首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Matsumoto  T Yoshihisa    K Ito 《The EMBO journal》1997,16(21):6384-6393
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction. We identified a secY mutation (secY205), affecting the most carboxyterminal cytoplasmic domain, that did not allow ATP and preprotein-dependent productive SecA insertion, while allowing idling insertion without the preprotein. Thus, the secY205 mutation might affect the SecYEG 'channel' structure in accepting the preprotein-SecA complex or its opening by the complex. We isolated secA mutations that allele-specifically suppressed the secY205 translocation defect in vivo. One mutant protein, SecA36, with an amino acid alteration near the high-affinity ATP-binding site, was purified and suppressed the in vitro translocation defect of the inverted membrane vesicles carrying the SecY205 protein. The SecA36 protein could also insert into the mutant membrane vesicles in vitro. These results provide genetic evidence that SecA and SecY specifically interact, and show that SecY plays an essential role in insertion of SecA in response to a preprotein and ATP and suggest that SecA drives protein translocation by inserting into the membrane in vivo.  相似文献   

2.
The integration of the polytopic membrane protein YidC into the inner membrane of Escherichia coli was analyzed employing an in vitro system. Upon integration of in vitro synthesized YidC, a 42-kDa membrane protected fragment was detected, which could be immunoprecipitated with polyclonal anti-YidC antibodies. The occurrence of this fragment is in agreement with the predicted topology of YidC and probably encompasses the first two transmembrane domains and the connecting 320-amino acid-long periplasmic loop. The integration of YidC was strictly dependent on the signal recognition particle and SecA. YidC could not be integrated in the absence of SecY, SecE, or SecG, suggesting that YidC, in contrast to its mitochondrial orthologue Oxa1p, cannot engage a SecYEG-independent protein-conducting channel.  相似文献   

3.
KdpD is a sensor kinase protein in the inner membrane of Escherichia coli containing four transmembrane regions. The periplasmic loops connecting the transmembrane regions are intriguingly short and protease mapping allowed us to only follow the translocation of the second periplasmic loop. The results show that neither the Sec translocase nor the YidC protein are required for membrane insertion of the second loop of KdpD. To study the translocation of the first periplasmic loop a short HA epitope tag was genetically introduced into this region. The results show that also the first loop was translocated independently of YidC and the Sec translocase. We conclude that KdpD resembles a new class of membrane proteins that insert into the membrane without enzymatic assistance by the known translocases. When the second periplasmic loop was extended by an epitope tag to 27 amino acid residues, the membrane insertion of this loop of KdpD depended on SecE and YidC. To test whether the two periplasmic regions are translocated independently of each other, the KdpD protein was split between helix 2 and 3 into two approximately equal-sized fragments. Both constructed fragments, which contained KdpD-N (residues 1-448 of KdpD) and the KdpD-C (residues 444-894 of KdpD), readily inserted into the membrane. Similar to the epitope-tagged KdpD protein, only KdpD-C depended on the presence of the Sec translocase and YidC. This confirms that the four transmembrane helices of KdpD are inserted pairwise, each translocation event involving two transmembrane helices and a periplasmic loop.  相似文献   

4.
de Gier JW  Luirink J 《EMBO reports》2003,4(10):939-943
In the bacterium Escherichia coli, inner membrane proteins (IMPs) are generally targeted through the signal recognition particle pathway to the Sec translocon, which is capable of both linear transport into the periplasm and lateral transport into the lipid bilayer. Lateral transport seems to be assisted by the IMP YidC. In this article, we discuss recent observations that point to a key role for the ribosome in IMP targeting and to the diverse roles of YidC in IMP assembly.  相似文献   

5.
The growth of secAts or secYts mutants at the restrictive temperature has been shown to inhibit the export of many outer membrane proteins. We report here that in two secAts strains the rate of incorporation of newly synthesized protein into both inner and outer membrane fractions decreased by about 70% at the restrictive temperature. The export of the outer membrane protein TonA was used as a model system in which to study the effects of SecA or SecY inactivation. pre-TonA that accumulated at the restrictive temperature was found to co-sediment with the outer membrane fraction. However, the precursor was sensitive to protease and did not float up a sucrose gradient with the membrane fractions. It was therefore concluded that pre-TonA was not integrated into the outer membrane fraction but probably accumulated in the cytoplasm. Studies on the rate of processing of pre-TonA, pulse-labelled at the restrictive temperature then chased at the permissive temperature, revealed differences between secA and secY mutants. In the secAts mutant the great majority of cytoplasmic pre-TonA was not apparently processed to the mature form, whereas in the secYts mutant significant amounts of precursors were rapidly chased into mature TonA, which appeared in the outer membrane. These results suggest that SecA and SecY may act sequentially in the export of proteins to the outer membrane. In particular these data indicate that SecA is required to maintain pre-TonA in a translocationally competent form prior to interaction with the SecY export site.  相似文献   

6.
Escherichia coli YidC is a polytopic inner membrane protein that plays an essential and versatile role in the biogenesis of inner membrane proteins. YidC functions in Sec-dependent membrane insertion but acts also independently as a separate insertase for certain small membrane proteins. We have used a site-specific cross-linking approach to show that the conserved third transmembrane segment of YidC contacts the transmembrane domains of both nascent Sec-dependent and -independent substrates, indicating a generic recognition of insertion intermediates by YidC. Our data suggest that specific residues of the third YidC transmembrane segment alpha-helix is oriented toward the transmembrane domains of nascent inner membrane proteins that, in contrast, appear quite flexibly positioned at this stage in biogenesis.  相似文献   

7.
Skp of Escherichia coli (OmpH of Salmonella typhimurium) is a protein whose precise function has been obscured by its ubiquity in a wide range of subcellular fractions such as those containing DNA, ribosomes, and outer membranes. Combining in vitro and in vivo techniques we show that Skp is synthesized as a larger precursor that is processed upon translocation across the plasma membrane. Translocation is dependent on the H(+)-gradient, ATP, SecA, and SecY. Upon cellular subfractionation (avoiding non-specific electrostatic interactions) Skp partitions with beta-lactamase into the fraction of soluble, periplasmic proteins. In the context of the export factor properties of Skp previously demonstrated in vitro it is conceivable that this protein is involved in the later steps of protein translocation across the plasma membrane and/or sorting to the outer membrane.  相似文献   

8.
9.
YidC of Escherichia coli belongs to the evolutionarily conserved Oxa1/Alb3/YidC family. Members of this family have all been implicated in membrane protein biogenesis of aerobic respiratory and energy-transducing proteins. YidC is essential for the insertion of subunit c of the F(1)F(0)-ATP synthase and subunit a of cytochrome o oxidase. The aim of this study was to investigate whether YidC plays a role during anaerobic growth of Escherichia coli, specifically when either nitrate or fumarate are used as terminal electron acceptors or under fermentative conditions. The effect of YidC depletion on the growth, enzyme activities, and protein levels in the inner membrane was determined. YidC is essential for all anaerobic growth conditions tested, and this is not because of the decreased levels of F(1)F(0)-ATP synthase in the inner membrane only. The results suggest a role for YidC in the membrane biogenesis of integral membrane parts of the anaerobic respiratory chain.  相似文献   

10.
Precursor protein translocation across the Escherichia coli inner membrane is mediated by the translocase, which is composed of a heterotrimeric integral membrane protein complex with SecY, SecE, and SecG as subunits and peripherally bound SecA. Cross-linking experiments were conducted to study which proteins are associated with SecA in vivo. Formaldehyde treatment of intact cells results in the specific cross-linking of SecA to SecY. Concurrently with the increased membrane association of SecA, an elevated amount of cross-linked product was obtained in cells harboring overproduced SecYEG complex. Cross-linked SecA copurified with hexahistidine-tagged SecY and not with SecE. The data indicate that SecA and SecY coexist as a stable complex in the cytoplasmic membrane in vivo.  相似文献   

11.
Recent insight into the biochemical mechanism of protein translocation in Escherichia coli indicates that SecA ATPase is required both for the initial binding of preproteins to the inner membrane as well as subsequent translocation across this structure. SecA appears to promote these events by direct recognition of the preprotein or preprotein-SecB complex, binding to inner-membrane anionic phospholipids, insertion into the membrane biiayer and association with the preprotein translocator, SecY/SecE. ATP binding appears to control the affinity of SecA for the various components of the system and ATP hydrolysis promotes cycling between its different biochemical states. As a component likely to catalyse a rate-determining step in protein secretion, SecA synthesis is co-ordinated with the activity of the protein export pathway. This form of negative reguiation appears to rely on SecA protein binding to its mRNA and repressing translation if conditions of rapid protein secretion prevail within the cell. A precise biochemical scheme for SecA-dependent catalysis of protein export and the details of secA regulation appear to be close at hand. The evolutionary conservation of SecA protein among eubacteria as well as the general requirement for translocation ATPases in other protein secretion systems argues for a mechanistic commonality of all prokaryotic protein export pathways.  相似文献   

12.
Imhof N  Kuhn A  Gerken U 《Biochemistry》2011,50(15):3229-3239
The binding of Pf3 coat protein to the membrane insertase YidC from Escherichia coli induces a conformational change in the tertiary structure of the insertase, resulting in a quenching of the intrinsic tryptophan (Trp) fluorescence. Tryptophan mutants of YidC were generated to examine such conformational movements in detail with time-resolved and steady-state fluorescence spectroscopy. Ten of the 11 Trp residues within YidC were substituted to phenylalanines generating single Trp mutants either at position 354, 454, or 508. In addition, a double mutant with Trp residues at 332 and 334 was studied. Purified YidC mutants were reconstituted into DOPC/DOPG vesicles and titrated with a Trp-free mutant of Pf3 coat, enabling a detailed conformational study of the periplasmic P1, P2, and P3 domains of YidC before and after binding of substrate. Time-resolved fluorescence anisotropy revealed that the mobility of the residues W332/W334 and W508 was considerably increased after binding of Pf3 coat to the insertase. Furthermore, analysis of the fluorescence emission spectra and the decay times showed that all Trp residues are embedded in an equivalent environment that is a membrane/water interface.  相似文献   

13.
The SecB, SecA, and SecY dependency of a small outer membrane lipoprotein in Escherichia coli, the bacteriocin release protein (BRP), was studied. The detrimental effect of BRP expression on the culture turbidity (quasi-lysis) was strongly reduced in the sec mutants. Immunoblotting and radioactive labeling experiments showed that the expression, membrane insertion, and processing of the BRP precursor are dependent on SecB, SecA, and SecY. Labeling experiments with hybrid BRP gene constructs revealed that the mature part of the BRP precursor and not its stable signal sequence is important for its SecB dependency.  相似文献   

14.
Translocation of preproteins across the Escherichia coli inner membrane requires acidic phospholipids. We have studied the translocation of the precursor protein proOmpA across inverted inner membrane vesicles prepared from cells depleted of phosphatidylglycerol and cardiolipin. These membranes support neither translocation nor the translocation ATPase activity of the SecA subunit of preprotein translocase. We now report that inner membrane vesicles which are depleted of acidic phospholipids are unable to bind SecA protein with high affinity. These membranes can be restored to translocation competence by fusion with liposomes containing phosphatidylglycerol, suggesting that the defect in SecA binding is a direct effect of phospholipid depletion rather than a general derangement of inner membrane structure. Reconstitution of SecY/E, the membrane-embedded domain of translocase, into proteoliposomes containing predominantly a single synthetic acidic lipid, dioleoylphosphatidylglycerol, allows efficient catalysis of preprotein translocation.  相似文献   

15.
Genetic approaches can address the question of how integral membrane Sec factors interact with each other and facilitate protein translocation across the cytoplasmic membrane of E. coli. This review summarizes genetic analyses of SecY, SecE and some other protein translocation factors, utilizing 'prl' mutations, 'sec' mutations, 'suppressor-directed inactivation', 'Sec titration', dominant negative mutations and their suppressors. Evidence suggests that co-ordinate participation of SecY, SecE, SecD, SecF, and probably some other factors, is crucial for the process.  相似文献   

16.
Recent work has demonstrated that the signal recognition particle (SRP) is required for the efficient insertion of many proteins into the Escherichia coli inner membrane (IM). Based on an analogy to eukaryotic SRP, it is likely that bacterial SRP binds to inner membrane proteins (IMPs) co-translationally and then targets them to protein transport channels ("translocons"). Here we present evidence that SecA, which has previously been shown to facilitate the export of proteins targeted in a post-translational fashion, is also required for the membrane insertion of proteins targeted by SRP. The introduction of SecA mutations into strains that have modest SRP deficiencies produced a synthetic lethal effect, suggesting that SecA and SRP might function in the same biochemical pathway. Consistent with this explanation, depletion of SecA by inactivating a temperature-sensitive amber suppressor in a secAam strain completely blocked the membrane insertion of AcrB, a protein that is targeted by SRP. In the absence of substantial SecA, pulse-labeled AcrB was retained in the cytoplasm even after a prolonged chase period and was eventually degraded. Although protein export was also severely impaired by SecA depletion, the observation that more than 20% of the OmpA molecules were translocated properly showed that translocons were still active. Taken together, these results imply that SecA plays a much broader role in the transport of proteins across the E. coli IM than has been previously recognized.  相似文献   

17.
YidC has been identified recently as an evolutionary conserved factor that is involved in the integration of inner membrane proteins (IMPs) in Escherichia coli. The discovery of YidC has inspired the reevaluation of membrane protein assembly pathways in E. coli. In this study, we have analyzed the role of YidC in membrane integration of a widely used model IMP, leader peptidase (Lep). Site-directed photocross-linking experiments demonstrate that both YidC and SecY contact nascent Lep very early during biogenesis, at only 50-amino acid nascent chain length. At this length the first transmembrane domain (TM), which acquires a type I topology, is not even fully exposed outside the ribosome. The pattern of interactions appears dependent on the position of the cross-linking probe in the nascent chain. Upon elongation, nascent Lep remains close to YidC and comes into contact with lipids as well. Our results suggest a role for YidC in both the reception and lipid partitioning of type I TMs.  相似文献   

18.
The SecY protein is a membrane-bound factor required for bacterial protein export and embedded in the cytoplasmic membrane by its 10 transmembrane segments. We previously proposed a topology model for this protein by adapting the Manoil-Beckwith TnphoA approach, a genetic method to assign local disposition of a membrane protein from the enzymatic activity of the alkaline phosphatase (PhoA) mature sequence attached to the various regions. SecY-PhoA hybrid proteins with the PhoA domain exported to the periplasmic side of the membrane have been obtained at the five putative periplasmic domains of the SecY sequence. We now extended this method to apply it to follow export of the newly synthesized PhoA domain. Trypsin treatment of detergent-solubilized cell extracts digested the internalized (unfolded) PhoA domain but not those exported and correctly folded. One of the hybrid proteins was cleaved in vivo after export to the periplasm, providing a convenient indication for the export. Results of these analyses indicate that export of the PhoA domain attached to different periplasmic regions of SecY occurs rapidly and requires the normal functioning of the secY gene supplied in trans. Thus, this membrane protein with multiple transmembrane segments contains multiple export signals which can promote rapid and secY-dependent export of the PhoA mature sequence attached to the carboxyl-terminal sides.  相似文献   

19.
The inner membrane proteome of the model organism Escherichia coli is composed of inner membrane proteins, lipoproteins and peripherally attached soluble proteins. Our knowledge of the biogenesis of inner membrane proteins is rapidly increasing. This is in particular true for the early steps of biogenesis - protein targeting to and insertion into the membrane. However, our knowledge of inner membrane protein folding and quality control is still fragmentary. Furthering our knowledge in these areas will bring us closer to understand the biogenesis of individual inner membrane proteins in the context of the biogenesis of the inner membrane proteome of Escherichia coli as a whole. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

20.
YidC was recently shown to play an important role in the assembly of inner membrane proteins (IMPs) both in conjunction with and separate from the Sec-translocon. Little is known about the biogenesis and structural and functional properties of YidC, itself a polytopic IMP. Here we analyze the targeting and membrane integration of YidC using in vivo and in vitro approaches. The combined data indicate that YidC is targeted by the signal recognition particle and inserts at the SecAYEG-YidC translocon early during biogenesis, unlike its mitochondrial homologue Oxa1p. In addition, YidC is shown to be relatively abundant compared with other components involved in IMP assembly and is predominantly localized at the poles of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号