首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EBNA1 is the only nuclear Epstein-Barr virus (EBV) protein expressed in both latent and lytic modes of infection. While EBNA1 is known to play several important roles in latent infection, the reason for its continued expression in lytic infection is unknown. Here we identified two roles for EBNA1 in the reactivation of latent EBV to the lytic cycle in epithelial cells. First, EBNA1 depletion in latently infected cells was shown to positively contribute to spontaneous EBV reactivation, showing that EBNA1 has a role in suppressing reactivation. Second, when the lytic cycle was induced, EBNA1 depletion decreased lytic gene expression and DNA amplification, showing that it positively contributed to lytic infection. Since we have previously shown that EBNA1 disrupts promyelocytic leukemia (PML) nuclear bodies, we investigated whether this function could account for the effects of EBNA1 on lytic infection by repeating the experiments with cells lacking PML proteins. In the absence of PML, EBNA1 did not promote lytic infection, indicating that the EBNA1-mediated PML disruption is responsible for promoting lytic infection. In keeping with this conclusion, PML silencing was found to be sufficient to induce the EBV lytic cycle. Finally, by generating cells with single PML isoforms, we showed that individual PML isoforms were sufficient to suppress EBV lytic reactivation, although PML isoform IV (PML IV) was ineffective because it was most efficiently degraded by EBNA1. Our results provide the first function for EBNA1 in lytic infection and show that EBNA1 interactions with PML IV lead to a loss of PML nuclear bodies (NBs) that promotes lytic infection.  相似文献   

2.
3.
4.
Killing of virally infected cells or tumor cells by cytotoxic T lymphocytes requires targeting of lytic granules to the junction between the CTL and its target. We used whole-cell patch clamp to measure the cell capacitance at fixed intracellular [Ca2+] to study fusion of lytic granules in human CTLs. Expression of a fluorescently labeled human granzyme B construct allowed identification of lytic granule fusion using total internal reflection fluorescence microscopy. In this way capacitance steps due to lytic granule fusion were identified. Our goal was to determine the size of fusing lytic granules and to describe their behavior at the plasma membrane. On average, 5.02 ± 3.09 (mean ± s.d.) lytic granules were released per CTL. The amplitude of lytic granule fusion events was ~ 3.3 fF consistent with a diameter of about 325 nm. Fusion latency was biphasic with time constants of 15.9 and 106 seconds. The dwell time of fusing lytic granules was exponentially distributed with a mean dwell time of 28.5 seconds. Fusion ended in spite of the continued presence of granules at the immune synapse. The mobility of fusing granules at the membrane was indistinguishable from that of lytic granules which failed to fuse. While dwelling at the plasma membrane lytic granules exhibit mobility consistent with docking interspersed with short periods of greater mobility. The failure of lytic granules to fuse when visible in TIRF at the membrane may indicate that a membrane-confined reaction is rate limiting.  相似文献   

5.
Phage TP-8 lysates of Bacillus stearothermophilus 4S or 4S(8) contain lytic activity exhibiting two pH optima, one at pH 6.5 and the other at pH 7.5. Using a variety of fractionation procedures, the two lytic activities could not be separated. At pH 7.5 the lytic enzyme is an endopeptidase which hydrolyzes the l-alanyl-d-glutamyl linkage in the peptide subunits of the cell wall peptidoglycan and at pH 6.5 it exhibits N-acetylmuramidase activity. Endopeptidase activity is inhibited by NaCl and neither lytic activity was significantly affected by divalent cations or ethylenediaminetetraacetic acid. Crude lysates contain 2.5 to 3.0 times more endopeptidase activity than N-acetylmuramidase activity. The ratio of the two lytic activities (endopeptidase/N-acetylmuramidase) changes to 1.3 to 1.7 during the course of purification, to 1.0 after isoelectric focusing, and 3.9 and 6.00 after exposure for 2 h at 60 and 65 C, respectively. We conclude that the two lytic activities may be associated with a single protein or a lytic enzyme complex composed of two enzymes. Lytic activity at pH 7.5 is more effective in solubilizing cells or cell walls than the lytic activity at pH 6.5. LiCl extracts of 4S and 4S(8) cells contain lytic activity exhibiting endopeptidase activity at pH 7.5 and N-acetylmuramidase activity at pH 6.5. Lytic activity in these LiCl extracts also has a number of other properties in common with those in lysates of phage TP-8. We proposed that the lytic enzyme(s) are not coded for by the phage genome but are part of the host autolytic system.  相似文献   

6.
The lysis of protoplasts of Micrococcus luteus has been tested with various derivatives of three peptidolipidic antibiotics: iturin A, mycosubtilin and bacillomycin L. The lytic activity is dependent to the nature of the substituting group and to the position of the substituted aminoacid residue. The acetylation of OH groups leads to a decrease of the lytic activity of the natural antibiotics. The methylation of aspartyl residues of bacillomycin L gives a strong lytic activity while natural bacillomycin L has no lytic activity. The methylation of the tyrosyl residue enhances the lytic activities of iturin A and of bacillomycin L-dimethyl ester and reduces that of mycosubtilin. Correlations between the structures of derivatives and their lytic action on M. luteus protoplasts are discussed.  相似文献   

7.
Cationic lytic‐type peptides have been studied for clinical application in various infections and cancers, but their functional cellular mechanisms remain unclear. We generated anti‐cancer epithelial growth factor receptor (EGFR)‐lytic hybrid peptide, a 32‐amino‐acid peptide composed of an EGFR‐binding sequence and lytic sequence. In this study, we investigated the distribution of EGFR‐lytic hybrid peptide in BxPC‐3 human pancreatic cancer cells by an immunocytochemical (ICC) method. Distribution of EGFR protein expression was unchanged after treatment with EGFR‐lytic peptide compared with non‐treated cells. In confocal laser scanning microscopy, immunostaining of EGFR‐lytic peptide was observed in the cytoplasm, mostly in the form of granules. Some staining was also localized on the mitochondrial membrane. At the ultrastructure level, cells treated with EGFR‐lytic peptide had a low electron density, disappearance of microvilli, and swollen mitochondria. Fragments of cell membrane were also observed in the proximity of the membrane. In immunoelectron microscopy, EGFR‐lytic peptide was observed in the cell membrane and cytoplasm. A number of granules were considered swollen mitochondria. Activation of the caspase pathway as a result of mitochondrial dysfunction was also examined to determine the cytotoxic activity of EGFR‐lytic peptide; however, no effect on cell death after EGFR‐lytic treatment was observed, and moreover, apoptosis was not found to play a critical role in the cell death mechanism. These results suggest that EGFR‐lytic peptide is localized on cell and mitochondrial membranes, with disintegration of the cell membrane contributing mainly to cell death. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Cell-free extracts of Trypanosoma cruzi, Leishmania donovani, and L. mexicana, cultivated in a medium supplemented with 5% fetal calf serum, contain a factor that induces lysis of mammalian red blood cells and Vero cells. All the lytic activity was found in the insoluble fraction of parasite extracts obtained after centrifugation at 100,000g for 2 hr. The lytic agent is pronase, trypsin, and temperature resistant. The optimum pH of the lytic effect is pH 6.5. Normal red blood cells of several mammalian species had different sensitivities to the lytic agent. The lipid phase of T. cruzi extract contains the total lytic activity. Albumins of different animal species at 1 mg/ml, completely inhibit the lytic activity of parasite extracts.  相似文献   

9.
10.
11.
The lysis of protoplasts of Micrococcus luteus has been tested with various derivatives of three peptidolipidic antibiotics: iturin A, mycosubtilin and bacillomycin L. The lytic activity is dependent to the nature of the substituting group and to the position of the substituted aminoacid residue. The acetylation of OH groups leads to a decrease of the lytic activity of the natural antibiotics. The methylation of aspartyl residues of bacillomycin L gives a strong lytic activity while natural bacillomycin L has no lytic activity. The methylation of the tyrosyl residue enhances the lytic activities of iturin A and of bacillomycin L-dimethyl ester and reduces that of mycosubtilin.Correlations between the structures of derivatives and their lytic action on M. luteus protoplasts are discussed.  相似文献   

12.
Lytic peptides are a group of membrane-acting peptides that are active to antibiotic-resistant bacteria but demonstrate high toxicity to tissue cells. Here, we reported the construction of new lytic peptide derivatives through the replacement of corresponding lysine/arginine residues in lytic peptide templates with histidines. Resulting lytic peptides had the same lethality to antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus, but showed greatly improved selectivity to bacteria. When incubated with co-cultured bacteria and tissue cells, these histidine-containing lytic peptide derivatives killed bacteria selectively but spared co-cultured human cells. Membrane insertion and peptide-quenching studies revealed that histidine protonation controlled peptide interactions with cell membranes determined the bacterial selectivity of lytic peptide derivatives. Compared with parent peptides, lytic peptide derivatives bound to bacteria strongly and inserted deeply into the bacterial cell membrane. Therefore, histidine-containing lytic peptides represent a new group of antimicrobial peptides for bacterial infections in which the antibiotic resistance has developed.  相似文献   

13.
Cationic lytic-type peptides have been studied for clinical application in various infections and cancers. This study aimed to determine the functions of our specially designed lytic peptide. To investigate the functional mechanism at the cell membrane level, we used giant unilayer vesicles (GUVs) mimicking cell membranes. In GUVs treated with FITC-labeled lytic peptide (lytic-FITC), fluorescence increased in a time-dependent manner. However, no inner fluorescence was detected in GUVs treated with lytic peptide and calcein. Next, distribution of lytic-FITC peptide on the cell membrane and in the cytoplasm was examined in a living human glioma U251 cell line. In the immunocytochemical study, some lytic peptide stains colocalized with early endosome antigen protein 1 (EEA-1). In cells treated with lytic peptide, the immunofluorescence intensity of lytic peptide increased in a concentration and treatment time-dependent manner. Cytotoxic activity of lytic peptide decreased after pretreatment with the endocytosis inhibitors cytochalasin D, chlorpromazine and amiloride. These findings suggest that lytic peptide exerts cytotoxic activity after cellular uptake via an endocytosis pathway. In conclusion, the influx mechanism of lytic peptide was shown to include not only disintegration and pore formation at the cell membrane, but also cell entry via endocytosis dependent and independent pathways.  相似文献   

14.
Expression of Kaposi's sarcoma-associated herpesvirus (KSHV) lytic genes is thought to be essential for the establishment and progression of KSHV-induced diseases. The inefficiency of lytic reactivation in various in vitro systems hampers the study of lytic genes in the context of whole virus. We report here increased expression of KSHV lytic genes and increased release of progeny virus when synchronized cultures of body cavity-based lymphoma-1 cells are treated with a phorbol ester during S phase of the cell cycle.  相似文献   

15.
16.
17.
The gene for the lytic enzyme of the lipid-containing, broad-host-range bacteriophage PRD1 codes for a protein of 149 amino acids (17271 Da). The sequence of the protein is unique when compared to other lytic enzymes sequenced. However, three regions of weak similarity with other phage lytic enzymes were observed. The C-terminal region shared seven amino acids in common with phage P22 lysozyme at a site which is conserved in phage-type lysozymes.  相似文献   

18.
Chlamydomonas lytic enzyme of the cell wall (gamete wall-autolysin) is responsible for shedding of cell walls during mating of opposite mating-type gametes. This paper reports some topographic aspects of lytic enzyme in cells. Both vegetative and gametic cells contain the same wall lytic enzyme. The purified enzyme is a glycoprotein with an apparent molecular mass of 67 kD by gel filtration and 62 kD by SDS PAGE, and is sensitive to metal ion chelators and SH-blocking agents. These properties are the same as those of the gamete wall-autolysin released into the medium by mating gametes. However, the storage form of the enzyme proves to be quite different between the two cell types. In vegetative cells, the lytic enzyme is found in an insoluble form in cell homogenates and activity is released into the soluble fraction only by sonicating the homogenates or freeze-thawing the cells, whereas gametes always yield lytic activity in the soluble fractions of cell homogenates. When vegetative cells are starved for nitrogen, the storage form of enzyme shifts from its vegetative state to gametic state in parallel with the acquisition of mating ability. Adding nitrogen to gametes converts it to the vegetative state concurrently with the loss of mating ability. We also show that protoplasts obtained by treatment of vegetative cells or gametes with exogenously added enzyme have little activity of enzyme in the cell homogenates, suggesting that lytic enzyme is stored outside the plasmalemma. When the de-walled gametes or gametes of the wall-deficient mutant, cw-15, of opposite mating types are mixed together, they mate normally but the release of lytic enzyme into the medium is practically negligible. When the de-walled vegetative cells are incubated, the lytic enzyme is again accumulated in the cells after the wall regeneration is almost complete.  相似文献   

19.
To investigate the question of whether lytic granules share a common biogenesis with lysosomes, cloned cytolytic T cell lines were derived from a patient with I-cell disease. The targeting of two soluble lytic granule components, granzymes A and B, was studied in these cells which lack a functional mannose-6-phosphate (Man-6-P) receptor-mediated pathway to lysosomes. Using antibodies and enzymatic substrates to detect the lytic proteins, I-cells were found to constitutively secrete granzymes A and B in contrast to normal cells in which these proteins were stored for regulated secretion. These results suggest that granzymes A and B are normally targeted to the lytic granules of activated lymphocytes by the Man-6-P receptor. In normal cells, the granzymes bear Man-6-P residues, since the oligosaccharide side chains of granzymes A and B, as well as radioactive phosphate on granzyme A from labeled cells, were removed by endoglycosidase H (Endo H). However, in I-cells, granzymes cannot bear Man-6-P and granzyme B acquires complex glycans, becoming Endo H resistant. Although the levels of granzymes A and B in cytolytic I-cell lymphocytes are < 30% of the normal levels, immunolocalization and cell fractionation of granzyme A demonstrated that this reduced amount is correctly localized in the lytic granules. Therefore, a Man-6-P receptor-independent pathway to the lytic granules must also exist. Cathepsin B colocalizes with granzyme A in both normal and I-cells indicating that lysosomal proteins can also use the Man-6-P receptor-independent pathway in these cells. The complete overlap of these lysosomal and lytic markers implies that the lytic granules perform both lysosomal and secretory roles in cytolytic lymphocytes. The secretory role of lytic granules formed by the Man-6-P receptor-independent pathway is intact as assessed by the ability of I-cell lymphocytes to lyse target cells by regulated secretion.  相似文献   

20.
Human herpesviruses, including EBV, persist for life in infected individuals. During the lytic replicative cycle that is required for the production of infectious virus and transmission to another host, many viral Ags are expressed. Especially at this stage, immune evasion strategies are likely to be advantageous to avoid elimination of virus-producing cells. However, little is known about immune escape during productive EBV infection because no fully permissive infection model is available. In this study, we have developed a novel strategy to isolate populations of cells in an EBV lytic cycle based on the expression of a reporter gene under the control of an EBV early lytic cycle promoter. Thus, induction of the viral lytic cycle in transfected EBV(+) B lymphoma cells resulted in concomitant reporter expression, allowing us, for the first time, to isolate highly purified cell populations in lytic cycle for biochemical and functional studies. Compared with latently infected B cells, cells supporting EBV lytic cycle displayed down-regulation of surface HLA class I, class II, and CD20, whereas expression levels of other surface markers remained unaffected. Moreover, during lytic cycle peptide transport into the endoplasmic reticulum, was reduced to <30% of levels found in latent infection. Because steady-state levels of TAP proteins were unaffected, these results point toward EBV-induced interference with TAP function as a specific mechanism contributing to the reduced levels of cell surface HLA class I. Our data implicate that EBV lytic cycle genes encode functions to evade T cell recognition, thereby creating a window for the generation of viral progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号