首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paramyxoviruses such as human parainfluenza viruses that bear inserts encoding protective antigens of heterologous viruses can induce an effective immunity against the heterologous viruses in experimental animals. However, vectors based on common human pathogens would be expected to be restricted in replication in the adult human population due to high seroprevalence, an effect that would reduce vector immunogenicity. To address this issue, we evaluated Newcastle disease virus (NDV), an avian paramyxovirus that is serotypically distinct from common human pathogens, as a vaccine vector. Two strains were evaluated: the attenuated vaccine strain LaSota (NDV-LS) that replicates mostly in the chicken respiratory tract and the Beaudette C (NDV-BC) strain of intermediate virulence that produces mild systemic infection in chickens. A recombinant version of each virus was modified by the insertion, between the P and M genes, of a gene cassette encoding the human parainfluenza virus type 3 (HPIV3) hemagglutinin-neuraminidase (HN) protein, a test antigen with considerable historic data. The recombinant viruses were administered to African green monkeys (NDV-BC and NDV-LS) and rhesus monkeys (NDV-BC only) by combined intranasal and intratracheal routes at a dose of 10(6.5) PFU per site, with a second equivalent dose administered 28 days later. Little or no virus shedding was detected in nose-throat swabs or tracheal lavages following immunization with either strain. In a separate experiment, direct examination of lung tissue confirmed a highly attenuated, restricted pattern of replication by parental NDV-BC. The serum antibody response to the foreign HN protein induced by the first immunization with either NDV vector was somewhat less than that observed following a wild-type HPIV3 infection; however, the titer following the second dose exceeded that observed with HPIV3 infection, even though HPIV3 replicates much more efficiently than NDV in these animals. NDV appears to be a promising vector for the development of vaccines for humans; one application would be in controlling localized outbreaks of emerging pathogens.  相似文献   

3.
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines.  相似文献   

4.
The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV) that expresses an individual filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV) GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV) GP; three animals received rVSV-wild type (wt) vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.  相似文献   

5.
The chimeric recombinant virus rHPIV3-N(B), a version of human parainfluenza virus type 3 (HPIV3) that is attenuated due to the presence of the bovine PIV3 nucleocapsid (N) protein open reading frame (ORF) in place of the HPIV3 ORF, was modified to encode the measles virus hemagglutinin (HA) inserted as an additional, supernumerary gene between the HPIV3 P and M genes. This recombinant, designated rHPIV3-N(B)HA, replicated like its attenuated rHPIV3-N(B) parent virus in vitro and in the upper and lower respiratory tracts of rhesus monkeys, indicating that the insertion of the measles virus HA did not further attenuate rHPIV3-N(B) in vitro or in vivo. Monkeys immunized with rHPIV3-N(B)HA developed a vigorous immune response to both measles virus and HPIV3, with serum antibody titers to both measles virus (neutralizing antibody) and HPIV3 (hemagglutination inhibiting antibody) of over 1:500. An attenuated HPIV3 expressing a major protective antigen of measles virus provides a method for immunization against measles by the intranasal route, a route that has been shown with HPIV3 and respiratory syncytial virus vaccines to be relatively refractory to the neutralizing and immunosuppressive effects of maternally derived virus-specific serum antibodies. It should now be possible to induce a protective immune response against measles virus in 6-month-old infants, an age group that in developing areas of the world is not responsive to the current measles virus vaccine.  相似文献   

6.
7.
Recombinant vesicular stomatitis virus (VSV) vectors expressing homologous filoviral glycoproteins can completely protect rhesus monkeys against Marburg virus when administered after exposure and can partially protect macaques after challenge with Zaire ebolavirus. Here, we administered a VSV vector expressing the Sudan ebolavirus (SEBOV) glycoprotein to four rhesus macaques shortly after exposure to SEBOV. All four animals survived SEBOV challenge, while a control animal that received a nonspecific vector developed fulminant SEBOV hemorrhagic fever and succumbed. This is the first demonstration of complete postexposure protection against an Ebola virus in nonhuman primates and provides further evidence that postexposure vaccination may have utility in treating exposures to filoviruses.  相似文献   

8.
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic virus. VEEV was a significant human and equine pathogen for much of the past century, and recent outbreaks in Venezuela and Colombia (1995), with about 100,000 human cases, indicate that this virus still poses a serious public health threat. The live attenuated TC-83 vaccine strain of VEEV was developed in the 1960s using a traditional approach of serial passaging in tissue culture of the virulent Trinidad donkey (TrD) strain. This vaccine presents several problems, including adverse, sometimes severe reactions in many human vaccinees. The TC-83 strain also retains residual murine virulence and is lethal for suckling mice after intracerebral (i.c.) or subcutaneous (s.c.) inoculation. To overcome these negative effects, we developed a recombinant, chimeric Sindbis/VEE virus (SIN-83) that is more highly attenuated. The genome of this virus encoded the replicative enzymes and the cis-acting RNA elements derived from Sindbis virus (SINV), one of the least human-pathogenic alphaviruses. The structural proteins were derived from VEEV TC-83. The SIN-83 virus, which contained an additional adaptive mutation in the nsP2 gene, replicated efficiently in common cell lines and did not cause detectable disease in adult or suckling mice after either i.c. or s.c. inoculation. However, SIN-83-vaccinated mice were efficiently protected against challenge with pathogenic strains of VEEV. Our findings suggest that the use of the SINV genome as a vector for expression of structural proteins derived from more pathogenic, encephalitic alphaviruses is a promising strategy for alphavirus vaccine development.  相似文献   

9.
A custom-made thermoplastic splint was developed for the protection of the upper extremity after experimental surgery. It was used in 39 cases for a duration of 12-79 days. Complications were minimal and transient. The cast was easy to make, in one piece and inexpensive. Frequent removal for wound inspection was simple. This splint provides a good immobilization and protection of the arm and hand in the nonhuman primate.  相似文献   

10.
La Crosse virus (LACV) and Jamestown Canyon virus (JCV), family Bunyaviridae, are mosquito-borne viruses that are endemic in North America and recognized as etiologic agents of encephalitis in humans. Both viruses belong to the California encephalitis virus serogroup, which causes 70 to 100 cases of encephalitis a year. As a first step in creating live attenuated viral vaccine candidates for this serogroup, we have generated a recombinant LACV expressing the attachment/fusion glycoproteins of JCV. The JCV/LACV chimeric virus contains full-length S and L segments derived from LACV. For the M segment, the open reading frame (ORF) of LACV is replaced with that derived from JCV and is flanked by the untranslated regions of LACV. The resulting chimeric virus retained the same robust growth kinetics in tissue culture as observed for either parent virus, and the virus remains highly infectious and immunogenic in mice. Although both LACV and JCV are highly neurovirulent in 21 day-old mice, with 50% lethal dose (LD50) values of 0.1 and 0.5 log10 PFU, respectively, chimeric JCV/LACV is highly attenuated and does not cause disease even after intracerebral inoculation of 103 PFU. Parenteral vaccination of mice with 101 or 103 PFU of JCV/LACV protected against lethal challenge with LACV, JCV, and Tahyna virus (TAHV). The chimeric virus was infectious and immunogenic in rhesus monkeys and induced neutralizing antibodies to JCV, LACV, and TAHV. When vaccinated monkeys were challenged with JCV, they were protected against the development of viremia. Generation of highly attenuated yet immunogenic chimeric bunyaviruses could be an efficient general method for development of vaccines effective against these pathogenic viruses.  相似文献   

11.
The aim of this study was to determine the prevalence of hepatitis B virus (HBV) infection in nonhuman primates. Serum samples from Europe, Thailand and Vietnam were analyzed. Sera obtained from 262 apes and 454 monkeys were tested for HBV infection serologically and for HBV DNA using nested PCR (nPCR). A total number of 198 ape sera and all but one (Cercopithecus aethiops) of the 4543 monkey sera had no serological signs of HBV infection. Among the 64 of 262 (24.4%) seropositive ape sera, we found, as in humans, different stages of HBV infection: very early HBV infection, active infection with high level of infectivity, virus carriers with low infectivity, and passed HBV infection. In the cases with passed infection, 47.8% harbored HBV DNA in the presence of protective antibodies to the HBV surface antigen (HBsAb). This indicates HBV persistence in apes despite immune control. In contrast to apes, in monkeys HBV infection is a very rare event.  相似文献   

12.
Enveloped viruses often require cleavage of a surface glycoprotein by a cellular endoprotease such as furin for infectivity and virulence. Previously, we showed that Ebola virus glycoprotein does not require the furin cleavage motif for virus replication in cell culture. Here, we show that there are no appreciable differences in disease progression, hematology, serum biochemistry, virus titers, or lethality in nonhuman primates infected with an Ebola virus lacking the furin recognition sequence compared to those infected with wild-type virus. We conclude that glycoprotein cleavage by subtilisin-like endoproteases is not critical for Ebola virus infectivity and virulence in nonhuman primates.  相似文献   

13.
African swine fever(ASF) is a lethal hemorrhagic disease that affects wild and domestic swine. The etiological agent of ASF is African swine fever virus(ASFV). Since the first case was described in Kenya in 1921, the disease has spread to many other countries. No commercial vaccines are available to prevent ASF. In this study, we generated a recombinant Newcastle disease virus(r NDV) expressing ASFV protein 72(p72) by reverse genetics and evaluated its humoral and cellular immunogenicity in a mouse model. The recombinant virus, r NDV/p72, replicated well in embryonated chicken eggs and was safe to use in chicks and mice. The p72 gene in r NDV/p72 was stably maintained through ten passages. Mice immunized with r NDV/p72 developed high titers of ASFV p72 specific Ig G antibody, and had higher levels of Ig G1 than IgG2 a. Immunization also elicited T-cell proliferation and secretion of IFN-γ and IL-4. Taken together, these results indicate that r NDV expressing ASFV p72 might be a potential vaccine candidate for preventing ASF.  相似文献   

14.
Hepatitis B surface antigen (HBsAg) produced by recombinant DNA technology is now widely and safely used worldwide for hepatitis B vaccination. We used the HBsAg particle as a carrier molecule for presentation of selected human immunodeficiency virus type 1 (HIV-1) determinants to the immune system. Immunization of rhesus monkeys with an HBsAg chimera carrying the HIV-1 envelope major neutralizing determinant allowed us to generate proliferative T-cell responses and, in some cases, neutralizing antibodies and antibody-dependent cellular cytotoxicity. Since there is an overlap between populations at risk for hepatitis B virus and HIV, HBsAg recombinant particles may be relevant carriers for HIV-1 epitopes and could offer a new approach to the development of an AIDS vaccine.  相似文献   

15.
We characterized hepatitis B virus (HBV) isolates from sera of 21 hepatitis B virus surface antigen-positive apes, members of the families Pongidae and Hylobatidae (19 gibbon spp., 1 chimpanzee, and 1 gorilla). Sera originate from German, French, Thai, and Vietnamese primate-keeping institutions. To estimate the phylogenetic relationships, we sequenced two genomic regions, one located within the pre-S1/pre-S2 region and one including parts of the polymerase and the X protein open reading frames. By comparison with published human and ape HBV isolates, the sequences could be classified into six genomic groups. Four of these represented new genomic groups of gibbon HBV variants. The gorilla HBV isolate was distantly related to the chimpanzee isolate described previously. To confirm these findings, the complete HBV genome from representatives of each genomic group was sequenced. The HBV isolates from gibbons living in different regions of Thailand and Vietnam could be classified into four different phylogenetically distinct genomic groups. The same genomic groups were found in animals from European zoos. Therefore, the HBV infections of these apes might have been introduced into European primate-keeping facilities by direct import of already infected animals from different regions in Thailand. Taken together, our data suggest that HBV infections are indigenous in the different apes. One event involving transmission between human and nonhuman primates in the Old World of a common ancestor of human HBV genotypes A to E and the ape HBV variants might have occurred.  相似文献   

16.
17.
Wilms' tumors, or nephroblastomas, are renal embryonal malignancies with a high incidence in humans. Nephroblastomas are uncommon in nonhuman primates. This report describes three cases of spontaneous proliferative renal tumors in young monkeys: two cases of unilateral kidney nephroblastomas in baboons and a nephroblastomatosis in a cynomolgus macaque. Histologically, both baboon tumors were typical of Wilms' tumors found in humans, with proliferative epithelial cells forming tubules and aborted glomeruli, nephrogenic rests and proliferative fibrovascular tissue. The left kidney of the macaque was markedly enlarged and histologically similar to the baboon tumors, although normal kidney architecture was completely effaced by primitive tubules and occasional glomeruli surrounded by edematous stromal tissue. Cytogenetic analysis did not detect any macaque or baboon equivalents to human Wilms' tumor chromosomal abnormalities. By human pathology classification, the diffuse nature of the macaque tumor is more consistent with nephroblastomatosis than nephroblastoma. This differentiation is the first to be reported in a species other than human. The nephroblastomas described here are the first nephroblastomas to be reported in baboons. Our observations indicate that nonhuman primate nephroblastomatosis and nephroblastomas develop in a similar way to Wilms' tumors in humans, although no genetic marker has been associated with nephroblastomas of nonhuman primates thus far.  相似文献   

18.
Plasmid DNA vaccines elicit potent and protective immune responses in numerous small-animal models of infectious diseases. However, their immunogenicity in primates appears less potent. Here we investigate a novel approach that optimizes regulatory elements in the plasmid backbone to improve the immunogenicity of DNA vaccines. Among various regions analyzed, we found that the addition of a regulatory sequence from the R region of the long terminal repeat from human T-cell leukemia virus type 1 (HTLV-1) to the cytomegalovirus (CMV) enhancer/promoter increased transgene expression 5- to 10-fold and improved cellular immune responses to human immunodeficiency virus type 1 (HIV-1) antigens. In cynomolgus monkeys, DNA vaccines containing the CMV enhancer/promoter with the HTLV-1 R region (CMV/R) induced markedly higher cellular immune responses to HIV-1 Env from clades A, B, and C and to HIV-1 Gag-Pol-Nef compared with the parental DNA vaccines. These data demonstrate that optimization of specific regulatory elements can substantially improve the immunogenicity of DNA vaccines encoding multiple antigens in small animals and in nonhuman primates. This strategy could therefore be explored as a potential method to enhance DNA vaccine immunogenicity in humans.  相似文献   

19.
20.
Mutant recombinant respiratory syncytial viruses (RSV) which cannot express the NS1 and M2-2 proteins, designated rA2DeltaNS1 and rA2DeltaM2-2, respectively, were evaluated as live-attenuated RSV vaccines. The rA2DeltaNS1 virus contains a large deletion that should have the advantageous property of genetic stability during replication in vitro and in vivo. In vitro, rA2DeltaNS1 replicated approximately 10-fold less well than wild-type recombinant RSV (rA2), while rA2DeltaM2-2 had delayed growth kinetics but reached a final titer similar to that of rA2. Each virus was administered to the respiratory tracts of RSV-seronegative chimpanzees to assess replication, immunogenicity, and protective efficacy. The rA2DeltaNS1 and rA2DeltaM2-2 viruses were 2,200- to 55,000-fold restricted in replication in the upper and lower respiratory tracts but induced a level of RSV-neutralizing antibody in serum that was only slightly reduced compared to the level induced by wild-type RSV. The replication of wild-type RSV in immunized chimpanzees after challenge was reduced more than 10,000-fold at each site. Importantly, rA2DeltaNS1 and rA2DeltaM2-2 were 10-fold more restricted in replication in the upper respiratory tract than was the cpts248/404 virus, a vaccine candidate that retained mild reactogenicity in the upper respiratory tracts of 1-month-old infants. Thus, either rA2DeltaNS1 or rA2DeltaM2-2 might be appropriately attenuated for this age group, which is the major target population for an RSV vaccine. In addition, these results show that neither NS1 nor M2-2 is essential for RSV replication in vivo, although each is important for efficient replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号