首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Each chain of the native trimeric P22 tailspike protein has eight cysteines that are reduced and buried in its hydrophobic core. However, disulfide bonds have been observed in the folding pathway and they are believed to play a critical role in the registration of the three chains. Interestingly, in the presence of sodium dodecyl sulfate (SDS) only monomeric chains, rather than disulfide-linked oligomers, have been observed from a mixture of folding intermediates. Here we show that when the oligomeric folding intermediates were separated from the monomer by native gel electrophoresis, the reduction of intermolecular disulfide bonds did not occur in the subsequent second-dimension SDS-gel electrophoresis. This result suggests that when tailspike monomer is present in free solution with SDS, the partially unfolded tailspike monomer can facilitate the reduction of disulfide bonds in the tailspike oligomers.  相似文献   

2.
Benton CB  King J  Clark PL 《Biochemistry》2002,41(16):5093-5103
P22 tailspike is a homotrimeric, thermostable adhesin that recognizes the O-antigen lipopolysaccharide of Salmonella typhimurium. The 70 kDa subunits include long beta-helix domains. After residue 540, the polypeptide chains change their path and wrap around one another, with extensive interchain contacts. Formation of this interdigitated domain intimately couples the chain folding and assembly mechanisms. The earliest detectable trimeric intermediate in the tailspike folding and assembly pathway is the protrimer, suspected to be a precursor of the native trimer structure. We have directly analyzed the kinetics of in vitro protrimer formation and disappearance for wild type and mutant tailspike proteins. The results confirm that the protrimer intermediate is an on-pathway intermediate for tailspike folding. Protrimer was originally resolved during tailspike folding because its migration through nondenaturing polyacrylamide gels was significantly retarded with respect to the migration of the native tailspike trimer. By comparing protein mobility versus acrylamide concentration, we find that the retarded mobility of the protrimer is due exclusively to a larger overall size than the native trimer, rather than an altered net surface charge. Experiments with mutant tailspike proteins indicate that the conformation difference between protrimer and native tailspike trimer is localized toward the C-termini of the tailspike polypeptide chains. These results suggest that the transformation of the protrimer to the native tailspike trimer represents the C-terminal interdigitation of the three polypeptide chains. This late step may confer the detergent-resistance, protease-resistance, and thermostability of the native trimer.  相似文献   

3.
A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.  相似文献   

4.
Intermediates in the intracellular chain folding and association pathway of the P22 tailspike endorhamnosidase have been identified previously by physiological and genetic methods. Conditions have now been found for the in vitro refolding of this large (Mr = 215,000) oligomeric protein. Purified Salmonella phage P22 tailspikes, while very stable to urea in neutral solution, were dissociated by moderate concentrations of urea at acidic pH. The tailspike protein was denatured to unfolded polypeptide chains in 6 M urea, pH 3, as disclosed by analytical ultracentrifugation, fluorescence, and circular dichroism. Upon dilution into neutral buffer at 10 degrees C, the polypeptides fold spontaneously and associate to form trimeric tailspikes with high yield. Like native phage P22 tailspikes, the reconstitution product is resistant to denaturation by dodecyl sulfate in the cold and displays endorhamnosidase activity. Sedimentation coefficients, electrophoretic mobility, and fluorescence emission maxima of native and reconstituted tailspikes are identical within experimental error. By characterization of intermediates, localization of temperature-sensitive steps, and analysis of the effect of previously identified folding mutations, the reconstitution system described should allow comparison of in vivo and in vitro folding pathways of this large protein oligomer.  相似文献   

5.
The in vivo accumulation of polypeptide chains in the form of aggregated non-native states is a problem in many applications of biotechnology. In the maturation pathway of the thermostable P22 tailspike endorhamnosidase, the folding and chain association intermediates can be distinguished from the native tailspikes in crude extracts of phage-infected Salmonella cells. Temperature-sensitive folding mutations, at many sites in the chain, destabilize these conformational intermediates preventing the formation of native tailspikes at restrictive temperatures (Goldenberg, D. P., Smith, D. H., and King, J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 7060-7064). We report here that both wild type and mutant tailspike polypeptide chains which fail to reach the native state accumulate in an aggregated state. These off-pathway aggregates form from a thermolabile intermediate in the productive folding pathway. These aggregation reactions are suppressed by lowering the temperature of maturation. Similar off-pathway steps from folding intermediates may account for the non-native aggregates often found in the expression of cloned genes in heterologous hosts.  相似文献   

6.
Adenovirus fibres are trimeric proteins that protrude from the 12 fivefold vertices of the virion and are the cell attachment organelle of the virus. They consist of three segments: an N-terminal tail, which is noncovalently attached to the penton base, a thin shaft carrying 15 amino acid pseudo repeats, and a C-terminal globular head (or knob) which recognizes the primary cell receptor. Due to their exceptional stability, which allows easy distinction of native trimers from unfolded forms and folding intermediates, adenovirus fibres are a very good model system for studying folding in vivo and in vitro. To understand the folding and stability of the trimeric fibres, the unfolding pathway of adenovirus 2 fibres induced by SDS and temperature has been investigated. Unfolding starts from the N-terminus and a stable intermediate accumulates that has the C-terminal head and part of the shaft structure (shown by electron microscopy). The unfolded part can be digested away using limited proteolysis, and the precise digestion sites have been determined. The remaining structured fragment is recognized by monoclonal antibodies that are specific for the trimeric globular head and therefore retains a native trimeric structure. Taken together, our results indicate that adenovirus fibres carry a stable C-terminal domain, consisting of the knob with five shaft-repeats.  相似文献   

7.
The trimeric bacteriophage P22 tailspike adhesin exhibits a domain in which three extended strands intertwine, forming a single turn of a triple beta-helix. This domain contains a single hydrophobic core composed of residues contributed by each of the three sister polypeptide chains. The triple beta-helix functions as a molecular clamp, increasing the stability of this elongated structural protein. During folding of the tailspike protein, the last precursor before the native state is a partially folded trimeric intermediate called the protrimer. The transition from the protrimer to the native state results in a structure that is resistant to denaturation by heat, chemical denaturants, and proteases. Random mutations were made in the region encoding residues 540-548, where the sister chains begin to wrap around each other. From a set of 26 unique single amino acid substitutions, we characterized mutations at G546, N547, and I548 that retarded or blocked the protrimer to native trimer transition. In contrast, many non-conservative substitutions were tolerated at residues 540-544. Sucrose gradient analysis showed that protrimer-like mutants had reduced sedimentation, 8.0 S to 8.3 S versus 9.3 S for the native trimer. Mutants affected in the protrimer to native trimer transition were also destabilized in their native state. These data suggest that the folding of the triple beta-helix domain drives transition of the protrimer to the native state and is accompanied by a major rearrangement of polypeptide chains.  相似文献   

8.
In vitro folding pathway of phage P22 tailspike protein.   总被引:10,自引:0,他引:10  
A Fuchs  C Seiderer  R Seckler 《Biochemistry》1991,30(26):6598-6604
The intracellular chain folding and association pathway of the thermostable, trimeric phage P22 tailspike endorhamnosidase has been the subject of a previous detailed study employing temperature-sensitive folding mutants. Recently, reconstitution of native tailspikes from completely unfolded polypeptides has been accomplished, providing a model system to compare protein folding pathways in vivo and in vitro. The in vitro reconstitution pathway of the protein after dilution from guanidine hydrochloride or acid-urea solutions at 10 degrees C was characterized by spectroscopic and hydrodynamic techniques, and may be summarized as an ordered sequence of folding, association, and folding reactions. Multiphasic folding of monomers was indicated by changes in circular dichroism and fluorescence, with a rate constant of k = 1.6 X 10(-3) s-1 for the slowest phase observed spectroscopically. Trimerization of structured monomers was followed by size-exclusion HPLC and was completed within 1.5 h at a protein concentration of 20 micrograms/mL. Although at this time trimers did not exchange subunits, they were readily dissociable by dodecyl sulfate in the cold. Formation of native, detergent-resistant trimers was only completed after 3 days of reconstitution at 10 degrees C. The reconstitution pathway of the tailspike protein closely resembles its intracellular maturation path. Thus, the in vitro reconstitution system, as a valid model of chain folding and association in vivo, should provide the tools to localize the steps or intermediates on the pathway that are the targets of temperature-sensitive folding mutations.  相似文献   

9.
In the assembly pathway of the trimeric P22 tailspike protein, the protein conformation critical for the partitioning between productive folding and off-pathway aggregation is a monomeric folding intermediate. The central domain of tailspike, a large right-handed parallel beta-helix, is essentially structured in this species. We used the isolated beta-helix domain (Bhx), expressed with a hexahistidine tag, to investigate the mechanism of aggregation without the two terminal domains present in the complete protein. Although Bhx has been shown to fold reversibly at low ionic strength conditions, increased ionic strength induced aggregation with a maximum at urea concentrations corresponding to the midpoint of urea-induced folding transitions. According to size exclusion chromatography, aggregation appeared to proceed via a linear polymerization mechanism. Circular dichroism indicated a secondary structure content of the aggregates similar to that of the native state, but at the same time their tryptophan fluorescence was largely quenched. Microscopic analysis of the aggregates revealed a variety of morphologies; among others, fibrils with fine structure were observed that exhibited bright green birefringence if viewed under cross-polarized light after staining with Congo red. These observations, together with the effects of folding mutations on the aggregation process, indicate the involvement of a partially structured intermediate distinct from both unfolded and native Bhx.  相似文献   

10.
By means of genetic screens, a great number of mutations that affect the folding and stability of the tailspike protein from Salmonella phage P22 have been identified. Temperature-sensitive folding (tsf) mutations decrease folding yields at high temperature, but hardly affect thermal stability of the native trimeric structure when assembled at low temperature. Global suppressor (su) mutations mitigate this phenotype. Virtually all of these mutations are located in the central domain of tailspike, a large parallel beta-helix. We modified tailspike by rational single amino acid replacements at three sites in order to investigate the influence of mutations of two types: (1) mutations expected to cause a tsf phenotype by increasing the side-chain volume of a core residue, and (2) mutations in a similar structural context as two of the four known su mutations, which have been suggested to stabilize folding intermediates and the native structure by the release of backbone strain, an effect well known for residues that are primarily evolved for function and not for stability or folding of the protein. Analysis of folding yields, refolding kinetics and thermal denaturation kinetics in vitro show that the tsf phenotype can indeed be produced rationally by increasing the volume of side chains in the beta-helix core. The high-resolution crystal structure of mutant T326F proves that structural rearrangements only take place in the remarkably plastic lumen of the beta-helix, leaving the arrangement of the hydrogen-bonded backbone and thus the surface of the protein unaffected. This supports the notion that changes in the stability of an intermediate, in which the beta-helix domain is largely formed, are the essential mechanism by which tsf mutations affect tailspike folding. A rational design of su mutants, on the other hand, appears to be more difficult. The exchange of two residues in the active site expected to lead to a drastic release of steric strain neither enhanced the folding properties nor the stability of tailspike. Apparently, side-chain interactions in these cases overcompensate for backbone strain, illustrating the extreme optimization of the tailspike protein for conformational stability. The result exemplifies the view arising from the statistical analysis of the distribution of backbone dihedral angles in known three-dimensional protein structures that the adoption of straight phi/psi angles other than the most favorable ones is often caused by side-chain interactions. Proteins 2000;39:89-101.  相似文献   

11.
The P22 tailspike protein folds by forming a folding competent monomer species that forms a dimeric, then a non-native trimeric (protrimer) species by addition of folding competent monomers. We have found three residues, R549, R563, and D572, which play a critical role in both the stability of the native tailspike protein and assembly and maturation of the protrimer. King and colleagues reported previously that substitution of R563 to glutamine inhibited protrimer formation. We now show that the R549Q and R563K variants significantly delay the protrimer-to-trimer transition both in vivo and in vitro. Previously, variants that destabilize intermediates have shown wild-type chemical stability. Interestingly, both the R549Q and R563K variants destabilize the tailspike trimer in guanidine denaturation studies, indicating that they represent a new class of tailspike folding variants. R549Q has a midpoint of unfolding at 3.2M guanidine, compared to 5.6M for the wild-type tailspike protein, while R563K has a midpoint of unfolding of 1.8 M. R549Q and R563K also denature over a broader pH range than the wild-type tailspike protein and both proteins have increased sensitivity to pH during refolding, suggesting that both residues are involved in ionic interactions. Our model is that R563 and D572 interact to stabilize the adjacent turn, aiding the assembly of the dimer and protrimer species. We believe that the interaction between R563 and D572 is also critical following assembly of the protrimer to properly orient D572 in order to form a salt bridge with R549 during protrimer maturation.  相似文献   

12.
The thermostable tailspike endorhamnosidase of bacteriophage P22 has been investigated by laser Raman spectroscopy to determine the protein's secondary structure and the basis of its thermostability. The conformation of the native tailspike, determined by Raman amide I and amide III band analyses, is 52 to 61% beta-sheet, 24 to 27% alpha-helix, 15 to 21% beta-turn and 0 to 10% other structure types. The secondary structure of the wild-type tailspike, as monitored by the conformation-sensitive Raman amide bands, was stable to 80 degrees C, denatured reversibly between 80 and 90 degrees C, and irreversibly above 90 degrees C. The purified native form of a temperature-sensitive folding mutant (tsU38) contains secondary structures virtually identical to those in the wild-type in aqueous solution at physiological conditions (0.05 M-Na+ (pH 7.5], at both permissive (20 degrees C) and restrictive (40 degrees C) temperatures. This supports previous results showing that the mutational defect at 40 degrees C affects intermediates in the folding pathway rather than the native structure. At temperatures above 60 degrees C the wild-type and mutant forms were distinguishable: the reversible and irreversible denaturation thresholds were approximately 15 to 20 degrees C lower in the mutant than in the wild-type protein. The irreversible denaturation of the mutant tailspikes led to different aggregation/polymerization products from the wild-type, indicating that the mutation altered the unfolding pathway. In both cases only a small percentage of the native secondary structure was altered by irreversible thermal denaturation, indicating that the aggregated states retain considerable native structure.  相似文献   

13.
High-sensitivity differential scanning calorimetry and CD spectroscopy have been used to probe the structural stability and measure the folding/unfolding thermodynamics of a Pro117-->Gly variant of staphylococcal nuclease. It is shown that at neutral pH the thermal denaturation of this protein is well accounted for by a 2-state mechanism and that the thermally denatured state is a fully hydrated unfolded polypeptide. At pH 3.5, thermal denaturation results in a compact denatured state in which most, if not all, of the helical structure is missing and the beta subdomain apparently remains largely intact. At pH 3.0, no thermal transition is observed and the molecule exists in the compact denatured state within the 0-100 degrees C temperature interval. At high salt concentration and pH 3.5, the thermal unfolding transition exhibits 2 cooperative peaks in the heat capacity function, the first one corresponding to the transition from the native to the intermediate state and the second one to the transition from the intermediate to the unfolded state. As is the case with other proteins, the enthalpy of the intermediate is higher than that of the unfolded state at low temperatures, indicating that, under those conditions, its stabilization must be of an entropic origin. The folding intermediate has been modeled by structural thermodynamic calculations. Structure-based thermodynamic calculations also predict that the most probable intermediate is one in which the beta subdomain is essentially intact and the rest of the molecule unfolded, in agreement with the experimental data. The structural features of the equilibrium intermediate are similar to those of a kinetic intermediate previously characterized by hydrogen exchange and NMR spectroscopy.  相似文献   

14.
The predominantly beta-sheet phage P22 tailspike adhesin contains eight reduced cysteines per 666 residue chain, which are buried and unreactive in the native trimer. In the pathway to the native trimer, both in vivo and in vitro transient interchain disulfide bonds are formed and reduced. This occurs in the protrimer, an intermediate in the formation of the interdigitated beta-sheets of the trimeric tailspike. Each of the eight cysteines was replaced with serine by site-specific mutagenesis of the cloned P22 tailspike gene and the mutant genes expressed in Escherichia coli. Although the yields of native-like Cys>Ser proteins varied, sufficient soluble trimeric forms of each of the eight mutants accumulated to permit purification. All eight single Cys>Ser mature proteins maintained the high thermostability of the wild type, as well as the wild-type biological activity in forming infectious virions. Thus, these cysteine thiols are not required for the stability or activity of the native state. When their in vivo folding and assembly kinetics were examined, six of the mutant substitutions--C267S, C287S, C458S, C613S, and C635S--were significantly impaired at higher temperatures. Four--C290S, C496, C613S, and C635--showed significantly impaired kinetics even at lower temperatures. The in vivo folding of the C613S/C635S double mutant was severely defective independent of temperature. Since the trimeric states of the single Cys>Ser substituted chains were as stable and active as wild type, the impairment of tailspike maturation presumably reflects problems in the in vivo folding or assembly pathways. The formation or reduction of the transient interchain disulfide bonds in the protrimer may be the locus of these kinetic functions.  相似文献   

15.
Though disulfide bonds are absent from P22 tailspike protein in its native state, a disulfide-bonded trimeric intermediate has been identified in the tailspike folding and assembly pathway in vitro. The formation of disulfide bonds is critical to efficient assembly of native trimers as mutations at C-terminal cysteines reduce or inhibit trimer formation. We investigated the effect of different redox folding environments on tailspike formation to discover if simple changes in reducing potential would facilitate trimer formation. Expression of tailspike in trxB cell lines with more oxidizing cytoplasms led to lower trimer yields; however, observed assembly rates were unchanged. In vitro, the presence of any redox buffer decreased the overall yield compared to non-redox buffered controls; however, the greatest yields of the native trimer were obtained in reducing rather than oxidizing environments at pH 7. Slightly faster trimer formation rates were observed in the redox samples at pH 7, perhaps by accelerating the reduction of the disulfide-bonded protrimer to the native trimer. These rates and the effects of the redox system were found to depend greatly on the pH of the refolding reaction. Oxidized glutathione (GSSG) trapped a tailspike intermediate, likely as a mixed disulfide. This trapped intermediate was able to form native trimer upon addition of dithiothreitol (DTT), indicating that the trapped intermediate is on the assembly pathway, rather than the aggregation pathway. Thus, the presence of redox agents interfered with the ability of the tailspike monomers to associate, demonstrating that disulfide associations play an important role during the assembly of this cytoplasmic protein.  相似文献   

16.
Folding and unfolding are fundamental biological processes in cell and are important for the biological functions of proteins. Characterizing the folding and unfolding kinetics of proteins is important for understanding the energetic landscape leading to the active native conformations of these molecules. However, the thermal or chemical-induced unfolding of many proteins is irreversible in vitro, precluding characterization of the folding kinetics of such proteins, just as it is impossible to “un-boil” an egg. Irreversible unfolding often manifests as irreversible aggregation of unfolded polypeptide chains, which typically occurs between denatured protein molecules in response to the exposure of hydrophobic residues to solvent. An example of such a protein where thermal denaturation results in irreversible aggregation is the β-1,4 endoxylanase from Bacillus circulans (BCX). Here, we report the use of single-molecule atomic force microscopy to directly measure the folding kinetics of BCX in vitro. By mechanically unfolding BCX, we essentially allowed only one unfolded molecule to exist in solution at a given time, effectively eliminating the possibility for aggregation. We found that BCX can readily refold back to the native state, allowing us to measure its folding kinetics for the first time. Our results demonstrate that single-molecule force-spectroscopy-based methods can adequately tackle the challenge of “un-boiling eggs”, providing a general methodology to characterize the folding kinetics of many proteins that suffer from irreversible denaturation and thus cannot be characterized using traditional equilibrium methodologies.  相似文献   

17.
Although numerous studies have been directed at understanding early folding events through the characterization of folding intermediates, there are few reports on the very late folding events, i.e. on the events taking place on the native side of the folding barrier and on alternative conformations of the folded state. To shed further light on these issues, we have characterized by protein engineering the structure of an expanded but native-like intermediate that accumulates transiently in the unfolding reaction of the small protein S6 in the presence of SDS. The results show that the SDS micelles attack the native protein in the dead-time of the denaturation experiment, causing an expansion of the hydrophobic core prior to the major unfolding transition. We distinguish two forms of the unfolding intermediate that are correlated with the micellar structure. With spherical micelles, the expansion is seen mainly as a weakening of the interactions which anchor the two alpha-helices to the core of the S6 structure. With cylindrical micelles, prevalent at higher SDS concentrations, the expansion is more global and produces a species which closely resembles the transition-state structure for unfolding in GdmCl. Despite the highly weakened core, the micelle-associated intermediate displays cooperative unfolding, indicating a significant structural plasticity of the species on the native side of the folding barrier in the presence of SDS.  相似文献   

18.
Ligand-induced biphasic protein denaturation   总被引:3,自引:0,他引:3  
The results of a thermodynamic calculation of the excess heat capacity that is based on experimental observations and that incorporates the effects of ligand binding on the two-state, thermal denaturation of a protein are presented. For a protein with a single-binding site on the native species and at subsaturating concentrations of ligand, bimodal or unimodal thermograms were computed merely by assuming a larger or smaller ligand association constant, respectively. The calculated thermograms for this simplified case show the salient features of those observed by differential scanning calorimetry for defatted human albumin monomer in the absence and presence of three ligands for which the protein has higher, intermediate, and lower affinity (Shrake, A., and Ross, P. D. (1988) J. Biol. Chem. 263, 15392-15399). The computation demonstrates that biphasic unfolding can result from a significant increase in the free energy of denaturation (and the transition temperature) during the course of unfolding due to a substantial increase in free ligand concentration caused by the release of bound ligand by denaturing protein. Such ligand-induced biphasic denaturation does not relate to macromolecular substructure but derives from a perturbation, during unfolding, of the ligand binding equilibrium, which is coupled to the equilibrium between the folded and unfolded protein species. Thus, this bimodality is not limited to thermally induced unfolding but is operative independent of the means used to effect denaturation and therefore must be considered when studying any macromolecular folding/unfolding reaction in the presence of ligand.  相似文献   

19.
During denaturant-induced equilibrium (un)folding of wild-type apoflavodoxin from Azotobacter vinelandii, a molten globule-like folding intermediate is formed. This wild-type protein contains three tryptophans. In this study, we use a general approach to analyze time-resolved fluorescence and steady-state fluorescence data that are obtained upon denaturant-induced unfolding of a single-tryptophan-containing variant of apoflavodoxin [i.e., W74/F128/F167 (WFF) apoflavodoxin]. The experimental data are assembled in matrices, and subsequent singular-value decomposition of these matrices (i.e., based on either steady-state or time-resolved fluorescence data) shows the presence of three significant, and independent, components. Consequently, to further analyze the denaturation trajectories, we use a three-state protein folding model in which a folding intermediate and native and unfolded protein molecules take part. Using a global analysis procedure, we determine the relative concentrations of the species involved and show that the stability of WFF apoflavodoxin against global unfolding is ~4.1 kcal/mol. Analysis of time-resolved anisotropy data of WFF apoflavodoxin unfolding reveals the remarkable observation that W74 is equally well fixed within both the native protein and the molten globule-like folding intermediate. Slight differences between the direct environments of W74 in the folding intermediate and native protein cause different rotameric populations of the indole in both folding species as fluorescence lifetime analysis reveals. Importantly, thermodynamic analyses of the spectral denaturation trajectories of the double-tryptophan-containing protein variants WWF apoflavodoxin and WFW apoflavodoxin show that these variants are significantly more stable (5.9 kcal/mol and 6.8 kcal/mol, respectively) than WFF apoflavodoxin (4.1 kcal/mol) Hence, tryptophan residues contribute considerably to the 10.5 kcal/mol thermodynamic stability of native wild-type apoflavodoxin.  相似文献   

20.
The P22 tailspike adhesin is an elongated thermostable trimer resistant to protease digestion and to denaturation in sodium dodecyl sulfate. Monomeric, dimeric, and protrimeric folding and assembly intermediates lack this stability and are thermolabile. In the native trimer, three right-handed parallel beta-helices (residues 143-540), pack side-by-side around the three-fold axis. After residue 540, these single chain beta-helices terminate and residues 541-567 of the three polypeptide chains wrap around each other to form a three-stranded interdigitated beta-helix. Three mutants located in this region -- G546D, R563Q, and A575T -- blocked formation of native tailspike trimers, and accumulated soluble forms of the mutant polypeptide chains within cells. The substitutions R563Q and A575T appeared to prevent stable association of partially folded monomers. G546D, in the interdigitated region of the chain, blocked tailspike folding at the transition from the partially-folded protrimer to the native trimer. The protrimer-like species accumulating in the G546D mutant melted out at 42 degrees C and was trypsin and SDS sensitive. The G546D defect was not corrected by introduction of global suppressor mutations, which correct kinetic defects in beta-helix folding. The simplest interpretation of these results is that the very high thermostability (T(m) = 88 degrees C), protease and detergent resistance of the native tailspike acquired in the protrimer-to-trimer transition, depends on the formation of the three-stranded interdigitated region. This interdigitated beta-helix appears to function as a molecular clamp insuring thermostable subunit association in the native trimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号