首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In human erythrocytes, alpha-D-[U-14C]glucose is more efficiently oxidized than beta-D-[U-14C]glucose at a low concentration of the hexose (0.1 mM), but not so at higher glucose concentrations. 2. This unexpected situation may be attributable in part to the lower Km of hexokinase for alpha- than beta-D-glucose, this difference in affinity compensating for the higher maximal velocity found with the beta- rather than alpha-anomer. 3. A contributive role for aldose reductase in the anomeric control of D-glucose 6-phosphate circulation in the pentose phosphate pathway should not be ruled out, since aldose reductase inhibitors decrease the production of 14CO2 by erythrocytes exposed to D-[U-14C]glucose. 4. Nevertheless, the essential role of hexokinase in such an anomeric control is supported by the finding that, in the presence of menadione, which augments considerably D-[U-14C]glucose oxidation but fails to affect D-[5-3H]glucose utilization, the anomeric alpha/beta ratio in 14CO2 production from D-[U-14C]glucose follows, at increasing concentrations of the hexose, the same pattern as that found for its phosphorylation.  相似文献   

2.
This study aims at establishing the contribution of alpha- and beta-D-glucose to the total generation of (3)HOH by rat pancreatic islets exposed to D-[2 - (3)H]glucose or D-[5 - (3)H] glucose at anomeric equilibrium. The islets were incubated for 60 min at 4 degrees C in the presence of equilibrated D-glucose (2.8 and 8.3 mM) mixed with tracer amounts of either alpha- or beta-D-glucose labelled with tritium on either the C (2) or C (5) of the hexose. Relative to their respective concentrations, (3)HOH generation from the anomers labelled with tritium on the C (2) or C (5) of the hexose provided beta/alpha ratios comparable to those previously found at both 2.8 and 8.3 mM, when the islets were exposed to each anomer separately. The relative contributions of each anomer to the total generation of (3)HOH was also close to the theoretical values derived from mathematical models for the catabolism of D-glucose at anomeric equilibrium in rat islets at both 2.8 and 8.3 mM and in the case of both D-[2 - (3)H]glucose and D-[5 - (3)H]glucose. Thus, even in islets exposed to D-glucose at anomeric equilibrium, the metabolic fate of alpha-D-glucose differs vastly from that of beta-D-glucose, the enzyme-to-enzyme channelling between hexokinase isoenzymes, especially glucokinase, and phosphoglucoisomerase being restricted to alpha-D-glucose 6-phosphate.  相似文献   

3.
The metabolism of D-glucose displays anomeric specificity in rat pancreatic islets. The aim of the present report is to investigate whether such a situation implies enzyme-to-enzyme tunnelling of metabolites in the early steps of glycolysis. For such a purpose, the modelling of alpha- and beta-D-glucose catabolism, itself based on available information concerning both the utilisation of these two anomers and the intrinsic properties of phosphoglucoisomerase, was first examined. According to a theoretical model with enzyme-to-enzyme channelling, the generation of 3HOH from D-[2-3H]glucose should be higher in islets exposed to beta-D-glucose rather than alpha-D-glucose, whilst the opposite situation should prevail in the case of D-[5-3H]glucose conversion to 3HOH. Experimental data collected in rat islets incubated for 60 min at 4 degrees C in the presence of either alpha- or beta-D-glucose mixed with tracer amounts of either alpha- or beta-D-[2- 3H]glucose and alpha- or beta-D-[5-3H]glucose indicate that the beta/alpha ratio for D-[2-3H]glucose conversion to 3HOH is indeed higher than the beta/alpha ratio for D-[5-3H]glucose conversion to 3HOH. These findings are consistent with the postulated enzyme-to-enzyme tunnelling of glycolytic intermediates between hexokinase isoenzyme(s), phosphoglucoisomerase and, possibly, phosphofructokinase.  相似文献   

4.
It was recently proposed that alpha-D-glucose 6-phosphate may undergo enzyme-to-enzyme channelling between glucokinase and phosphoglucoisomerase in rat pancreatic islets. The present study aims at exploring whether a different situation prevails in cells deprived of glucokinase, namely in erythrocytes. At anomeric equilibrium, the ratio between D-[2-3H]glucose and D-[5-3H]glucose conversion to 3HOH was lower in rat erythrocytes incubated for 60 min at 4 degrees C in the presence of 2.8 mM, rather than 8.3 mM, D-glucose. This coincided with both a greater relative increase in beta-D-[5-3H]glucose, as compared to alpha-D-[5-3H]glucose, conversion to 3HOH and an increase in the beta/alpha ratio for 3HOH generation from D-[5-3H]glucose in response to an increase in the anomeric concentration from 2.8 to 8.3 mM, the suppression of the difference between the beta/alpha ratios for 3HOH generation from D-[2-3H]glucose and D-[5-3H]glucose in the erythrocytes incubated at 8.3 mM, as distinct from 2.8 mM, alpha- and beta-D-glucose, and a [2-3H]/[5-3H] ratio for 3HOH generation lower than unity in erythrocytes exposed to alpha-D-glucose but not significantly different from unity in the presence of beta-D-glucose. These findings emphasize the relevance of alpha-D-glucose 6-phosphate channelling between hexokinase and phosphoglucoisomerase as a determinant of the difference between D-[2-3H]glucose and D-[5-3H]glucose conversion to 3HOH, and reveal that the regulation of such a tunnelling process by the concentration of the D-glucose represents, in rat erythrocytes, a mirror image of that observed in rat pancreatic islets. The regulation of this process thus tightly depends on the identity of the hexokinase enzyme mainly responsible for the phosphorylation of D-glucose in distinct cell types.  相似文献   

5.
In rat pancreatic islets and erythrocytes, alpha-D-glucose (2.8-5.6 mM) is better metabolized than beta-D-glucose, as judged from the conversion of D-[5-3H]glucose to 3H2O, augmentation in lactic acid production (or output) or oxidation of D-[U-14C]glucose. In tumoral cells, however, whether of the insulin-producing or lymphocytic leukemia type, the anomeric preference for alpha-D-glucose utilization is no longer present when the cells are incubated at comparable glucose concentrations (2.8-4.0 mM). Nevertheless, the tumoral insulin-producing cells are able to display preference for either alpha-D-glucose (at very low glucose concentrations in the 0.14-0.82 mM range) or beta-D-glucose (in the presence of 16.7 mM glucose). These findings indicate that the anomeric specificity of glucose metabolism may differ in distinct cell types, and can be modulated by the ambient glucose concentration. ambient glucose concentration.  相似文献   

6.
The anomeric specificity of D-glucose metabolism in intact hepatocytes remains a matter of debate. This issue was further investigated in the present study, which is based on the quantification of the alpha- and beta-anomers of the 13C-enriched isotopomers of D-glucose generated by rat liver cells exposed to either D-[1-13C] fructose or D-[2-13C] fructose in the presence of D2O. The D-[1-13C]glucose/D-[6-13C]glucose paired ratios found in the cells exposed to D-[1-13C] fructose and the D-[2-13C]glucose/D-[5-13C]glucose paired ratios found in the cells exposed to D-[2-13C] fructose yielded a paired beta/alpha ratio averaging (mean +/- S.E.M.) 79.3 +/- 6.1%. In the case of the isotopomers of D-glucose formed by gluconeogenesis, the D-[2-13C]glucose/D-[5-13C]glucose and D-[3-13C]glucose/D-[4-13C]glucose paired ratios found in cells exposed to D-[1-13C] fructose, as well as the D-[1-13C]glucose/D-[6-13C]glucose and D-[3-13C]glucose/D-[4-13C]glucose paired ratios found in cells exposed to D-[2-13C]fructose, yielded an alpha/beta paired ratio averaging 75.0 +/- 5.8%. Last, in the cells exposed to D-[2-13C]fructose, the beta/alpha ratio for the C2-deuterated isotopomers of D-[2-13C]glucose represented 78.9 +/- 3.7% of that for the C5-deuterated isotopomers of D-[5-13C]glucose. The three values representative of the anomeric specificity of D-glucose production by liver cells were not significantly different from one another, with an overall mean value of 76.9 +/- 3.6%. These findings unambiguously document that the anomeric specificity of phosphoglucoisomerase is operative in intact hepatocytes, resulting in a preferential output of the alpha-anomer of 13C-enriched D-glucose under the present experimental conditions.  相似文献   

7.
The production of 3H2O from alpha- and beta-D-[5-3H]glucose and that of 14CO2 from either alpha- and beta-D-[1-14C] or alpha- and beta-D-[6-14C]glucose were measured in rat pancreatic islets and tumoral insulin-producing cells incubated at 7 degrees C. The ratio in 14CO2 output from D-[1-14C]glucose/D-[6-14C]glucose, the fraction of glucose metabolism occurring through the pentose cycle, and the flow rate through such a cycle were always higher in the presence of beta- than alpha-D-glucose. This indicates that the anomeric specificity of glucose-6-phosphate dehydrogenase is operative in intact islet cells.  相似文献   

8.
D-Glucose was recently reported to stimulate d-fructose phosphorylation by human B-cell glucokinase. The present study aims at investigating the anomeric specificity of such a positive cooperativity. The alpha-anomer of D-glucose was found to increase much more markedly than beta-D-glucose the phosphorylation of D-fructose by human liver glucokinase. Such an anomeric preference diminished at high concentrations of the D-glucose anomers, i.e. when the effect of the aldohexose upon d-fructose phosphorylation became progressively less marked. A comparison between the effects of the two anomers of D-glucose and those of equilibrated D-glucose upon D-fructose phosphorylation by human liver glucokinase indicated that the results obtained with the equilibrated aldohexose were not significantly different from those expected from the combined effects of each anomers of D-glucose. In isolated rat islets incubated for 60 min at 4 degrees C, alpha-D-glucose (5.6 mm), but not beta-D-glucose (also 5.6 mm), augmented significantly the conversion of D-[U-(14)C]fructose (5.0 mm) to acidic radioactive metabolites. Likewise, in islets prelabeled with (45)Ca and perifused at 37 degrees C, D-fructose (20.0 mm) augmented (45)Ca efflux and provoked a biphasic stimulation of insulin release from islets exposed to alpha-D-glucose (5.6 mm), while inhibiting (45)Ca efflux and causing only a sluggish and modest increase in insulin output from islets exposed to beta-D-glucose (also 5.6 mm). The enhancing action of D-glucose upon D-fructose phosphorylation by glucokinase thus displays an obvious anomeric preference for alpha-D-glucose, and such an anomeric specificity remains operative in intact pancreatic islets.  相似文献   

9.
The substrate specificity of immobilized D-glucose isomerase (EC 5.3. 1.5) is investigated with an immobilized enzyme-packed reactor. A series of isomerization experiments with alpha-, beta-, and equilibrated D-glucose solutions indicates that beta anomer as well as alpha anomer is a substrate of the glucose isomerase at pH 7.5 and 60 degrees C. For substrate concentration of 0.028 mol l(-1) (1% w/v), the initial conversion rate of alpha-D-glucose was 43% higher than that with equilibrated glucose at the same concentration and 113% higher than beta-D-glucose conversion rate. This anomeric reactivity of glucose isomerase is mathematically described with a set of kinetic equations based on the reaction steps complying with Briggs-Haldane mechanism and the experimentally determined kinetic constants. The proposed reaction mechanism includes the mutarotation and the isomerization reactions of alpha- and beta-D-glucose with different rate constants.  相似文献   

10.
1. D-Glucose (0.5-16.7 mM) preferentially stimulates aerobic glycolysis and D-[3,4-14C]glucose oxidation, relative to D-[5-3H]glucose utilization in rat pancreatic islets, the concentration dependency of such a preferential effect displaying a sigmoidal pattern. 2. Inorganic and organic calcium antagonists, as well as Ca2+ deprivation, only cause a minor decrease in the ratio between D-[3,4-14C]glucose oxidation and D-[5-3H]glucose utilization in islets exposed to a high concentration of the hexose (16.7 mM). 3. Non-glucidic nutrient secretagogues such as 2-aminobicyclo[2,2,1]heptane-2-carboxylate (BCH), 2-ketoisocaproate and 3-phenylpyruvate fail to stimulate aerobic glycolysis and D-[3,4-14C]glucose oxidation in islets exposed to 6.0 mM D-glucose. Nevertheless, BCH augments [1-14C]pyruvate and [2-14C]pyruvate oxidation. 4. The glucose-induced increment in the paired ratio between D-[3,4-14C]glucose oxidation and D-[5-3H]glucose utilization is impaired in the presence of either cycloheximide or ouabain. 5. These findings suggest that the preferential effect of D-glucose upon aerobic glycolysis and pyruvate decarboxylation is not attributable solely to a Ca(2+)-induced activation of FAD-linked glycerophosphate dehydrogenase and/or pyruvate dehydrogenase, but may also involve an ATP-modulated regulatory process.  相似文献   

11.
Zhang Y  Courtois P  Sener A  Malaisse WJ 《Biochimie》2004,86(12):913-918
The anomeric specificity of D-[U-14C]glucose incorporation into glycogen in rat hemidiaphragms was investigated. For this purpose, the hemidiaphragms were preincubated for 30 min at 37 degrees C and then incubated for 5 min at the same temperature in the presence of alpha- or beta-D-[U-14C]glucose. The concentrations of D-glucose (5.6 or 8.8 mM) and insulin (0 or 10 mU/ml) were identical during the preincubation and incubation periods. The incubation medium was prepared in D2O/H2O (3:1, v/v) in order to delay the interconversion of the D-glucose anomers. In addition to glycogen labelling, the output of radioactive acidic metabolites was also measured. Insulin caused a preferential stimulation of glycogen labelling relative to glycolysis. Such was not the case in response to a rise in D-glucose concentration. At 5.6 mM D-glucose and whether in the presence or absence of insulin, both glycogen labelling and glycolysis were lower with alpha-D-glucose than with beta-D-glucose suggesting a higher rate of beta-D-glucose than alpha-D-glucose transport across the plasma membrane. A mirror image was found at 8.8 mM D-glucose, especially in the absence of insulin. At this close-to-physiological hexose concentration, insulin lowered the alpha/beta ratio for glycogen labelling. On the contrary, the rise in D-glucose concentration increased such a ratio. Since such a rise is probably little affected by any possible anomeric difference in D-glucose transport across the plasma membrane, the present results strongly suggest that the intracellular factors regulating net glycogen synthesis, as well as glycolytic flux, display obvious preference for alpha-D-glucose.  相似文献   

12.
The reversible conversion between D-glucose 6-phosphate and D-fructose 6-phosphate catalyzed by yeast phosphoglucoisomerase was studied by phase sensitive two-dimensional 13C-[1H] EXSY NMR spectroscopy at 150.869 and 125.759 MHz, using 13C-enriched substrates in the C2 position of the D-hexose 6-phosphates. The shape of the build-up curves of the cross-peaks associated with the 13C2 resonances of the alpha- and beta-anomers of both D-[2-13C]glucose 6-phosphate and D-[2-13C]fructose 6-phosphate reveals that phosphoglucoisomerase selectively catalyzes the reversible conversion between alpha-D-[2-13C]glucose 6-phosphate and beta-D-[2-13C]fructose 6-phosphate. Quantitative analysis of the build-up curves by three different methods allowed us to conclude that phosphoglucoisomerase not only selectively channels the latter isomerization but also considerably accelerates the anomerization of both D-hexose 6-phosphates. The rate constants of anomerization were indeed much higher in the presence than in the absence of enzyme. The major finding in the present study consists in the anomeric specificity of phosphoglucoisomerase toward the beta-anomer of D-fructose 6-phosphate both as a substrate and a product, contrary to previous proposals. This finding supports recent evidence suggesting the direct channelling of beta-D-fructose 6-phosphate from phosphoglucoisomerase to phosphofructokinase.  相似文献   

13.
The phosphorylation of D-glucose (1.0mM) was measured in homogenates of tumoral islet cells incubated at 7 degrees C in the presence of labelled alpha- and/or beta-D-glucose, with or without exogenous glucose 6-phosphate. The close-to-maximal reaction velocity of hexokinase was higher with beta- than alpha-D-glucose. The latter anomer inhibited beta-D-glucose phosphorylation more than the beta-anomer decreased the phosphorylation of alpha-D-glucose. This behaviour was accounted for by the higher affinity of hexokinase for alpha- than for beta-D-glucose. These direct measurements of the relative contribution of each anomer to the overall rate of glucose phosphorylation in the presence of mixed populations of alpha- and beta-D-glucose validate the concept that the phosphorylation of D-glucose displays anomeric specificity even when the hexose is used at anomeric equilibrium. Glucose 6-phosphate inhibited the phosphorylation of the two anomers more severely when alpha-D-glucose rather than beta-D-glucose was the most abundant anomer.  相似文献   

14.
It was recently proposed that in rat pancreatic islets exposed to 8.3 mM D-glucose, alpha-D-glucose-6-phosphate undergoes enzyme-to-enzyme channelling between hexokinase isoenzyme(s) and phosphoglucoisomerase. To explore the identity of the hexokinase isoenzyme(s) involved in such a tunnelling process, the generation of 3HOH from the alpha- and beta-anomers of either D-[2-3H]glucose or D-[5-3H]glucose was now measured over 60 min incubation at 4 degrees C in pancreatic islets exposed only to 2.8 mM D-glucose, in order to decrease the relative contribution of glucokinase to the phosphorylation of the hexose. Under these experimental conditions, the ratio for 3HOH production from D-[2-3H]glucose/D-[5-3H]glucose at anomeric equilibrium (39.7 +/- 11.6%) and the beta/alpha ratios for the generation of 3HOH from either the D-[2-3H]glucose anomers (70.9 +/- 12.6%) or the D-[5-3H]glucose anomers (59.6 +/- 12.4%) indicated that a much greater fraction of alpha-D-glucose-6-phosphate escapes from the process of enzyme-to-enzyme channelling in the islets exposed to 2.8 mM, rather than 8.3 mM D-glucose. These findings suggest, therefore, that the postulated process of enzyme-to-enzyme channelling involves mainly glucokinase.  相似文献   

15.
A rise in extracellular D-glucose concentration increases to a greater relative extent the conversion of both D-[5-3H]glucose to 3HOH and D-[6-14C]glucose to 14CO2 in rat purified insulin-producing cells than previously observed in pancreatic islets. In the pure B-cells, the ratio between D-[6-14C]glucose oxidation and D-[5-3H]glucose utilization increases, in a sigmoidal manner, as a function of the hexose concentration. The preferential stimulation by D-glucose of mitochondrial oxidative events is proposed to represent an unusual but essential feature of the metabolic and, hence, functional response of these fuel-sensor cells.  相似文献   

16.
Conflicting data have been reported concerning the anomeric specificity of glucokinase. In the present study, liver hexokinase (Km for D-glucose 0.4 mM) displayed a higher affinity for but lower Vmax. with alpha- than with beta-D-glucose. The velocity of the reaction catalysed by liver glucokinase was higher with with beta- than with alpha-D-glucose, whatever the glucose concentration. The apparent Km of glucokinase was somewhat lower, however, with alpha- than with beta-D-glucose. Comparable results were obtained for the high-Km glucokinase-like enzymic activity present in normal pancreatic islets or insulin-producing tumoral cells. These results suggest that the anomeric specificity of glucokinase cannot account for the higher rate of glycolysis found in islets exposed to alpha- as distinct from beta-D-glucose.  相似文献   

17.
In pancreatic islet homogenates incubated in the presence of a high glucose concentration (40 mM), the beta-anomer of D-glucose is phosphorylated at a higher rate than the alpha-anomer, whether in the absence or presence of exogenous glucose 6-phosphate. However, in intact islets also exposed to 40 mM D-glucose, the production of 3H2O from D-[5-3H] glucose, the oxidation of D-[U-14C] glucose and the glucose-induced increment in either lactate production or 45Ca net uptake, as well as the release of insulin from isolated perfused pancreases, are not higher with beta- than alpha-D-glucose. It is concluded that the rate of glucose utilization by islet cells is not regulated solely by the activity of hexokinase and/or glucokinase.  相似文献   

18.
The metabolism of D-glucose and/or D-fructose was investigated in pancreatic islets from control rats and hereditarily diabetic GK rats. In the case of both D-glucose and D-fructose metabolism, a preferential alteration of oxidative events was observed in islets from GK rats. The generation of 3HOH from D-[5-3H]glucose (or D-[5-3H]fructose) exceeded that from D-[3-3H]glucose (or D-[3-3H]fructose) in both control and GK rats. This difference, which is possibly attributable to a partial escape from glycolysis of tritiated dihydroxyacetone phosphate, was accentuated whenever the rate of glycolysis was decreased, e.g., in the absence of extracellular Ca(2+) or presence of exogenous D-glyceraldehyde. D-Mannoheptulose, which inhibited D-glucose metabolism, exerted only limited effects upon D-fructose metabolism. In the presence of both hexoses, the paired ratio between D-[U-14C]fructose oxidation and D-[3-3H]fructose or D-[5-3H]fructose utilization was considerably increased, this being probably attributable, in part at least, to a preferential stimulation by the aldohexose of mitochondrial oxidative events. Moreover, this coincided with the fact that D-mannoheptulose now severely inhibited the catabolism of D-[5-3H]fructose and D-[U-14C]fructose. The latter situation is consistent with both the knowledge that D-glucose augments D-fructose phosphorylation by glucokinase and the findings that D-mannoheptulose, which fails to affect D-fructose phosphorylation by fructokinase, inhibits the phosphorylation of D-fructose by glucokinase.  相似文献   

19.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

20.
The anomeric specificity of D-glucose phosphorylation by hepatic glucose-6-phosphatase was examined in rat liver microsomes incubated in the presence of carbamoyl phosphate. At 10 degrees C, the Km for the equilibrated hexose and phosphate donor was close to 56 mM and 11 mM, respectively. The enzymic activity, which was increased in diabetic rats, was about 40% lower in untreated than in sonicated microsomes. No anomeric difference in affinity was found in sonicated microsomes. In untreated microsomes, however, the Km for beta-D-glucose was slightly lower than that for alpha-D-glucose. The maximal velocity was higher with beta- than alpha-D-glucose in both untreated and sonicated microsomes. These data indicate that the phosphotransferase activity of glucose-6-phosphatase cannot account for the higher rate of glycolysis and glycogen synthesis found in hepatocytes exposed to alpha- rather than beta-D-glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号