首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
最大信息熵原理与群体遗传平衡   总被引:29,自引:0,他引:29  
建立了用最大信息熵原理推导群体遗传平衡定律的统一数学模型,并给出了模型的统一解,此解正是Hardy-Weinberg定律所给出的平衡群体的基因型频率,说明当群体信息熵达到最大时,群体基因型频率不再变化,即达到“平衡”。这证明了最大熵分布就是Hardy-Weinberg平衡分布。Hardy-Weinberg平衡定律与最大信息熵原理的内在一致性说明,杂交和随机交配是一个不可逆过程,使群体基因型信息熵增大,无序性增,是选择和近亲交配使群体的信息熵降低,有序性增加,育种过程实际就是调节群体信息熵的过程。过程信息熵的含义是表示一个概率分布的不确定性,最大熵原理意味着在一定的约束条件,选择具有最大不确定性的分布,从而其分布是最为随机的。最大熵原理在信息,工程,天文,地理,图像处理,模式识别等自然科学和社会科学领域都有广泛的成功应用,本文从群体遗传学角度证明了这一原理具有普遍适用性。熵是描述系统状态的函数,而最大熵原理则表明了系统发展变化的趋势,系统的最终状态必然是熵增加至最大值的状态,对于任何系统都是如此。因此,群体遗传系统的平衡定律可以统一用最大熵原理进行判定和描述;任意群体的基因型信息熵在随机交配世代传递时有不断增加的趋势;在一定约束条件下基因型信息熵达到最大值时,就称之为达到遗传平衡。本文将信息论原理应用于群体遗传学研究,揭示了基因信息熵的生物学意义,并表明可以用信息学和控制论的原理和方法来研究群体遗传学问题。  相似文献   

2.
This article explores the tension between the population genetics and sociobiological approaches to the study of evolution. Whereas population geneticists, like Stanford's Marc Feldman, insist that the genetic complexities of organisms cannot be overlooked, sociobiologists (many of whom now prefer to call themselves "behavioral ecologists") rely on optimization models that are based on the simplest possible genetics.These optimization approaches have their roots in the classical result known as the fundamental theorem of natural selection, formulated by R. A. Fisher in 1930. From the start there was great uncertainty over the proper interpretation of Fisher's theorem, which became confused with Sewall Wright's immensely influential adaptive landscape concept. In the 1960s, a new generation of mathematical biologists proved that Fisher's theorem did not hold when fitness depended on more than one locus. Similar reasoning was used to attack W. D. Hamilton's inclusive fitness theory. A new theory, known as the theory of long-term evolution, attempts to reconcile the rigorous population genetics approach with the long-standing sociobiological view that natural selection acts to increase the fitness of organisms.  相似文献   

3.
4.
黄雪盈  范凯  叶炎芳  汪斌  吴为人  兰涛 《遗传》2017,39(9):856-862
文章对“水稻SSLP分子标记的遗传分析”作为遗传学实验教学案例的实施过程及其效果进行了探讨。利用位于水稻两条染色体上的3个SSLP标记,对两亲本及其杂交构建的F2代群体进行单株SSLP标记基因型检测,利用检测所得到的基因型结果验证分离定律、独立分配定律及连锁交换定律等遗传学三大定律。实践证明这不仅有利于加深学生对遗传学三大定律的认识,而且在提高学生实验操作技能和综合分析能力的基础上,还有助于培养学生的科研兴趣和创新意识。同时,对该实验的适用范围以及尚需完善之处做了讨论。此综合性实验也是科研成果转化为本科实验教学的一个有益探索。  相似文献   

5.
Neher RA  Shraiman BI 《Genetics》2012,191(4):1283-1293
The accumulation of deleterious mutations is driven by rare fluctuations that lead to the loss of all mutation free individuals, a process known as Muller's ratchet. Even though Muller's ratchet is a paradigmatic process in population genetics, a quantitative understanding of its rate is still lacking. The difficulty lies in the nontrivial nature of fluctuations in the fitness distribution, which control the rate of extinction of the fittest genotype. We address this problem using the simple but classic model of mutation selection balance with deleterious mutations all having the same effect on fitness. We show analytically how fluctuations among the fittest individuals propagate to individuals of lower fitness and have dramatically amplified effects on the bulk of the population at a later time. If a reduction in the size of the fittest class reduces the mean fitness only after a delay, selection opposing this reduction is also delayed. This delayed restoring force speeds up Muller's ratchet. We show how the delayed response can be accounted for using a path-integral formulation of the stochastic dynamics and provide an expression for the rate of the ratchet that is accurate across a broad range of parameters.  相似文献   

6.
Fisher's fundamental theorem of natural selection, that the rate of change of fitness is given by the additive genetic variance of fitness, has generated much discussion since its appearance in 1930. Fisher tried to capture in the formula the change in population fitness attributable to changes of allele frequencies, when all else is not included. Lessard's formulation comes closest to Fisher's intention, as well as this can be judged. Additional terms can be added to account for other changes. The "theorem" as stated by Fisher is not exact, and therefore not a theorem, but it does encapsulate a great deal of evolutionary meaning in a simple statement. I also discuss the effectiveness of reproductive-value weighting and the theorem in integrated form. Finally, an optimum principle, analogous to least action and Hamilton's principle in physics, is discussed.  相似文献   

7.
Sexual selection unhandicapped by the Fisher process   总被引:16,自引:0,他引:16  
A population genetic model of sexual selection is constructed in which, at equilibrium, males signal their quality by developing costly ornaments, and females pay costs to use the ornaments in mate choice. It is shown that the form of the equilibrium is uninfluenced by the Fisher process, that is, by self-reinforcement of female preferences. This is a working model of the handicap principle applied to sexual selection, and places Zahavi's handicap principle on the same logical footing as the Fisher process, in that each can support sexual selection without the presence of the other. A way of measuring the relative importance of the two processes is suggested that can be applied to both theories and facts. A style of modelling that allows simple genetics and complicated biology to be combined is recommended.  相似文献   

8.
The deterministic dynamical theory of biological populations, developed widely on the basis of the classical work of Fisher and Volterra, in most cases deals with characteristics which cannot be measured directly, e.g. frequencies of various genotypes within a population, their fitness values, competition coefficients, etc. Thus, a theory dealing with a small number of simple averaged macro-characteristics, easily accessible to a direct measurement, would be of great importance. The present paper contains an attempt to establish an equation contributing to such a would-be macrotheory. It is a relationship begween the average fitness of a population (the Malthusian growth parameter), the selective delay (a new concept, introduction in section 3) and the entropy of the equilibrium structure which the population tends to under the natural selection process. A possible method of checking the proposed relationship experimentally is indicated.  相似文献   

9.
Can we define a measure that describes how easy or difficult it is for a population to evolve to a specific genotype? For populations evolving under weak mutation on a time‐invariant fitness landscape, I argue that one appropriate measure is the expected waiting time, starting from equilibrium, for a population to become fixed for a given genotype. Under this definition for the “findability” of genotypes, I show that for any pair of genotypes (1) a population at equilibrium is always more likely to fix at the more findable before the less findable genotype and (2) the expected time to evolve from the more findable to the less findable genotype is always greater that the expected time to evolve in the opposite direction. Although increasing the fitness of a genotype always increases its findability, in general there is no simple relationship between the rank ordering of genotypes by fitness and the rank ordering of genotypes by findability. I also present a method for quantifying the relative contributions of mutation, selection, substitution rate, and probability of reversion to a genotype's findability.  相似文献   

10.
Deleterious mutation accumulation plays a central role in evolutionary genetics, conservation biology, human health, and evolutionary medicine (e.g., methods of viral attenuation for live vaccines). It is therefore important to understand whether and how quickly populations with accumulated deleterious mutational loads can recover fitness through adaptive evolution. We used laboratory experimental evolution with four long-term mutation-accumulation (MA) lines of Caenorhabditis elegans nematodes to study the dynamics of such fitness evolution. We previously showed that when homozygous mutant populations are evolved in large population sizes, they can rapidly achieve wild-type fitness through the accumulation of new beneficial or compensatory epistatic mutations. Here, we expand this approach to demonstrate that when replicate lineages are initiated from the same mutant genotype, phenotypic evolution is only sometimes repeatable. MA genotypes that recovered ancestral fitness in the previous experiment did not always do so here. Further, the pattern of adaptive evolution in independently evolved replicates was contingent upon the MA genotype and varied among fitness-related traits. Our findings suggest that new beneficial mutations can drive rapid fitness evolution, but that the adaptive process is rendered somewhat unpredictable by its susceptibility to chance events and sensitivity to the evolutionary history of the starting population.  相似文献   

11.
In this article, an approach to measure fitness is proposed that considers fitness as a measure of competitive ability among phenotypes or genotypes. This approach is based on pairwise competition tests and is related to measures of “utility” in mathematical economics. Extending the results from utility theory it is possible to recover the classical Wrightian fitness measure without reference to models of population growth. A condition, quasi‐BTL, similar to the Bradley–Terry–Luce condition of classical utility theory is shown to be necessary for the existence of frequency and context‐independent fitness measures. Testing for violations of this quasi‐BTL condition can be used to the detect genotype‐by‐genotype interactions and frequency‐dependent fitness. A method for the detection of genotype by environment interactions is proposed that avoids potential scaling artifacts. Furthermore the measurement theoretical approach allows one to derive Wright's selection equation. This shows that classical selection equations are entirely general and exact. It is concluded that measurement theory is able to give definite answers to a number theoretical and practical questions. For instance, this theory identifies the correct scale for measuring gene interaction with respect to fitness and shows that different scales may lead to wrong conclusions.  相似文献   

12.
It is pointed out that the standard selection models in population genetics all require some form of heterozygote advantage in fitness in order to guarantee the maintenance or stability of genetic polymorphisms. Even more recent results demonstrating the existence of stable two-locus polymorphisms with marginal underdominance at both loci are based on certain epistatically acting heterosis assumptions. This raises the question as to whether heterozygote advantage in fitness is indeed a generally valid principle of maintaining polymorphisms. To avoid ambiguity in definition of heterozygote advantage (overdominance) as it appears in multiallele or multilocus systems, a one-locus-two-allele model is considered. This model allows for sexually asymmetric selection and random mating. It is shown that the model produces globally stable polymorphisms exhibiting underdominance in fitness for a considerable and biologically reasonable range of selection values. Having thus properly refuted the general validity of the common overdominance principle, a modified version is suggested which covers the classical viability selection model and its extension to arbitrary, sexually asymmetric viability and fertility selection. This modified overdominance principle is based on the notion of fractional fitnesses and relates protectedness of biallelic polymorphisms to the extent to which each genotype reproduces its own type. The fact that the model treated displays frequency dependent fitnesses which may change in ranking while approaching equilibrium is discussed in relation to problems of the evolution of overdominance and underdominance.  相似文献   

13.
Zeyl C 《Genetics》2005,169(4):1825-1831
There is currently limited empirical and theoretical support for the prevailing view that adaptation typically results from the fixation of many mutations, each with small phenotypic effects. Recent theoretical work suggests that, on the contrary, most of the phenotypic change during an episode of adaptation can result from the selection of a few mutations with relatively large effects. I studied the genetics of adaptation by populations of budding yeast to a culture regime of daily hundredfold dilution and transfer in a glucose-limited minimal liquid medium. A single haploid genotype isolated after 2000 generations showed a 76% fitness increase over its ancestor. This evolved haploid was crossed with its ancestor, and tetrad dissections were used to isolate a complete series of six meiotic tetrads. The Castle-Wright estimator of the number of loci at which adaptive mutations had been selected, modified to account for linkage and variation among mutations in the size of their effect, is 4.4. The estimate for a second haploid genotype, isolated from a separate population and with a fitness gain of 60%, was 2.7 loci. Backcrosses to the ancestor with the first evolved genotype support the inference that adaptation resulted primarily from two to five mutations. These backcrosses also indicated that deleterious mutations had hitchhiked with adaptive mutations in this evolved genotype.  相似文献   

14.
Muller's ratchet is a principle of evolutionary genetics describing mutant accumulation in populations that are repeatedly subjected to genetic bottleneck. The immediate effect of Muller's ratchet, overall loss of fitness, has been confirmed in several viral systems belonging to different groups. This report shows that in addition to fitness loss, genetic bottlenecks also have longer-term effects, namely changes in the capacity of viral populations to adapt. Thus, vesicular stomatitis virus strains with a history of genetic bottleneck have lower adaptability than strains maintained at relatively large population sizes. This lower adaptability is illustrated by their reduced ability to regain fitness and by their inability to outcompete wild-type populations in situations where the initial fitness of the bottlenecked mutant is the same or even higher than the initial fitness of the wild-type.  相似文献   

15.
The handicap mechanism of sexual selection by female choice has been strongly criticized because it does not cause sexual selection to reinforce viability selection and it cannot account for the origin of mating preferences. However, several models indicate that the handicap mechanism can have important effects when operating in conjunction with Fisher's mechanism in polygynous populations. These models have been criticized because they require that fitness remains heritable indefinitely. I develop a simple haploid model of the handicap mechanism based on nonheritable variation in paternal investment, thus eliminating the problem of heritable fitness. This model produces the same evolutonary dynamics as both simple and quantitative genetic models of the handicap mechanism based on heritable fitness. If the parameters are such that Fisherian runaway selection does not occur in the null model (i.e., the polymorphic equilibria, which lie along the “Fisher line,” are stable), then the handicap mechanism turns the Fisher line into an evolutionary trajectory upon which all other trajectories converge. This occurs because Fisher's mechanism generates no net selection on female preference when the population is on the Fisher line, so that any additional source of selection (direct or indirect) on female choice causes the population to evolve deterministically along the Fisher line. This change in the evolutionary dynamics has the important consequence of eliminating the potential for rapid population divergence for mating systems via genetic drift along the Fisher line.  相似文献   

16.
Quantitative trait loci (QTL) affecting the phenotype of interest can be detected using linkage analysis (LA), linkage disequilibrium (LD) mapping or a combination of both (LDLA). The LA approach uses information from recombination events within the observed pedigree and LD mapping from the historical recombinations within the unobserved pedigree. We propose the Bayesian variable selection approach for combined LDLA analysis for single-nucleotide polymorphism (SNP) data. The novel approach uses both sources of information simultaneously as is commonly done in plant and animal genetics, but it makes fewer assumptions about population demography than previous LDLA methods. This differs from approaches in human genetics, where LDLA methods use LA information conditional on LD information or the other way round. We argue that the multilocus LDLA model is more powerful for the detection of phenotype–genotype associations than single-locus LDLA analysis. To illustrate the performance of the Bayesian multilocus LDLA method, we analyzed simulation replicates based on real SNP genotype data from small three-generational CEPH families and compared the results with commonly used quantitative transmission disequilibrium test (QTDT). This paper is intended to be conceptual in the sense that it is not meant to be a practical method for analyzing high-density SNP data, which is more common. Our aim was to test whether this approach can function in principle.  相似文献   

17.
Fisher''s fundamental theorem of natural selection shows that the part of the rate of change of mean fitness that is due to natural selection equals the additive genetic variance in fitness. Fisher embedded this result in a model of total fitness, adding terms for deterioration of the environment and density dependence. Here, a quantitative genetic version of this neglected model is derived that relaxes its assumptions that the additive genetic variance in fitness and the rate of deterioration of the environment do not change over time, allows population size to vary, and includes an input of mutational variance. The resulting formula for total rate of change in mean fitness contains two terms more than Fisher''s original, representing the effects of stabilizing selection, on the one hand, and of mutational variance, on the other, making clear for the first time that the fundamental theorem deals only with natural selection that is directional (as opposed to stabilizing) on the underlying traits. In this model, the total (rather than just the additive) genetic variance increases mean fitness. The unstructured population allows an explanation of Fisher''s concept of fitness as simply birth rate minus mortality rate, and building up to the definition in structured populations.  相似文献   

18.
Varying‐coefficient models have become a common tool to determine whether and how the association between an exposure and an outcome changes over a continuous measure. These models are complicated when the exposure itself is time‐varying and subjected to measurement error. For example, it is well known that longitudinal physical fitness has an impact on cardiovascular disease (CVD) mortality. It is not known, however, how the effect of longitudinal physical fitness on CVD mortality varies with age. In this paper, we propose a varying‐coefficient generalized odds rate model that allows flexible estimation of age‐modified effects of longitudinal physical fitness on CVD mortality. In our model, the longitudinal physical fitness is measured with error and modeled using a mixed‐effects model, and its associated age‐varying coefficient function is represented by cubic B‐splines. An expectation‐maximization algorithm is developed to estimate the parameters in the joint models of longitudinal physical fitness and CVD mortality. A modified pseudoadaptive Gaussian‐Hermite quadrature method is adopted to compute the integrals with respect to random effects involved in the E‐step. The performance of the proposed method is evaluated through extensive simulation studies and is further illustrated with an application to cohort data from the Aerobic Center Longitudinal Study.  相似文献   

19.
20.
The distribution of fitness effects (DFE) among new mutations plays a critical role in adaptive evolution and the maintenance of genetic variation. Although fitness landscape models predict several key features of the DFE, most theory to date focuses on predictable environmental conditions, while ignoring stochastic environmental fluctuations that feature prominently in the ecology of many organisms. Here, we derive an extension of Fisher's geometric model that incorporates two common effects of environmental variation: (1) nonadaptive genotype‐by‐environment interactions (G × E), in which the phenotype of a given genotype varies across environmental contexts; and (2) random fluctuation of the fitness optimum, which generates fluctuating selection. We show that both factors cause a mismatch between the DFE within single generations and the distribution of geometric mean fitness effects (averaged over multiple generations) that governs long‐term evolutionary change. Such mismatches permit strong evolutionary constraints—despite an abundance of beneficial fitness variation within single environmental contexts—and to conflicting DFE estimates from direct versus indirect inference methods. Finally, our results suggest an intriguing parallel between the genetics and ecology of evolutionary constraints, with environmental fluctuations and pleiotropy placing qualitatively similar limits on the availability of adaptive genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号