolysis and a follicular phase were induced by injection of prostaglandin F(2alpha); injection of a GnRH analogue 36 h later induced an LH surge and ovulation. The LH surge peaked 2 h after GnRH and ovulation followed 22-31 h after the surge, consistent with the periovulatory interval in natural cycles. The ensuing luteal phase was normal, both in length and in concentrations of circulating progesterone. In experiment I, the uteroovarian effluent was collected, via cannulation of the vena cava, at frequent intervals relative to GnRH injection. Circulating estradiol declined progressively after GnRH, reaching a nadir by 8-10 h before ovulation, whereas concentrations of androstenedione and testosterone remained constant. In experiment II, preovulatory follicles were obtained at 0, 3.5, 6, 12, 18, or 24 h after GNRH: Concentrations of androgens and estradiol were measured in follicular fluid and medium from cultures of follicle wall (theca + granulosa cells); steady-state levels of mRNA for 17alpha-hydroxylase (17alphaOH) and P450 aromatase were measured in follicular tissue. Shortly after the LH surge (3.5 h post-GnRH) there was an acute increase in the capacity of follicular tissue to secrete androstenedione, but not estradiol, in vitro. Thereafter, both androgens and estradiol declined, both in follicular fluid and in medium collected from cultures of follicle wall. Levels of mRNA for 17alphaOH and aromatase in follicle wall decreased significantly by 6 h after GnRH, suggesting that declining levels of these enzymes underlie the decreases in steroid production by follicular cells. These results show that in cattle the preovulatory decrease in follicular estradiol production is mediated by redundant mechanisms, because androgen production and the capacity of granulosa cells to convert androgens to estradiol decline coordinately, in concert with decreases in mRNA for 17alphaOH and P450 aromatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号