首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anionic tryptic enzyme from the crayfish (crayfish trypsin) was adsorbed to DEAE-Sephadex A-50 and covalently coupled to BrCN-activated Sepharose 4B and porous glass loaded with isothiocyanate propyl groups (ITC-glass). The relative activities against p-tosylarginine methyl ester (TosArgOMe) were found to be 30 to 100% for DEAE-Sephadex crayfish trypsin, 20 to 53% for Sepharose crayfish trypsin, and 17 to 38% for ITC-glass crayfish trypsin. The relative activities rise with declining protein content of the enzyme matrix complexes. The highest relative proteinase activities (substrate: 1% casein) were obtained with Sepharose crayfish trypsin (74%), followed by DEAE-Sephadex crayfish trypsin (68%) and ITC-glass crayfish trypsin (45%). Similar results are obtained with protamine and native lactate dehydrogenase as substrates. In accordance with the Sepharose bovine trypsin complex the apparent Michaelis constant (Km(app)) of the Sepharose crayfish trypsin with TosArgOMe was found to be markedly higher than that of the native enzyme. The pH-activity profiles of the crayfish trypsin derivatives using TosArgOMe as substrate were shown to be displaced towards more alkaline pH values by 0.5 (ITC-glass crayfish trypsin) and 1 (Sepharose crayfish trypsin) pH units, respectively, or towards more acidic pH values (by 1.5 pH units) with the polycationic derivative (DEAE-Sephadex crayfish trypsin) as compared to the native enzyme (optimum pH 8.6). Concerning the temperature stability of the derivatives, Sepharose crayfish trypsin was more stabile, ITC-glass crayfish trypsin behaves like the native crayfish trypsin, and DEAE-Sephadex crayfish trypsin was more sensitive at elevated temperatures as compared to the soluble enzyme. The properties of the crayfish trypsin derivatives are compared with the properties of the bovine analogues.  相似文献   

2.
Specific trypsin substrates (esters, anilides, amides, peptides) were shown to accelerate deacetylation of monoacetylated trypsin. The amidase activity of monoacetyl-, monopropyonyl-, and tetraformyl-trypsin was not manifested if the amidase activity of native enzyme was suppressed in these preparations by the ester substrates (benzoylarginine ethyl ester or p-nitrophenyl acetate). Therefore the differences in the residual amidase and esterase activities of these acylated trypsin preparations found earlier did not contradict the universality of the acylenzyme mechanism. These differences are due to the strong deacylating effect of specific substrate in its complex with the enzyme modified with nonspecific acyl residue. The latter fact is suggested to be an experimental confirmation of the "induced fit" hypothesis.  相似文献   

3.
Proteases capable of activating procollagenase from gingiva and from fibroblast and macrophage monolayer cultures were harvested from homogenates of canine tumor mast cells. The mast cell proteases lysed casein and Azocoll but not native collagen. In low salt concentrations the enzymes existed at high molecular weight complexes, which were dissociated by increasing the salt concentration above 1.0 M (NaCl, KCl). Gel filtration in 1.4 M KCl separated the protease activity into three peaks, all of which activated procollagenase. Two of the enzymes showed substrate specificities (hydrolysis of p-tosyl-L-arginine methyl ester and benzoyl-tyrosine ethyl ester) and reactive center reactivities similar to pancreatic trypsin and chymotrypsin. Based on gel filtration, apparent molecular weights of 160 000 (p-tosyl-L-arginine methyl ester esterase), 90 000 (main procollagenase activator) and 36 000 benzoyl-tyrosine ethyl ester esterase) were determined. Activation of procollagenase resulted in a 18-20 000 decrease of the molecular weight. The activation was directly related to the amount of activator added within certain limits. Further addition of activator resulted in proteolytic inactivation of collagenase.  相似文献   

4.
Protease II from Escherichia coli. Purification and characterization.   总被引:5,自引:0,他引:5  
We have previously demonstrated the existence of two types of endopeptidase in Escherichia coli. A purification procedure is described for one of these, designated protease II. It has been purified about 13,500-fold with a recovery of 24%. The isolated enzyme appears homogeneous by electrophoresis and gel filtration. Its molecular weight is estimated by three different methods to be about 58,000. Its optimal pH is around 8. Protease II activity is unaffected by chelating agents and sulfhydryl reagents. Amidase and proteolytic activities are stimulated by calcium ion, which decreases the enzyme stability. Like pancreatic trypsin, this endopeptidase catalyses the hydrolysis of alpha-amino-substituted lysine and arginine esters. It appears distinct from the previously isolated protease I, which is a chymotrypsin-like enzyme. The apparent Michaelis constant for hydrolysis of N-benzoyl-L-arginine ethyl ester is 4.7 X 10(-4) M. The esterase activity is inhibited by diisopryopylphosphorofluoridate (Ki(app) equals 2.7 X 10(-3) M) and tosyl lysine chloromethyl ketone (Ki(app) equals 1.8 X 10(-5) M), indicating that serine and histidine residues may be present in the active site. However, protease II is insensitive to phenylmethanesulfonyl fluoride and several natural trypsin inhibitors. Its amidase and esterase activities are competitively inhibited by free arginine and aromatic amidines. The proteolytic activity measured on axocasein is very low. In contrast to trypsin, protease II is without effect on native beta-galactosidase. It easily degrades aspartokinase I and III. Nevertheless both enzymes are resistant to proteolysis in the presence of their respective allosteric effectors. These results provide further evidence that such differences in protease susceptibility can be related to the conformational state of the substrate. The possible implication of structural changes in the mechanism of preferential proteolysis in vivo, is discussed.  相似文献   

5.
A method for the determination of enzyme kinetic constants Vm, Km, and Ki in a histochemical system has been devised. As a substitute for the reciprocal of the reaction velocity, the times necessary to reach a fixed amount of end product (the initial visible color) in a tissue site at various substrate concentrations are plotted, according to the method of Lineweaver and Burk, against the reciprocal of the substrate concentrations. The technique as applied to trypsin-like esterase and amidase activities in human mast cells indicates that a single enzyme or closely related enzymes in this site are responsible for the hydrolysis of both the amide and ester substrates and that typical trypsin substrates act as competitive inhibitors of their hydrolysis. Parallel biochemical studies were performed to evaluate the effect of certain aspects of the experimental histochemical method on a purified homospecific enzyme. The relative kinetic constants derived by the histochemical method afford a further means of characterizing enzymic activity in a histochemical system.  相似文献   

6.
A trypsin-like proteinase was localized within a single subcellular compartment of unfertilized Strongylocentrotus purpuratus eggs, the cortical granules. Homogenates of eggs were fractionated by rate-zonal centrifugation. Enzymatic markers were used to determine the distribution of mitochondria (cytochrome oxidase), yolk platelets (acid nitrophenyl phosphatase), and cortical granules (β-1, 3-glucanase) in the sucrose density gradient. A bimodal distribution pattern was obtained for aryl esterase activity (substrate: β-naphthyl acetate), with one peak in the microsomal and the other in the cortical granule fractions. The cortical granule enzyme was characterized as a trypsin-like proteinase, since it also hydrolyzed another typical tryptic substrate α-N-benzoyl-l-arginine ethyl ester and was completely inactivated by soybean trypsin inhibitor (SBTI). The aryl esterase activity in the microsomal fractions was not inhibited by SBTI, while 50% of the total aryl esterase activity in the original egg homogenate was inactivated by SBTI. The identity of the enzyme(s) responsible for the aryl esterase activity associated with the microsomal particles is unknown at present.The cortical granule proteinase functions in the elevation of the fertilization membrane and establishment of the block to polyspermy at fertilization. Arbacia punctulata eggs inseminated in the presence of trypsin inhibitors, SBTI or tosyl lysine chloromethyl ketone (TLCK), failed to elevate normal fertilization membranes and became heavily polyspermic.On the basis of these results and observations made by other investigators with a wide variety of biological systems, it is proposed that trypsin-like proteinases function in the discharge of secretory granules from all types of cells.  相似文献   

7.
The sea urchin blastula secretes a hatching enzyme (HE) that dissolves the fertilization envelope. HE was collected from the supernatant seawater of cultures of hatched Strongylocentrotus purpuratus blastulae, and concentrated 20 times by ultrafiltration. The proteolytic activity of HE using casein as substrate was inhibited by the chymotrypsin inhibitors, chymostatin and N-tosyl-L-phenylalanine chloromethyl ketone. The activity was not inhibited by inhibitors (antipain, elastatinal, pepstatin, phosphoramidon, soybean trypsin inhibitor, and N alpha-p-tosyl-L-lysine chloromethyl ketone) of other types of proteases. HE did not hydrolyze the synthetic trypsin substrate, alpha-N-benzoyl-L-arginine ethyl ester, but did hydrolyze the synthetic substrate of chymotrypsin, N-benzoyl-L-tyrosine ethyl ester (BTEE). The BTEEase activity of HE was completely inhibited by the chymotrypsin inhibitors chymostatin and 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (NCDC). Chymostatin inhibited the natural hatching of sea urchin blastulae. Application of HE to freshly fertilized sea urchin eggs, 2 h after insemination, caused premature dispersal of the hardened fertilization envelope. Chymostatin and NCDC inhibited HE-induced lysis of the fertilization envelope, while inhibitors of other types of proteases were ineffective. These data suggest that sea urchin HE is a chymotrypsin-like protease we call "chymotrypsin."  相似文献   

8.
The proteolytic activities of α-chymotrypsin, trypsin, pepsin, bromelain, and an extract from germinating pumpkin seeds (Cucurbita moschata) were determined by their ability to effect the release of 1-anilino-8-naphthalenesulfonate bound to internal hydrophobic sites in intact protein substrates. Casein, glyceraldehyde-3-P dehydrogenase, urease, catalase, pumpkin seed globulin, and bovine serum albumin enhanced the fluorescence of 1-anilino-8-naphthalenesulfonate sufficiently to be used as proteolytic substrates. Chymotrypsin, trypsin, pepsin, and bromelain exhibited activity against all or almost all of the protein substrates. The activity of 1 μg of α-chymotrypsin or trypsin and 100 ng of pepsin could be easily detected by this method of assay within 4 to 5 minutes depending upon the substrate. The enzyme extracted from 3-day germinated pumpkin seeds exhibited strong activity only against pumpkin seed globulin, weak activity against the globulins of squash and cucumber and casein, and no activity against the other protein substrates. Activity against pumpkin globulin was maximal at pH 7.4. When assayed by an increase in ninhydrin-positive products, the enzyme extract from pumpkin seeds also showed strong activity against pumpkin globulin and weak activity against casein. The 1-anilino-8-naphthalenesulfonate-fluorescence method was at least 20 times more sensitive than the ninhydrin method and was 10 to 20 times more rapid.  相似文献   

9.
Purification and characterization of rat urinary esterase A1   总被引:1,自引:0,他引:1  
An enzyme, esterase A1, which hydrolyzes tosyl-arginine methyl ester (Tos-Arg-OMe) was separated from esterase A2 and kallikrein of male rat urine and purified by a procedure involving ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography and gel filtration. The resulting preparation was apparently homogeneous, as assessed by polyacrylamide gel electrophoresis. The molecular weight of the preparation was estimated to be 27,000 by SDS-polyacrylamide gel electrophoresis and 30,000 by gel filtration. The enzyme was more specific for arginine methyl esters than for lysine methyl esters. The optimum pH determined with Tos-Arg-OMe as a substrate was 8.0 and the Km was 11.8 mM. The Tos-Arg-OMe esterolytic activity of esterase A1 was inhibited by soybean trypsin inhibitor, but not by aprotinin. In immunodiffusion analysis, the antiserum to esterase A1 formed immunoprecipitin arcs with this enzyme and the urine collected from rat bladder, but not with esterase A2, kallikrein, plasma and the urine collected from ureters. These results indicate that rat urinary esterase A1 differs from esterase A2 and kallikrein. The esterase A1 appears to be produced by accessory sex glands and excreted via the spermiduct into the urine.  相似文献   

10.
Atlantic cod trypsin I is a cold-adapted proteolytic enzyme exhibiting approximately 20 times higher catalytic efficiency (kcat/KM) than its mesophilic bovine counterpart for the simple amide substrate BAPNA. In general, cold-adapted proteolytic enzymes are sensitive to autolytic degradation, thermal inactivation as well as molecular aggregation, even at temperatures as low as 18-25 degrees C which may explain the problems observed with their expression, activation, and purification. Prior to the data presented here, there have been no reports in the literature on the expression of psychrophilic or cold-adapted proteolytic enzymes from fish. Nevertheless, numerous cold-adapted proteolytic microbial enzymes have been successfully expressed in bacteria and yeast. This report describes successful expression, activation, and purification of the recombinant cod trypsin I in the His-Patch ThioFusion Escherichia coli expression system. The E. coli pThioHis expression vector used in the study enabled the formation of a fusion protein between a highly soluble fraction of HP-thioredoxin contained in the vector and the N-terminal end of the precursor form of cod trypsin I. The HP-thioredoxin part of the fusion protein binds to a metal-chelating ProBond column, which facilitated its purification. The cod trypsin I part of the purified fusion protein was released by proteolytic cleavage, resulting in concomitant activation of the recombinant enzyme. The recombinant cod trypsin I was purified to homogeneity on a trypsin-specific benzamidine affinity column. The identity of the recombinant enzyme was demonstrated by electrophoresis and chromatography.  相似文献   

11.
An anionic trypsin from pyloric caeca of chum salmon (Oncorhynchus keta) was purified by ammonium sulfate and acetone fractionation followed by affinity chromatography, gel-filtration, and DEAE-anion exchange chromatography. The apparent molecular mass was about 24 kDa as determined by SDS-PAGE. The anionic chum salmon trypsin was moderately active toward esterase substrates such as tosyl-L-arginine methyl ester and tosyl-L-lysine methyl ester. Its amidase activity for benzoyl-L-arginine p-nitroanilide was comparative to those of bovine and Streptomyces griseus trypsins. Kinetic characteristics of anionic chum salmon, bovine, and Streptomyces griseus trypsins toward inverse substrate (p-amidinophenyl ester) were compared. Inverse substrate behaved as a specific substrate for anionic chum salmon trypsin with specific binding, efficient acylation, and relatively slow deacylation.  相似文献   

12.
Immobilized artificial membrane (IAM) HPLC supports have been used to immobilize the enzymes alpha-chymotrypsin and trypsin. The enzymes were trapped in hydrophobic cavities on the support and were not covalently attached to the IAM surface. The resulting IAM-enzyme supports retained the hydrolytic activity of the immobilized enzymes: the IAM-trypsin support catalyzed the hydrolysis of N alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA), and the IAM-alpha-chymotrypsin support (IAM-ACHT) catalyzed the hydrolysis of a number of substrates, including tryptophan methyl ester. The activities of both supports were decreased by known enzyme inhibitors and the activity of the IAM-ACHT was affected by changes in pH and temperature. When a substrate was chromatographed on an IAM-ACHT HPLC, the hydrolytic activity of the immobilized enzyme could be determined from the resulting substrate/product ratios. These data were obtained either directly from the IAM-ACHT chromatogram or from the chromatogram produced by a coupled column system. The results of this study indicate that IAM-immobilized alpha-chymotrypsin and trypsin can be used as chromatographic probes for the qualitative determination of enzyme/substrate and enzyme/inhibitor interactions.  相似文献   

13.
Topological studies on rat liver microsomal cholesterol ester hydrolase   总被引:2,自引:0,他引:2  
Lateral and transversal distribution of cholesterol ester hydrolase activity in rat liver microsomal membranes has been studied. Total cholesterol ester hydrolase activity was found predominantly (75%) in rough microsomes though specific esterase activities were similar in rough and smooth microsomal fractions. The transversal asymmetry of the enzyme was examined using the criteria of protease sensitivity and latency of mannose-6-phosphate phosphatase. Cholesterol ester hydrolase resulted drastically inhibited by proteolysis with trypsin when microsomal integrity had been previously disrupted with sodium deoxycholate or sodium taurocholate. Under these conditions, most lumenal mannose-6-phosphate phosphatase activity was destroyed. However, cholesterol esterase was unaffected by preincubating microsomes with the detergent alone, which led to the complete expression of latent mannose-6-phosphate phosphatase or by preincubating them with trypsin, where less than a 15% of the lumenal mannose-6-phosphate phosphatase was lost. These findings suggest that cholesterol ester hydrolase activity is located on the lumenal surface of the hepatic microsomal vesicles.  相似文献   

14.
(1) Parenchymal and non-parenchymal cells were isolated from rat liver. The characteristics of acid lipase activity with 4-methylumbelliferyl oleate as substrate and acid cholesteryl esterase activity with cholesteryl[1-14C]oleate as substrate were investigated. The substrates were incorporated in egg yolk lecithin vesicles and assays for total cell homogenates were developed, which were linear with the amount of protein and time. With 4-methylumbelliferyl oleate as substrate, both parenchymal and non-parechymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 2.5 times higher than for parenchymal cells. It is concluded that 4-methylumbelliferyl oleate hydrolysis is catalyzed by similar enzyme(s) in both cell types. (2) With cholesteryl[1-14C]oleate as substrate both parenchymal and non-parenchymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 11.4 times higher than for parenchymal cells. It is further shown that the cholesteryl ester hydrolysis in both cell types show different properties. (3) The high activity and high affinity of acid cholesteryl esterase from non-parenchymal cells for cholesterol oleate hydrolysis as compared to parenchymal cells indicate a relative specialization of non-parenchymal cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells possess the enzymic equipment to hydrolyze very efficiently internalized cholesterol esters, which supports the suggestion that these cell types are an important site for lipoprotein catabolism in liver.  相似文献   

15.
Human liver aldehyde dehydrogenase has been found to be capable of hydrolyzing p-nitrophenyl esters. Esterase and dehydrogenase activities exhibited identical ion exchange and affinity properties, indicating that the same protein catalyzes both reactions. Competitive inhibition of esterase activity by glyceraldehyde and chloral hydrate furnished evidence that p-nitrophenyl acetate was hydrolyzed at the aldehyde binding site for dehydrogenase activity. Pyridine nucleotides modified esterase activity; NAD+ accelerated the rate of p-nitrophenyl acetate hydrolysis more that 5-fold, whereas NADH increased activity by a factor of 2. Activation constants of 117 muM for NAD+ and 3.5 muM for NADH were obtained from double reciprocal plots of initial rates as a function of modifier concentration at pH 7. The kinetics of activation of ester hydrolysis were consistent with random addition of pyridine nucleotide modifier and ester substrate to this enzyme.  相似文献   

16.
A proteinase inhibitor(s) was found in extracts of the excretory gland cells, intestines, esophagi, reproductive organs, and body walls from Stephanurus dentatus adults. The specific activity of the inhibitor(s) in the excretory gland cell extract was 45–175 times greater than in the other tissues. It is heat stable at pH 5.0 and inhibits the esterolytic activity of trypsin and chymotrypsin using p-toluenesulfonyl-l-arginine methyl ester hydrochloride (TAME) and benzoyl-l-tyrosine ethyl ester (BTEE) as the substrates, respectively, and also the proteolytic activity of both chymotrypsin and trypsin using casein as the substrate. S. dentatus adults maintained in NCTC 109 medium, secreted a trypsin inhibitor.  相似文献   

17.
Trypsin-like proteases from the midgut of Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae) were purified on an aprotinin-agarose column equilibrated with 0.01 M Tris-HCl containing 5 mM CaCl2 (pH 7.5). The yield was 66.7% with a purification factor of 107 and a final specific activity of 6.88 mM/min/mg protein with the substrate N-alpha-benzoyl-L-Arg-p-nitroanilide (L-BApNA). The purified fraction showed three bands with proteolytic activity and molecular weights of 66,000, 71,000 and 91,000 (sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE)). Enzyme specificity assays were carried out using seven synthetic peptides containing 13 amino acid residues, but differing only on the 5th residue (K, R, Y, L, W or P). Peptide cleavage takes place only with amino acids K or R at the 5th position, which is typical of trypsin. The partially purified enzymes hydrolyzed casein and the synthetic trypsin substrates L-BApNA and N-alpha-p-tosyl-L-Arg methyl ester (L-TAME). Higher activity was observed at pH 8.5 and 35 degrees C when using L-BApNA as substrate and at pH 8.0 and 30 degrees C when using L-TAME. Maximum enzyme activity against L-BApNA was obtained with 20 mM CaCl2 in the reaction mixture. The partially purified enzymes showing trypsin activity were sensitive to inhibition by ethylenediaminetetraacetic acid (EDTA), phenylmethyl sulphonyl fluoride (PMSF), N-alpha-tosyl-L-lysine chloromethyl ketone (TLCK), benzamidine and aprotinin. Highest inhibition was obtained with TLCK and benzamidine. KM values obtained were 0.32 mM for L-BApNA and 52.5 microM for L-TAME.  相似文献   

18.
Porcine liver esterase was immobilized in polyacrylamide gel for the enantioselective production of levofloxacin from ofloxacin butyl ester. The initial activity of immobilized esterase was found to be significantly affected by the polyacrylamide gel composition. The optimum concentrations of monomer and crosslinker were determined to be 20% and 8.3%, respectively. The activity of immobilized esterase was 55.4% compared to a free enzyme. Enantiomeric excess was maintained at 60%, almost the same level as that of free enzyme. In addition, the immobilized esterase could be used repeatedly up to 10 times without experiencing any severe loss of activity and enantioselectivity.  相似文献   

19.
The following conclusions can be drawn concerning the utilization of fibrin to immobilized enzyme systems. Fibrin can be used both as a powder or membrane, to covalently immobilize trypsin with retention of activity. Carbon-14 labeled trypsin can be used to estimate the amount of immobilized enzyme on a proteinaceous support. Significant amounts of noncovalently coupled (adsorbed) enzyme are present on the surface of the support. Esterase activity of the immobilized labeled trypsin was inversely proportional to the amount of attached enzyme. Optimum TAME hydrolysis occurred at pH 8-8.4. The storage stability of trypsin was enhanced. Inhibition of trypsin esterase activity occurred at substrate concentrations greater than 30mM.  相似文献   

20.
The proteolytic activities of α-chymotrypsin, trypsin, pepsin, bromelain, and an extract from germinating pumpkin seeds were determined by their ability to effect the release of 1-anilino-8-naphthalenesulfonate bound to internal hydrophobic sites in intact protein substrates resulting in a decline in fluorescence. Casein, glyceraldehyde-3-P dehydrogenase, urease, catalase, pumpkin seed globulin, and bovine serum albumin enhanced the fluorescence of 1-anilino-8-naphthalenesulfonate sufficiently to be used as proteolytic substrates in this assay procedure. The activity of 1 μg chymotrypsin or trypsin and 100 ng pepsin could be easily detected by this method within 4 to 8 min depending upon the protein substrate. The digestive enzymes and bromelain exhibited activity against most if not all six of the protein substrates used. In contrast, the extract from germinating pumpkin seeds exhibited significant activity only against pumpkin seed globulin, with maximal activity at pH 7.4. Compared with the assay method for proteolytic activity utilizing ninhydrin analysis of the reaction products, this method was at least 10 times more rapid and gave significant detectable activity with much lower quantities of proteolytic enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号