首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phospholipase A(1) activities have been detected in most cells where they have been sought and yet their characterization lags far behind that of the phospholipases A(2), C and D. The study presented here details the first cloning and characterization of a cytosolic PLA(1) that exhibits preference for phosphatidylcholine (GPCho) substrates. Trypanosoma brucei phospholipase A(1) (TbPLA(1)) is unique from previously identified eukaryotic PLA(1) because it is evolutionarily related to bacterial secreted PLA(1). A T. brucei ancestor most likely acquired the PLA(1) from a horizontal gene transfer of a PLA(1) from Sodalis glossinidius, a bacterial endosymbiont of tsetse flies. Nano-electrospray ionization tandem mass spectrometry analysis of TbPLA(1) mutants established that the enzyme functions in vivo to synthesize lysoGPCho metabolites containing long-chain mostly polyunsaturated and highly unsaturated fatty acids. Analysis of purified mutated recombinant forms of TbPLA(1) revealed that this enzyme is a serine hydrolase whose catalytic mechanism involves a triad consisting of the amino acid residues Ser-131, His-234 and Asp-183. The TbPLA(1) homozygous null mutants generated here constitute the only PLA(1) double knockouts from any organism.  相似文献   

2.
Protozoan Kinetoplastida, a group that comprises the pathogenic Trypanosoma brucei, compartmentalize several metabolic systems such as the major part of the glycolytic pathway, in multiple peroxisome-like organelles, designated glycosomes. Trypanosomes have a complicated life cycle, involving two major, distinct stages living in the mammalian bloodstream and several stages inhabiting different body parts of the tsetse fly. Previous studies on non-differentiating trypanosomes have shown that the metabolism and enzymatic contents of glycosomes in bloodstream-form and cultured procyclic cells, representative of the stage living in the insect's midgut, differ considerably. In this study, the morphology of glycosomes and their position relative to the lysosome were followed, as were the levels of some glycosomal enzymes and markers for other subcellular compartments, during the differentiation from bloodstream-form to procyclic trypanosomes. Our studies revealed a small tendency of glycosomes to associate with the lysosome when a population of long-slender bloodstream forms differentiated into short-stumpy forms which are pre-adapted to live in the fly. The same phenomenon was observed during the short-stumpy to procyclic transformation, but then the process was fast and many more glycosomes were associated with the dramatically enlarged degradation organelle. The observations suggested an efficient glycosome turnover involving autophagy. Changes observed in the levels of marker enzymes are consistent with the notion that, during differentiation, glycosomes with enzymatic contents specific for the old life-cycle stage are degraded and new glycosomes with different contents are synthesized, causing that the metabolic repertoire of trypanosomes is, at each stage, optimally adapted to the environmental conditions encountered.  相似文献   

3.
4.
We have previously reported the detection of two unusual nucleotides, pdJ and pdV, in the DNA of Trypanosoma brucei (Gommers-Ampt et al., 1991). pdJ was found to be a novel nucleotide and is possibly involved in the regulation of variant specific surface antigen gene expression in trypanosomes. Recent evidence suggests that V could be a precursor of J, making V a key compound in the study of the biosynthesis and function of J. We have therefore determined the structure of V and here we present proof that V is HOMeU. The identity is based on a detailed comparison of dV(p) with authentic HOMedU(p), showing: I) co-migration in three different liquid chromatography analyses II) identical UV absorbance characteristics III) identical behavior in acetyl-pentafluorobenzyl derivatization and subsequent Gas chromatography/Mass spectrometry (GC/MS). The GC/MS technique has not been used before to analyse HOMedU purified from biological material. Because of its high sensitivity, it may also be useful for the detection of the low amounts of HOMedU resulting from oxidative damage of DNA.  相似文献   

5.
The mitochondrial DNA of Trypanosoma brucei, termed kinetoplast DNA or kDNA, consists of thousands of minicircles and a small number of maxicircles catenated into a single network organized as a nucleoprotein disk at the base of the flagellum. Minicircles are replicated free of the network but still contain nicks and gaps after rejoining to the network. Covalent closure of remaining discontinuities in newly replicated minicircles after their rejoining to the network is delayed until all minicircles have been replicated. The DNA ligase involved in this terminal step in minicircle replication has not been identified. A search of kinetoplastid genome databases has identified two putative DNA ligase genes in tandem. These genes (LIG k alpha and LIG k beta) are highly diverged from mitochondrial and nuclear DNA ligase genes of higher eukaryotes. Expression of epitope-tagged versions of these genes shows that both LIG k alpha and LIG k beta are mitochondrial DNA ligases. Epitope-tagged LIG k alpha localizes throughout the kDNA, whereas LIG k beta shows an antipodal localization close to, but not overlapping, that of topoisomerase II, suggesting that these proteins may be contained in distinct structures or protein complexes. Knockdown of the LIG k alpha mRNA by RNA interference led to a cessation of the release of minicircles from the network and resulted in a reduction in size of the kDNA networks and rapid loss of the kDNA from the cell. Closely related pairs of mitochondrial DNA ligase genes were also identified in Leishmania major and Crithidia fasciculata.  相似文献   

6.
7.
Stable introduction of exogenous DNA into Trypanosoma brucei.   总被引:4,自引:1,他引:3       下载免费PDF全文
W C Gibson  T C White  P W Laird    P Borst 《The EMBO journal》1987,6(8):2457-2461
The lack of a homologous transformation system for trypanosomes is a serious handicap to the study of gene expression in these protozoans. Attempts to develop such a system have been complicated by the lack of suitable homologous vectors and ignorance of the requirements for mRNA synthesis which is discontinuous in trypanosomes. We have found that Trypanosoma congolense, a close relative of T. brucei, contains exceptionally small chromosomes, which can be isolated whole and distinguished from those of T. brucei by the presence of a unique satellite DNA. We show here that mini-chromosomes from T. congolense can be introduced into T. brucei by electroporation and detected by hybridisation with T. congolense satellite DNA. The introduced DNA can survive through several generations in the absence of any selective pressure. These results provide the basis for the development of a transformation system for trypanosomes.  相似文献   

8.
The genome of the protozoan Trypanosoma brucei contains a set of about 100 minichromosomes of about 50 to 150 kb in size. The small size of these chromosomes, their involvement in antigenic variation, and their mitotic stability make them ideal candidates for a structural analysis of protozoan chromosomes and their telomeres. We show that a subset of the minichromosomes is composed predominantly of simple-sequence DNA, with over 90% of the length of the minichromosome consisting of a tandem array of 177-bp repeats, indicating that these molecules have limited protein-coding capacity. Proceeding from the tip of the telomere to a chromosome internal position, a subset of the minichromosomes contained the GGGTTA telomere repeat, a 29-bp telomere-derived repeat, a region containing 74-bp G + C-rich direct repeats separated by approximately 155 bp of A + T-rich DNA that has a bent character, and 50 to 150 kb of the 177-bp repeat. Several of the minichromosome-derived telomeres did not encode protein-coding genes, indicating that the repertoire of telomeric variant cell surface glycoprotein genes is restricted to some telomeres only. The telomere organization in trypanosomes shares striking similarities to the organization of telomeres and subtelomeres in humans, yeasts, and plasmodia. An electron microscopic analysis of the minichromosomes showed that they are linear molecules without abnormal structures in the main body of the chromosome. The structure of replicating molecules indicated that minichromosomes probably have a single bidirectional origin of replication located in the body of the chromosome. We propose a model for the structure of the trypanosome minichromosomes.  相似文献   

9.
10.
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-alpha-d-mannose, UDP-alpha-d-N-acetylglucosamine, UDP-alpha-d-glucose, UDP-alpha-galactopyranose, and GDP-beta-l-fucose, were common to all three species; one, UDP-alpha-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-beta-l-rhamnopyranose, UDP-alpha-d-xylose, and UDP-alpha-d-glucuronic acid, were found only in T. cruzi; and one, GDP-alpha-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.  相似文献   

11.
The predominant DNA polymerase activity has been isolated from the parasitic flagellated protozoan, Trypanosoma brucei. Like mammalian DNA polymerase-alpha the trypanosome DNA polymerase is of large molecular weight (S, 6--8), is resistant to thermal denaturation, is sensitive to N-ethylmaleimide, and is inhibited by high ionic strength. However, specific antisera that cross-react with mammalian DNA polymerase-alpha from different species fail to cross-react with the trypanosome polymerase.  相似文献   

12.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatids, is composed of several thousand minicircles and a few dozen maxicircles, all of which are topologically interlocked in a giant network. We have studied the replication of maxicircle DNA, using electron microscopy to analyze replication intermediates from both Crithidia fasciculata and Trypanosoma brucei. Replication intermediates were stabilized against branch migration by introducing DNA interstrand cross-links in vivo with 4,5',8-trimethylpsoralen and UV radiation. Electron microscopy of individual maxicircles resulting from a topoisomerase II decatenation of kinetoplast DNA networks revealed intact maxicircle theta structures. Analysis of maxicircle DNA linearized by restriction enzyme cleavage revealed branched replication intermediates derived from theta structures. Measurements of the linearized branched molecules in both parasites indicate that replication initiates in the variable region (a noncoding segment characterized by repetitive sequences) and proceeds unidirectionally, clockwise on the standard map.  相似文献   

13.
14.
The editosome is a multiprotein complex that catalyzes the insertion and deletion of uridylates that occurs during RNA editing in trypanosomatids. We report the identification of nine novel editosome proteins in Trypanosoma brucei. They were identified by mass spectrometric analysis of functional editosomes that were purified by serial ion exchange/gel permeation chromatography, immunoaffinity chromatography specific to the TbMP63 editosome protein, or tandem affinity purification based on a tagged RNA editing ligase. The newly identified proteins have ribonuclease and/or RNA binding motifs suggesting nuclease function for at least some of these. Five of the proteins are interrelated, as are two others, and one is related to four previously identified editosome proteins. The implications of these findings are discussed.  相似文献   

15.
Trypanosoma brucei undergoes many morphological and biochemical changes during transformation from the bloodstream trypomastigote to the insect procyclic trypomastigote form. We cloned and determined the complete nucleotide sequence of a developmentally regulated cDNA. The corresponding mRNA was abundant in in vitro-cultivated procyclics but absent in bloodstream forms. The trypanosome genome contains eight genes homologous to this cDNA, arranged as four unlinked pairs of tandem repeats. The longest open reading frame of the cDNA predicts a protein of 15 kilodaltons, the central portion of which consists of 29 tandem glutamate-proline dipeptides. The repetitive region is preceded by an amino-terminal signal sequence and followed by a hydrophobic domain that could serve as a membrane anchor; the mRNA was found on membrane-bound polyribosomes. These results suggest that the protein is membrane associated.  相似文献   

16.
The kinetoplast DNA of Trypanosoma brucei consists of 104 minicircles (0.3 μm) and 102 maxicircles (6 μm) held together by catenation in a complex network. In electron micrographs of kinetoplast DNA spread in a protein monolayer we have identified four types of network with the appearance of different stages in network replication and segregation. We show that each network type has characteristic properties with respect to shape, size, number, and location of maxicircle loops and nicked or covalently closed character of minicircles and maxicircles. We propose a detailed model for network segregation that involves a gradual elongation of the network, followed by network cleavage. During this process the basic network structure remains unaltered, implying a complicated mechanism of minicircle rearrangements.  相似文献   

17.
Identification of a telomeric DNA sequence in Trypanosoma brucei   总被引:35,自引:0,他引:35  
E H Blackburn  P B Challoner 《Cell》1984,36(2):447-457
A simple repetitive DNA sequence in the nuclear genome of Trypanosoma brucei, consisting of tandem repeats of the hexanucleotide 5' CCCTAA 3', was identified as being telomeric by several criteria. This sequence was specifically labeled with T. brucei genomic DNA as the template for in vitro nick translation by DNA polymerase I, and was present in Bal 31 nuclease sensitive, genomic restriction fragments of the large sizes expected in this organism for at least some telomeric regions. The same repeated sequence was found in six other flagellates tested. A segment of DNA from T. brucei including this telomeric sequence was cloned in pBR322 and characterized. The cloned segment contained a sequence highly homologous to the 3' ends of several variant surface glycoprotein mRNAs, upstream of the tandemly repeated hexanucleotide sequence.  相似文献   

18.
Hong M  Simpson L 《Protist》2003,154(2):265-279
The sequences of seven new Trypanosoma brucei kinetoplast DNA minicircles were obtained. A detailed comparative analysis of these sequences and those of the 18 complete kDNA minicircle sequences from T. brucei available in the database was performed. These 25 different minicircles contain 86 putative gRNA genes. The number of gRNA genes per minicircle varies from 2 to 5. In most cases, the genes are located between short imperfect inverted repeats, but in several minicircles there are inverted repeat cassettes that did not contain identifiable gRNA genes. Five minicircles contain single gRNA genes not surrounded by identifiable repeats. Two pairs of closely related minicircles may have recently evolved from common ancestors: KTMH1 and KTMH3 contained the same gRNA genes in the same order, whereas KTCSGRA and KTCSGRB contained two gRNA genes in the same order and one gRNA gene specific to each. All minicircles could be classified into two classes on the basis of a short substitution within the highly conserved region, but the minicircles in these two classes did not appear to differ in terms of gRNA content or gene organization. A number of redundant gRNAs containing identical editing information but different sequences were present. The alignments of the predicted gRNAs with the edited mRNA sequences varied from a perfect alignment without gaps to alignments with multiple mismatches. Multiple gRNAs overlapped with upstream gRNAs, but in no case was a complete set of overlapping gRNAs covering an entire editing domain obtained. We estimate that a minimum set of approximately 65 additional gRNAs would be required for complete overlapping sets. This analysis should provide a basis for detailed studies of the evolution and role in RNA editing of kDNA minicircles in this species.  相似文献   

19.
The variant surface glycoprotein of African trypanosomes is released after overnight incubation of parasites at 4 degrees C in pH 5.5 phosphate glucose buffer and may be purified by Concanavalin A Sepharose affinity chromatography. The addition of proteinase inhibitors during the parasite incubation is necessary to prevent the proteolysis of the variant surface glycoprotein by the trypanosomal released proteinases. Using this procedure without the addition of proteinase inhibitors, the proteolytic activities, released from the bloodstream forms Trypanosoma brucei brucei variant AnTat 1.1, were separated by Concanavalin-A Sepharose affinity chromatography. The unretained material (F1) shows hydrolytic activity against the two synthetic substrates Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, which is stimulated by dithiothreitol, but not inhibited by E-64, and characterized by an alkaline pH optimum and an estimated molecular mass of 80-100 kDa. The Michaelis constant for the substrates Z-Arg-Arg-AMC and Z-Phe-Arg-AMC was, respectively, 2.8 and 6.7 microM. The retained material eluted by addition of 1% methyl-alpha-D-mannopyranoside (F2) shows hydrolytic activity against the synthetic substrate Z-Phe-Arg-AMC, which is stimulated by dithiothreitol, inhibited by E-64, active between pH 6.0 and 8.0, and could be separated into two peaks of activity by HPLC, one peak of high molecular mass (greater than 70 kDa) and the other peak of lower molecular mass (30-70 kDa). By electrophoresis in gels containing gelatin as substrate, this fraction contains several proteins with gelatinolytic activity, whereas the unretained fraction F1 did not have any gelatinolytic activity.  相似文献   

20.
RNA turnover in Trypanosoma brucei.   总被引:14,自引:4,他引:10       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号