首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ARF GTPases are activated by guanine nucleotide exchange factors (GEFs) of the Sec7 family that promote the exchange of GDP for GTP. Brefeldin A (BFA) is a fungal metabolite that binds to the ARF1*GDP*Sec7 complex and blocks GEF activity at an early stage of the reaction, prior to guanine nucleotide release. The crystal structure of the ARF1*GDP*Sec7*BFA complex shows that BFA binds at the protein-protein interface to inhibit conformational changes in ARF1 required for Sec7 to dislodge the GDP molecule. Based on a comparative analysis of the inhibited complex, nucleotide-free ARF1*Sec7 and ARF1*GDP, we suggest that, in addition to forcing nucleotide release, the ARF1-Sec7 binding energy is used to open a cavity on ARF1 to facilitate the rearrangement of hydrophobic core residues between the GDP and GTP conformations. Thus, the Sec7 domain may act as a dual catalyst, facilitating both nucleotide release and conformational switching on ARF proteins.  相似文献   

2.
The physiological effects of anesthetics have been ascribed to their interaction with hydrophobic sites within functionally relevant CNS proteins. Studies have shown that volatile anesthetics compete for luciferin binding to the hydrophobic substrate binding site within firefly luciferase and inhibit its activity (Franks, N. P., and Lieb, W. R. (1984) Nature 310, 599-601). To assess whether anesthetics also compete for ligand binding to a mammalian signal transduction protein, we investigated the interaction of the volatile anesthetic, halothane, with the Rho GDP dissociation inhibitor (RhoGDIalpha), which binds the geranylgeranyl moiety of GDP-bound Rho GTPases. Consistent with the existence of a discrete halothane binding site, the intrinsic tryptophan fluorescence of RhoGDIalpha was quenched by halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in a saturable, concentration-dependent manner. Bromine quenching of tryptophan fluorescence is short-range and W192 and W194 of the RhoGDIalpha are located within the geranylgeranyl binding pocket, suggesting that halothane binds within this region. Supporting this, N-acetyl-geranylgeranyl cysteine reversed tryptophan quenching by halothane. Short chain n-alcohols ( n < 6) also reversed tryptophan quenching, suggesting that RhoGDIalpha may also bind n-alkanols. Consistent with this, E193 was photolabeled by 3-azibutanol. This residue is located in the vicinity of, but outside, the geranylgeranyl chain binding pocket, suggesting that the alcohol binding site is distinct from that occupied by halothane. Supporting this, N-acetyl-geranylgeranyl cysteine enhanced E193 photolabeling by 3-azibutanol. Overall, the results suggest that halothane binds to a site within the geranylgeranyl chain binding pocket of RhoGDIalpha, whereas alcohols bind to a distal site that interacts allosterically with this pocket.  相似文献   

3.
Ras GTPases function as binary switches in signaling pathways controlling cell growth and differentiation. The guanine nucleotide exchange factor Sos mediates the activation of Ras in response to extracellular signals. We have previously solved the crystal structure of nucleotide-free Ras in complex with the catalytic domain of Sos (Boriack-Sjodin, P. A., Margarit, S. M., Bar-Sagi, D., and Kuriyan, J. (1998) Nature 394, 337-343). The structure demonstrates that Sos induces conformational changes in two loop regions of Ras known as switch 1 and switch 2. In this study, we have employed site-directed mutagenesis to investigate the functional significance of the conformational changes for the catalytic function of Sos. Switch 2 of Ras is held in a very tight embrace by Sos, with almost every external side chain coordinated by Sos. Mutagenesis of contact residues at the switch 2-Sos interface shows that only a small set of side chains affect binding, with the most important contact being mediated by tyrosine 64, which is buried in a hydrophobic pocket of Sos in the Ras.Sos complex. Substitutions of Ras and Sos side chains that are inserted into the Mg(2+)- and nucleotide phosphate-binding site of switch 2 (Ras Ala(59) and Sos Leu(938) and Glu(942)) have no effect on the catalytic function of Sos. These results indicate that the interaction of Sos with switch 2 is necessary for tight binding, but is not the critical driving force for GDP displacement. The structural distortion of switch 1 induced by Sos is mediated by a small number of specific contacts between highly conserved residues on both Ras and Sos. Mutations of a subset of these residues (Ras Tyr(32) and Tyr(40)) result in an increase in the intrinsic rate of nucleotide dissociation from Ras and impair the binding of Ras to Sos. Based on this analysis, we propose that the interactions of Sos with the switch 1 and switch 2 regions of Ras have distinct functional consequences: the interaction with switch 2 mediates the anchoring of Ras to Sos, whereas the interaction with switch 1 leads to disruption of the nucleotide-binding site and GDP dissociation.  相似文献   

4.
A conserved O(2) binding pocket residue in Phascolopsis gouldii myohemerythrin (myoHr), namely, L104, was mutated to several other residues, and the effects on O(2) association and dissociation rates, O(2) affinity, and autoxidation were examined. The L104V, -F, and -Y myoHrs formed stable O(2) adducts whose UV-vis and resonance Raman spectra closely matched those of wild-type oxymyoHr. The L104V mutation produced only minimal effects on either O(2) association or dissociation, whereas the L104F and -Y mutations resulted in 100-300-fold decreases in both O(2) association and dissociation rates. These decreases are attributed to introduction of steric restrictions into the O(2) binding pocket, which are not present in either wild-type or L104V myoHrs. The failure to observe increased O(2) association or dissociation rates for L104V indicates that the side chain of leucine at position 104 does not sterically "gate" O(2) entry into or exit from the binding pocket in the rate-determining step(s). L104V myoHr autoxidized approximately 3 times faster than did wild type, whereas L104T autoxidized >10(6) times faster than did wild type. The latter large increase is attributed to increased side chain polarity, thereby increasing water occupancy in the oxymyoHr binding pocket. These results indicate that L104 contributes a hydrophobic barrier that restricts water entry into the oxymyoHr binding pocket. Thus, a leucine at position 104 in myoHr appears to have the optimal combination of size and hydrophobicity to facilitate O(2) binding while simultaneously inhibiting autoxidation.  相似文献   

5.
Several studies have proposed that angiotensin II (Ang II) binds to its receptor AT1 through interactions with residues in helices V and VI, suggesting that the distance between these helices is crucial for ligand binding. Based on a 3D model of AT1 in which the C-terminus of Ang II is docked, we identified the hydrophobic residues of TM V and VI pointing towards the external face of the helices, which may play a role in the structure of the binding pocket and in the structural integrity of the receptor. We performed a systematic mutagenesis study of these residues and examined the binding, localization, maturation, and dimerization of the mutated receptors. We found that mutations of hydrophobic residues to alanine in helix V do not alter binding, whereas mutations to glutamate lead to loss of binding without a loss in cell surface expression, suggesting that the external face of helix V may not directly participate in binding, but may rather contribute to the structure of the binding pocket. In contrast, mutations of hydrophobic residues to glutamate in helix VI lead to a loss in cell surface expression, suggesting that the external surface of helix VI plays a structural role and ensures correct folding of the receptor.  相似文献   

6.
Au JK  Olivares AO  Henn A  Cao W  Safer D  De La Cruz EM 《Biochemistry》2008,47(13):4181-4188
We have investigated the contributions of hydrophobic residues, the conserved and variable proline residues, and the conserved lysine residues to the affinity and kinetics of thymosin beta4 (Tbeta4) binding to MgATP-actin monomers. Pro4, Lys18, Lys19, Pro27, Leu28, Pro29, and Ile34 were substituted with alanine residues. Mutagenesis of Pro4 or Pro27 has little effect (or=10-fold, but the kinetic basis of the lower stability varies among the mutants. Substitution of the conserved lysine residues weakens the affinity by slowing association and accelerating dissociation. Substitution of hydrophobic residue Leu28 or Ile34 weakens the affinity by accelerating dissociation. These results favor a reaction mechanism in which Tbeta4 binds actin monomers following a two-step mechanism in which the formation of a bimolecular complex is followed by isomerization to a strong binding state that is coupled to the formation of widely distributed hydrophobic contacts. The isomerization equilibrium is slowed by mutagenesis of Pro29, as revealed by the double-exponential time course of association. Mutagenesis of Pro4 or Pro27 accelerates binding and dissociation but minimally affects the binding affinity (相似文献   

7.
Rab GTPases, key regulators of membrane targeting and fusion, require the covalent attachment of geranylgeranyl lipids to their C terminus for function. To elucidate the role of lipid in Rab recycling, we have determined the crystal structure of Rab guanine nucleotide dissociation inhibitor (alphaGDI) in complex with a geranylgeranyl (GG) ligand (H(2)N-Cys-(S-GG)-OMe). The lipid is bound beneath the Rab binding platform in a shallow hydrophobic groove. Mutation of the binding pocket in the brain-specific alphaGDI leads to mental retardation. Strikingly, lipid binding acts through a conserved allosteric switching mechanism to promote release of the GDI-Rab[GDP] complex from the membrane.  相似文献   

8.
9.
Rab GTPases require special machinery for protein prenylation, which include Rab escort protein (REP) and Rab geranylgeranyl transferase (RGGT). The current model of Rab geranylgeranylation proposes that REP binds Rab and presents it to RGGT. After geranylgeranylation of Rab C-terminal cysteines, REP delivers the prenylated protein to membranes. The REP-like protein Rab GDP dissociation inhibitor (RabGDI) then recycles the prenylated Rab between the membrane and the cytosol. The recent solution of crystal structures of the Rab prenylation machinery has helped to refine this model and provided further insights. The hydrophobic prenyl binding pocket of RGGT and geranylgeranyl transferase type-I (GGT-I) differs from that of farnesyl transferase (FT). A bulky tryptophan residue in FT restricts the size of the pocket, whereas in RGGT and GGT-I, this position is occupied by smaller residues. A highly conserved phenylalanine in REP, which is absent in RabGDI, is critical for the formation of the REP:RGGT complex. Finally, a geranylgeranyl binding site conserved in REP and RabGDI has been identified within helical domain II. The postprenylation events, including the specific targeting of Rabs to target membranes and the requirement for single versus double geranylgeranylation by different Rabs, remain obscure and should be the subject of future studies.  相似文献   

10.
The Sec7 domain of the guanine nucleotide exchange factor ARNO (ARNO-Sec7) is responsible for the exchange activity on the small GTP-binding protein ARF1. ARNO-Sec7 forms a stable complex with the nucleotide-free form of [Delta17]ARF1, a soluble truncated form of ARF1. The crystal structure of ARNO-Sec7 has been solved recently, and a site-directed mutagenesis approach identified a hydrophobic groove and an adjacent hydrophilic loop as the ARF1-binding site. We show that Glu156 in the hydrophilic loop of ARNO-Sec7 is involved in the destabilization of Mg2+ and GDP from ARF1. The conservative mutation E156D and the charge reversal mutation E156K reduce the exchange activity of ARNO-Sec7 by several orders of magnitude. Moreover, [E156K]ARNO-Sec7 forms a complex with the Mg2+-free form of [Delta17]ARF1-GDP without inducing the release of GDP. Other mutations in ARNO-Sec7 and in [Delta17]ARF1 suggest that prominent hydrophobic residues of the switch I region of ARF1 insert into the groove of the Sec7 domain, and that Lys73 of the switch II region of ARF1 forms an ion pair with Asp183 of ARNO-Sec7.  相似文献   

11.
Caspase-3 recognition of various P4 residues in its numerous protein substrates was investigated by crystallography, kinetics, and calculations on model complexes. Asp is the most frequent P4 residue in peptide substrates, although a wide variety of P4 residues are found in the cellular proteins cleaved by caspase-3. The binding of peptidic inhibitors with hydrophobic P4 residues, or no P4 residue, is illustrated by crystal structures of caspase-3 complexes with Ac-IEPD-Cho, Ac-WEHD-Cho, Ac-YVAD-Cho, and Boc-D(OMe)-Fmk at resolutions of 1.9–2.6 Å. The P4 residues formed favorable hydrophobic interactions in two separate hydrophobic regions of the binding site. The side chains of P4 Ile and Tyr form hydrophobic interactions with caspase-3 residues Trp206 and Trp214 within a non-polar pocket of the S4 subsite, while P4 Trp interacts with Phe250 and Phe252 that can also form the S5 subsite. These interactions of hydrophobic P4 residues are distinct from those for polar P4 Asp, which indicates the adaptability of caspase-3 for binding diverse P4 residues. The predicted trends in peptide binding from molecular models had high correlation with experimental values for peptide inhibitors. Analysis of structural models for the binding of 20 different amino acids at P4 in the aldehyde peptide Ac-XEVD-Cho suggested that the majority of hydrophilic P4 residues interact with Phe250, while hydrophobic residues interact with Trp206, Phe250, and Trp214. Overall, the S4 pocket of caspase-3 exhibits flexible adaptation for different residues and the new structures and models, especially for hydrophobic P4 residues, will be helpful for the design of caspase-3 based drugs.  相似文献   

12.
We recently reported the engineering of monomeric streptavidin, mSA, corresponding to one subunit of wild type (wt) streptavidin tetramer. The monomer was designed by homology modeling, in which the streptavidin and rhizavidin sequences were combined to engineer a high affinity binding pocket containing residues from a single subunit only. Although mSA is stable and binds biotin with nanomolar affinity, its fast off rate (koff) creates practical challenges during applications. We obtained a 1.9 Å crystal structure of mSA bound to biotin to understand their interaction in detail, and used the structure to introduce targeted mutations to improve its binding kinetics. To this end, we compared mSA to shwanavidin, which contains a hydrophobic lid containing F43 in the binding pocket and binds biotin tightly. However, the T48F mutation in mSA, which introduces a comparable hydrophobic lid, only resulted in a modest 20–40% improvement in the measured koff. On the other hand, introducing the S25H mutation near the bicyclic ring of bound biotin increased the dissociation half life (t½) from 11 to 83 min at 20°C. Molecular dynamics (MD) simulations suggest that H25 stabilizes the binding loop L3,4 by interacting with A47, and protects key intermolecular hydrogen bonds by limiting solvent entry into the binding pocket. Concurrent T48F or T48W mutation clashes with H25 and partially abrogates the beneficial effects of H25. Taken together, this study suggests that stabilization of the binding loop and solvation of the binding pocket are important determinants of the dissociation kinetics in mSA. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralization potencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as VH CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

14.
《MABS-AUSTIN》2013,5(5):462-474
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralizationpotencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

15.
Binding of hemin to alpha1-acid glycoprotein has been investigated. Hemin binds to the hydrophobic pocket of hemoproteins. The fluorescent probe 2-(p-toluidino)-6-naphthalenesulfonate (TNS) binds to a hydrophobic domain in alpha1-acid glycoprotein with a dissociation constant equal to 60 microM. Addition of hemin to an alpha1-acid glycoprotein-TNS complex induces the displacement of TNS from its binding site. At saturation (1 hemin for 1 protein) all the TNS has been displaced from its binding site. The dissociation constant of hemin-alpha1-acid glycoprotein was found equal to 2 microM. Thus, TNS and hemin bind to the same hydrophobic site: the pocket of alpha1-acid glycoprotein. Energy-transfer studies performed between the Trp residues of alpha1-acid glycoprotein and hemin indicated that efficiency (E) of Trp fluorescence quenching was equal to 80% and the F?rster distance, R0 at which the efficiency of energy transfer is 50% was calculated to be 26 A, revealing a very high energy transfer.  相似文献   

16.
Crystal structures of the complexes of Streptomyces griseus proteinase B (SGPB) with three P1 variants of turkey ovomucoid inhibitor third domain (OMTKY3), Leu18, Ala18, and Gly18, have been determined and refined to high resolution. Comparisons among these structures and of each with native, uncomplexed SGPB reveal that each complex features a unique solvent structure in the S1 binding pocket. The number and relative positions of water molecules bound in the S1 binding pocket vary according to the size of the side chain of the P1 residue. Water molecules in the S1 binding pocket of SGPB are redistributed in response to the complex formation, probably to optimize hydrogen bonds between the enzyme and the inhibitor. There are extensive water-mediated hydrogen bonds in the interfaces of the complexes. In all complexes, Asn 36 of OMTKY3 participates in forming hydrogen bonds, via water molecules, with residues lining the S1 binding pocket of SGPB. For a homologous series of aliphatic straight side chains, Gly18, Ala18, Abu18, Ape18, and Ahp18 variants, the binding free energy is a linear function of the hydrophobic surface area buried in the interface of the corresponding complexes. The resulting constant of proportionality is 34.1 cal mol-1 A-2. These structures confirm that the binding of OMTKY3 to the preformed S1 pocket in SGPB involves no substantial structural disturbances that commonly occur in the site-directed mutagenesis studies of interior residues in other proteins, thus providing one of the most reliable assessments of the contribution of the hydrophobic effect to protein-complex stability.  相似文献   

17.
ADP-ribosylation factor (ARF)-facilitated recruitment of COP I to membranes is required for secretory traffic. The guanine nucleotide exchange factor GBF1 activates ARF and regulates ARF/COP I dynamics at the endoplasmic reticulum (ER)-Golgi interface. Like ARF and coatomer, GBF1 peripherally associates with membranes. ADP-ribosylation factor and coatomer have been shown to rapidly cycle between membranes and cytosol, but the membrane dynamics of GBF1 are unknown. Here, we used fluorescence recovery after photobleaching to characterize the behavior of GFP-tagged GBF1. We report that GBF1 rapidly cycles between membranes and the cytosol (t1/2 is approximately 17 +/- 1 seconds). GBF1 cycles faster than GFP-tagged ARF, suggesting that in each round of association/dissociation, GBF1 catalyzes a single event of ARF activation, and that the activated ARF remains on membrane after GBF1 dissociation. Using three different approaches [expression of an inactive (E794K) GBF1 mutant, expression of the ARF1 (T31N) mutant with decreased affinity for GTP and Brefeldin A treatment], we show that GBF1 is stabilized on membranes when in a complex with ARF-GDP. GBF1 dissociation from ARF and membranes is triggered by its catalytic activity, i.e. the displacement of GDP and the subsequent binding of GTP to ARF. Our findings imply that continuous cycles of recruitment and dissociation of GBF1 to membranes are required for sustained ARF activation and COP I recruitment that underlies ER-Golgi traffic.  相似文献   

18.
Hoffman RM  Li MX  Sykes BD 《Biochemistry》2005,44(48):15750-15759
W7 is a well-characterized calmodulin antagonist. It decreases the maximal tension and rate of ATP hydrolysis in cardiac muscle fibers. Cardiac troponin C (cTnC) has been previously implicated as the mechanistically significant target for W7 in the myofilament. Two-dimensional NMR spectra ({1H,15N}- and {1H,13C}-HSQCs) were used to monitor the Ca2+-dependent binding of W7 to cTnC. Titration of cTnC x 3Ca2+ with W7 indicated binding to both domains of the protein. We examined the binding of W7 to the separated domains of cTnC to simplify the spectral analysis. In the titration of the C-terminal domain (cCTnC x 2Ca2+), the spectral peaks originating from a subset of residues changed nonuniformly, and could not be well-described as single-site binding. A global fit of the cCTnC x 2Ca2+ titration data to a two-site, sequential binding model (47 residues simultaneously fit) yielded a dissociation constant (Kd1) of 0.85-0.91 mM for the singly bound state, with the second dissociation constant fit to 3.40-3.65 mM (> or = 4 x Kd1). The titration data for the N-terminal domain (cNTnC x Ca2+) was globally fit to single-site binding model with a Kd of 0.15-0.30 mM (41 residues fit). The data are consistent with W7 binding to each domain's major hydrophobic pocket, coordinating side chains responsible for liganding cTnI. When in muscle fibers, W7 may compete with cTnI for target sites on cTnC.  相似文献   

19.
Botulinum neurotoxins (BoNTs) are zinc proteases that cleave SNARE proteins to elicit flaccid paralysis by inhibiting the fusion of neurotransmitter-carrying vesicles to the plasma membrane of peripheral neurons. There are seven serotypes of BoNT, termed A-G. The molecular basis for SNAP25 recognition and cleavage by BoNT serotype E is currently unclear. Here we define the multiple pocket recognition of SNAP25 by LC/E. The initial recognition of SNAP25 is mediated by the binding of the B region of SNAP25 to the substrate-binding (B) region of LC/E comprising Leu166, Arg167, Asp127, Ala128, Ser129, and Ala130. The mutations at these residues affected substrate binding and catalysis. Three additional residues participate in scissile bond cleavage of SNAP25 by LC/E. The P3 site residues, Ile178, of SNAP25 interacted with the S3 pocket in LC/E through hydrophobic interactions. The S3 pocket included Ile47, Ile164, and Ile182 and appeared to align the P1' and P2 residues of SNAP25 with the S1' and S2 pockets of LC/E. The S1' pocket of LC/E included three residues, Phe191, Thr159, and Thr208, which contribute hydrophobic and steric interactions with the SNAP25 P1' residue Ile181. The S2 pocket residue of LC/E, Lys224, binds the P2 residue of SNAP25, Asp179, through ionic interactions. Deletion mapping indicates that main chain interaction(s) of residues 182-186 of SNAP25 contribute to substrate recognition by LC/E. Understanding the mechanism for substrate specificity provides insight for the development of inhibitors against the botulinum neurotoxins.  相似文献   

20.
To understand the structural nature of signal sequence recognition by the preprotein translocase SecA, we have characterized the interactions of a signal peptide corresponding to a LamB signal sequence (modified to enhance aqueous solubility) with SecA by NMR methods. One-dimensional NMR studies showed that the signal peptide binds SecA with a moderately fast exchange rate (Kd approximately 10(-5) m). The line-broadening effects observed from one-dimensional and two-dimensional NMR spectra indicated that the binding mode does not equally immobilize all segments of this peptide. The positively charged arginine residues of the n-region and the hydrophobic residues of the h-region had less mobility than the polar residues of the c-region in the SecA-bound state, suggesting that this peptide has both electrostatic and hydrophobic interactions with the binding pocket of SecA. Transferred nuclear Overhauser experiments revealed that the h-region and part of the c-region of the signal peptide form an alpha-helical conformation upon binding to SecA. One side of the hydrophobic core of the helical h-region appeared to be more strongly bound in the binding pocket, whereas the extreme C terminus of the peptide was not intimately involved. These results argue that the positive charges at the n-region and the hydrophobic helical h-region are the selective features for recognition of signal sequences by SecA and that the signal peptide-binding site on SecA is not fully buried within its structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号