首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives: The administration schedule appears to be a particularly relevant factor in determining the effectiveness of an antiangiogenic drug. A better quantitative knowledge of the interactions between tumour growth and the development of its vasculature could help to design effective therapies.
Material and Methods: Biological and clinical inferences were derived from the analysis of a mathematical model proposed by Hahnfeldt et al. (1999), and some of its variants. In particular, we compared the effect of constant continuous infusion of an anti-angiogenic drug that induces vascular loss, to the effect of periodic, bolus-based therapy.
Results and Conclusions: The role of drug elimination rate and of dose fractionation was investigated, and we show that different schedulings, guaranteeing the same mean value of drug concentration, may exhibit very different long-term responses according to their concentration vs. time profile. For a large class of tumour growth laws, the profiles that approach the constant one are the most effective. This behaviour appears to depend on the 'cooperativity' of the tumour-vasculature interaction and on the functional form of the relationship between tumour growth and vasculature extent. Moreover, we suggest that a therapy approaching constant drug infusion might be advantageous also in the case of cytostatic anti-angiogenic drugs.  相似文献   

2.
We formulate a theoretical model to analyze the vascular remodelling process of an arterio-venous vessel network during solid tumour growth. The model incorporates a hierarchically organized initial vasculature comprising arteries, veins and capillaries, and involves sprouting angiogenesis, vessel cooption, dilation and regression as well as tumour cell proliferation and death. The emerging tumour vasculature is non-hierarchical, compartmentalized into well-characterized zones and transports efficiently an injected drug-bolus. It displays a complex geometry with necrotic zones and “hot spots” of increased vascular density and blood flow of varying size. The corresponding cluster size distribution is algebraic, reminiscent of a self-organized critical state. The intra-tumour vascular-density fluctuations correlate with pressure drops in the initial vasculature suggesting a physical mechanism underlying hot spot formation.  相似文献   

3.
We propose a mathematical modelling system to investigate the dynamic process of tumour cell proliferation, death and tumour angiogenesis by fully coupling the vessel growth, tumour growth and blood perfusion. Tumour growth and angiogenesis are coupled by the chemical microenvironment and the cell-matrix interaction. The haemodynamic calculation is carried out on the updated vasculature. The domains of intravascular, transcapillary and interstitial fluid flow were coupled in the model to provide a comprehensive solution of blood perfusion variables. An estimation of vessel collapse is made according to the wall shear stress criterion to provide feedback on vasculature remodelling. The simulation can show the process of tumour angiogenesis and the spatial distribution of tumour cells for periods of up to 24 days. It can show the major features of tumour and tumour microvasculature during the period such as the formation of a large necrotic core in the tumour centre with few functional vessels passing through, and a well circulated tumour periphery regions in which the microvascular density is high and associated with more aggressive proliferating cells of the growing tumour which are all consistent with physiological observations. The study also demonstrated that the simulation results are not dependent on the initial tumour and networks, which further confirms the application of the coupled model feedback mechanisms. The model enables us to examine the interactions between angiogenesis and tumour growth, and to study the dynamic response of a solid tumour to the changes in the microenvironment. This simulation framework can be a foundation for further applications such as drug delivery and anti-angiogenic therapies.  相似文献   

4.
Wang W  Ma JL  Jia WD  Xu GL 《Cell biology international》2011,35(11):1085-1088
Despite advances in the development of anti-angiogenic agents for cancer treatment, the increase in the survival duration of cancer patients is still rather modest. One major obstacle in anti-angiogenic therapy is the emergence of drug resistance. Understanding the molecular mechanisms that enable a tumour to evade anti-angiogenic treatment is valuable to improve therapeutic efficacy. Targeting blood supply usually causes hypoxic responses of tumours that trigger a series of adaptive changes leading to a resistant phenotype. Periostin, a secreted ECM (extracellular matrix) protein, is mainly produced by CAFs (cancer-associated fibroblasts) on hypoxic stress. As CAFs have been casually linked to tumour resistance to angiogenesis blockade and periostin can influence many aspects of tumour biology, we hypothesized that periostin might be a crucial mediator involved anti-angiogenic resistance in cancer treatment. This hypothesis is indirectly supported by the following facts: (a) high levels of periostin promote tumour angiogenesis; (b) periostin improves cancer cell survival under hypoxic conditions; and (c) genetic modulation of periostin induces EMT (epithelial-mesenchymal transition) and enhances cancer cell invasion and metastasis, which represents an escape mechanism from anticancer treatment. Testing and confirmation of this hypothesis will give more insight into the resistance mechanisms and provide the rationale for improvement of therapeutic outcome of anti-angiogenic therapy.  相似文献   

5.
OBJECTIVE: Cancer stem cells have been identified as the growth root for various malignant tumours and are thought to be responsible for cancer recurrence following treatment. MATERIALS AND METHODS: Here, a predictive mathematical model for the cancer stem cell hypothesis is used to understand tumour responses to chemotherapeutic drugs and judge the efficacy of treatments in arresting tumour growth. The impact of varying drug efficacies on different abnormal cell populations is investigated through the kinetics associated with their decline in response to therapy. RESULTS AND CONCLUSIONS: The model predicts the clinically established 'dandelion phenomenon' and suggests that the best response to chemotherapy occurs when a drug targets abnormal stem cells. We compare continuous and periodic drug infusion. For the latter, we examine the relative importance of the drug cell-kill rate and the mean time between successive therapies, to identify the key attributes for successful treatment.  相似文献   

6.
Bevacizumab-resistant tumor vessels were characterized by an increased vessel diameter and normalization of vascular structures by the recruitment of mature pericytes and smooth muscle cells. Here, we analyzed human liver metastases which were taken at clinical relapse in patients with colorectal adenocarcinoma treated with anti-angiogenic therapy using the humanized monoclonal anti-VEGF bevacizumab. Tumor vessels which are resistant to anti-VEGF therapy are increased in size and characterized by a normalization of the vascular bed. These results were confirmed using NOD SCID mice as animal model and xenograft transplantation of human PC-3 prostate carcinoma cells in combination with bevacizumab treatment. Our results confirmed that anti-angiogenic therapy results in enhanced vascular remodeling by vascular stabilization. This process is apparently accompanied by enhanced necrosis of tumor tissue. These processes interfere with the efficacy of anti-angiogenic therapy because of reduced susceptibility of stabilized vessels by this therapy. These results demonstrate the importance for the development of second generation anti-angiogenic combination therapy concepts to rule out the balance between vascular stabilization followed by a possible de-stabilization making the remained vessels susceptible to a second wave of anti-angiogenic therapy.  相似文献   

7.
8.
 A mathematical model is presented to describe the evolution of a vascular tumor in response to traditional chemotherapeutic treatment. Particular attention is paid to the effects of a dynamic vascular support system in a tumor comprised of competing cell populations that differ in proliferation rates and drug susceptibility. The model consists of a system of partial differential equations governing intratumoral drug concentration, cancer cell density, and blood vessel density. The balance between cell proliferation and death along with vessel production and destruction within the tumor generates a velocity field which drives the expansion or regression of the neoplasm. Radially symmetric solutions are obtained for the case when only one cell type is present and when the proportion of the tumor occupied by blood vessels remains constant. The stability of these solutions to asymmetric perturbations and to a small semi-drug resistant cell population is then investigated. The analysis shows that drug concentrations which are sufficient to insure eradication of a spherical tumor may be inadequate for the successful treatment of non-spherical tumors. When the drug is continuously infused, linear analysis predicts that whether or not a cure is possible is crucially dependent on the proliferation rate of the semi-resistant cells and on the competitive effect of the sensitive cells on the resistant population. When the blood vessel density is allowed to change dynamically, the model predicts a dramatic increase in the tumors growth and decrease in its response to therapy. Received: 4 August 2000 / Revised version: 13 July 2001 / Published online: 21 February 2002  相似文献   

9.
Based on the logistic growth law for a tumour derived from enzymatic dynamics, we address from a physical point of view the phenomena of synergism, additivity and antagonism in an avascular anti-tumour system regulated externally by dual coupling periodic interventions, and propose a theoretical model to simulate the combinational administration of chemotherapy and immunotherapy. The in silico results of our modelling approach reveal that the tumour population density of an anti-tumour system, which is subject to the combinational attack of chemotherapeutical as well as immune intervention, depends on four parameters as below: the therapy intensities D, the coupling intensity I, the coupling coherence R and the phase-shifts Φ between two combinational interventions. In relation to the intensity and nature (synergism, additivity and antagonism) of coupling as well as the phase-shift between two therapeutic interventions, the administration sequence of two periodic interventions makes a difference to the curative efficacy of an anti-tumour system. The isobologram established from our model maintains a considerable consistency with that of the well-established Loewe Additivity model (Tallarida, Pharmacology 319(1):1–7, 2006). Our study discloses the general dynamic feature of an anti-tumour system regulated by two periodic coupling interventions, and the results may serve as a supplement to previous models of drug administration in combination and provide a type of heuristic approach for preclinical pharmacokinetic investigation.  相似文献   

10.
ObjectivesOrganic Selenium (Se) compounds such as L‐Se‐methylselenocysteine (L‐SeMC/SeMC) have been employed as a class of anti‐oxidant to protect normal tissues and organs from chemotherapy‐induced systemic toxicity. However, their comprehensive effects on cancer cell proliferation and tumour progression remain elusive.Materials and MethodsCCK‐8 assays were conducted to determine the viabilities of cancer cells after exposure to SeMC, chemotherapeutics or combined treatment. Intracellular reactive oxygen species (ROS) levels and lipid peroxidation levels were assessed via fluorescence staining. The efficacy of free drugs or drug‐loaded hydrogel against tumour growth was evaluated in a xenograft mouse model.ResultsAmong tested cancer cells and normal cells, the A549 lung adenocarcinoma cells showed higher sensitivity to SeMC exposure. In addition, combined treatments with several types of chemotherapeutics induced synergistic lethality. SeMC promoted lipid peroxidation in A549 cells and thereby increased ROS generation. Significantly, the in vivo efficacy of combination therapy was largely potentiated by hydrogel‐mediate drug delivery.ConclusionsOur study reveals the selectivity of SeMC in the inhibition of cancer cell proliferation and develops an efficient strategy for local combination therapy.  相似文献   

11.
The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metasasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate reduction in primary subcutaneous tumour growth. Overall, this study demonstrates the potential for Nk4 gene therapy of metastatic tumours, when delivered by AAV or non-viral methods.  相似文献   

12.
13.
“Krokodil” is the street name for the semi-synthetic opioid derivative desomorphine. Although an old drug, it re-staged on “drug arena” during the last decade causing detrimental effects to its users. Despite the fact that Russia and other former Soviet Republics were the initial plagued countries, “krokodil” arrived in Europe and United States lately, as a substitute of the relative expensive, and in many cases unavailable, heroin. It can be easily manufactured in home-environment from codeine and causes significant health problems, even deaths worldwide. The aim of this review is to summarize the current knowledge about this drug, concerning its chemistry, synthesis, pharmacology and toxicology. Published or reported “krokodil” related cases, fatalities or intoxications, as well as self reports from drug users are reviewed. The existing analytical methodologies for the determination of desomorphine in biological samples as well as its legal status are also presented.  相似文献   

14.
A method for the continuous culture of microorganisms is described which employs growth-dependent pH changes to control the rate of addition of fresh medium to a culture vessel. The apparatus (the phauxostat) supports, at constant pH, longterm continuous culture at rates near or at the maximum of which the organisms are capable. The buffering capacity of the inflowing medium determines the steady-state population density of the culture, but the rate of growth is independent of the buffering capacity. The fundamental theory of operation is tested and some basic parameters of growth are estimated using Escherichia coli B growing continuously in media containing glucose, glycerol or DL-lactate.Joseph C. Wilson Scholar.  相似文献   

15.
This paper is concerned with a model of “isolation with an initial period of migration”, where a panmictic ancestral population split into n descendant populations which exchanged migrants symmetrically at a constant rate for a period of time and subsequently became completely isolated. In the limit as the population split occurred an infinitely long time ago, the model becomes an “isolation after migration” model, describing completely isolated descendant populations which arose from a subdivided ancestral population. The probability density function of the coalescence time of a pair of genes and the probability distribution of the number of pairwise nucleotide differences are derived for both models. Whilst these are theoretical results of interest in their own right, they also give an exact analytical expression for the likelihood, for data consisting of the numbers of nucleotide differences between pairs of DNA sequences where each pair is at a different, independent locus. The behaviour of the distribution of the number of pairwise nucleotide differences under these models is illustrated and compared to the corresponding distributions under the “isolation with migration” and “complete isolation” models. It is shown that the distribution of the number of nucleotide differences between a pair of DNA sequences from different descendant populations in the model of “isolation with an initial period of migration” can be quite different from that under the “isolation with migration model”, even if the average migration rate over time (and hence the total number of migrants) is the same in both scenarios. It is also illustrated how the results can be extended to other demographic scenarios that can be described by a combination of isolated panmictic populations and “symmetric island” models.  相似文献   

16.
Molecular imaging enables non-invasive monitoring of tumor growth, progression, and drug treatment response, and it has become an important tool to promote biological studies in recent years. In this study, we comprehensively evaluated the in vivo anti-angiogenic and anti-neoplastic effects of Endostar on liver cancer based on the optical molecular imaging systems including micro-computer tomography (Micro-CT), bioluminescence molecular imaging (BLI) and fluorescence molecular tomography (FMT). Firefly luciferase (fLuc) and green fluorescent protein (GFP) dual labeled human hepatocellular carcinoma cells (HCC-LM3-fLuc-GFP cells) were used to establish the subcutaneous and orthotopic liver tumor model. After the tumor cells were implanted 14∼18 days, Endostar (5 mg/kg/day) was administered through an intravenous tail vein injection for continuous 14 days. The computer tomography angiography (CTA) and BLI were carried out for the subcutaneous tumor model. FMT was executed for the orthotopic tumor model. The CTA data showed that tumor vessel formation and the peritumoral vasculature of subcutaneous tumor in the Endostar treatment group was significantly inhibited compared to the control group. The BLI data exhibited the obvious tumor inhibition day 8 post-treatment. The FMT detected the tumor suppression effects of Endostar as early as day 4 post-treatment and measured the tumor location. The above data confirmed the effects of Endostar on anti-angiogenesis and tumor suppression on liver cancer. Our system combined CTA, BLI, and FMT to offer more comprehensive information about the effects of Endostar on the suppression of vessel and tumor formation. Optical molecular imaging system enabled the non-invasive and reliable assessment of anti-tumor drug efficacy on liver cancer.  相似文献   

17.
In this paper we consider a simple continuous model to describe cell invasion, incorporating the effects of both cell-cell adhesion and cell-matrix adhesion, along with cell growth and proteolysis by cells of the surrounding extracellular matrix (ECM). We demonstrate that the model is capable of supporting both noninvasive and invasive tumour growth according to the relative strength of cell-cell to cell-matrix adhesion. Specifically, for sufficiently strong cell-matrix adhesion and/or sufficiently weak cell-cell adhesion, degradation of the surrounding ECM accompanied by cell-matrix adhesion pulls the cells into the surrounding ECM. We investigate the criticality of matrix heterogeneity on shaping invasion, demonstrating that a highly heterogeneous ECM can result in a “fingering” of the invasive front, echoing observations in real-life invasion processes ranging from malignant tumour growth to neural crest migration during embryonic development.  相似文献   

18.
Heng Li 《BBA》2006,1757(11):1512-1519
The state transition in cyanobacteria is a long-discussed topic of how the photosynthetic machine regulates the excitation energy distribution in balance between the two photosystems. In the current work, whether the state transition is realized by “mobile phycobilisome (PBS)” or “energy spillover” has been clearly answered by monitoring the spectral responses of the intact cells of the cyanobacterium Spirulina platensis. Firstly, light-induced state transition depends completely on a movement of PBSs toward PSI or PSII while the redox-induced one on not only the “mobile PBS” but also an “energy spillover”. Secondly, the “energy spillover” is triggered by dissociation of PSI trimers into the monomers which specially occurs under a case from light to dark, while the PSI monomers will re-aggregate into the trimers under a case from dark to light, i.e., the PSI oligomerization is reversibly regulated by light switch on and off. Thirdly, PSI oligomerization is regulated by the local H+ concentration on the cytosol side of the thylakoid membranes, which in turn is regulated by light switch on and off. Fourthly, PSI oligomerization change is the only mechanism for the “energy spillover”. Thus, it can be concluded that the “mobile PBS” is a common rule for light-induced state transition while the “energy spillover” is only a special case when dark condition is involved.  相似文献   

19.
As a result of excessive production of angiogenic molecules, tumor vessels become abnormal in structure and function. By impairing oxygen delivery, abnormal vessels fuel a vicious cycle of non-productive angiogenesis, which creates a hostile microenvironment from where tumor cells escape through leaky vessels and which renders tumors less responsive to chemoradiation. While anti-angiogenic strategies focused on inhibiting new vessel growth and destroying pre-existing vessels, clinical studies showed modest anti-tumor effects. For many solid tumors, anti-VEGF treatment offers greater clinical benefit when combined with chemotherapy. This is partly due to a normalization of the tumor vasculature, which improves cytotoxic drug delivery and efficacy and offers unprecedented opportunities for anti-cancer treatment. Here, we overview key novel molecular players that induce vessel normalization.  相似文献   

20.
Angiogenesis, i.e. formation of new blood vessels out of pre-existing capillaries, is essential to the development of tumour vasculature. The discovery of specific antiangiogenic inhibitors has important therapeutic implications for the development of novel cancer treatments. Vasostatin, the N-terminal domain of calreticulin, is a potent endogenous inhibitor of angiogenesis and tumour growth. In our study, using B16(F10) murine melanoma model and electroporation we attempted intramuscular transfer of human vasostatin gene. The gene therapy was combined with antiangiogenic drug dosing schedule of a known chemotherapeutic (cyclophosphamide). The combination of vasostatin gene therapy and cyclophosphamide administration improved therapeutic effects in melanoma tumours. We observed both significant inhibition of tumour growth and extended survival of treated mice. To our knowledge, this is one of the first reports showing antitumour efficacy of electroporation-mediated vasostatin gene therapy combined with antiangiogenic chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号