首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the coevolution of phenotypic traits in a community comprising two competitive species subject to strong Allee effects. Firstly, we investigate the ecological and evolutionary conditions that allow for continuously stable strategy under symmetric competition. Secondly, we find that evolutionary suicide is impossible when the two species undergo symmetric competition, however, evolutionary suicide can occur in an asymmetric competition model with strong Allee effects. Thirdly, it is found that evolutionary bistability is a likely outcome of the process under both symmetric and asymmetric competitions, which depends on the properties of symmetric and asymmetric competitions. Fourthly, under asymmetric competition, we find that evolutionary cycle is a likely outcome of the process, which depends on the properties of both intraspecific and interspecific competition. When interspecific and intraspecific asymmetries vary continuously, we also find that the evolutionary dynamics may admit a stable equilibrium and two limit cycles or two stable equilibria separated by an unstable limit cycle or a stable equilibrium and a stable limit cycle.  相似文献   

2.
Zu J  Takeuchi Y 《Bio Systems》2012,109(2):192-202
In this paper, with the method of adaptive dynamics and critical function analysis, we investigate the evolutionary diversification of prey species. We assume that prey species can evolve safer strategies such that it can reduce the predation risk, but this has a cost in terms of its reproduction. First, by using the method of critical function analysis, we identify the general properties of trade-off functions that allow for continuously stable strategy and evolutionary branching in the prey strategy. It is found that if the trade-off curve is globally concave, then the evolutionarily singular strategy is continuously stable. However, if the trade-off curve is concave-convex-concave and the prey's sensitivity to crowding is not strong, then the evolutionarily singular strategy may be an evolutionary branching point, near which the resident and mutant prey can coexist and diverge in their strategies. Second, we find that after branching has occurred in the prey strategy, if the trade-off curve is concave-convex-concave, the prey population will eventually evolve into two different types, which can coexist on the long-term evolutionary timescale. The algebraical analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible for the concave-convex-concave trade-off relationship.  相似文献   

3.
In this paper, by using the adaptive dynamics approach, we investigate how the adaptive evolution of defense ability promotes the diversity of prey species in an initial one-prey–two-predator community. We assume that the prey species can evolve to a safer strategy such that it can reduce the predation risk, but a prey with a high defense ability for one predator may have a low defense ability for the other and vice versa. First, by using the method of critical function analysis, we find that if the trade-off is convex in the vicinity of the evolutionarily singular strategy, then this singular strategy is a continuously stable strategy. However, if the trade-off is weakly concave near the singular strategy and the competition between the two predators is relatively weak, then the singular strategy may be an evolutionary branching point. Second, we find that after the branching has occurred in the prey strategy, if the trade-off curve is globally concave, then the prey species might eventually evolve into two specialists, each caught by only one predator species. However, if the trade-off curve is convex–concave–convex, the prey species might eventually branch into two partial specialists, each being caught by both of the two predators and they can stably coexist on the much longer evolutionary timescale.  相似文献   

4.
A refuge model is developed for a single predator species and either one or two prey species where no predators are present in the prey refuge. An individual’s fitness depends on its strategy choice or ecotype (predators decide which prey species to pursue and prey decide what proportion of their time to spend in the refuge) as well as on the population sizes of all three species. It is shown that, when there is a single prey species with a refuge or two prey species with no refuge compete only indirectly (i.e. there is only apparent competition between prey species), that stable resident systems where all individuals in each species have the same ecotype cannot be destabilized by the introduction of mutant ecotypes that are initially selectively neutral. In game-theoretic terms, this means that stable monomorphic resident systems, with ecotypes given by a Nash equilibrium, are both ecologically and evolutionarily stable. However, we show that this is no longer the case when the two indirectly-competing prey species have a refuge. This illustrates theoretically that two ecological factors, that are separately stabilizing (apparent competition and refuge use), may have a combined destabilizing effect from the evolutionary perspective. These results generalize the concept of an evolutionarily stable strategy (ESS) to models in evolutionary ecology. Several biological examples of predator–prey systems are discussed from this perspective.  相似文献   

5.
In this paper, with the method of adaptive dynamics and geometric technique, we investigate the adaptive evolution of foraging-related phenotypic traits in a predator-prey community with trade-off structure. Specialization on one prey type is assumed to go at the expense of specialization on another. First, we identify the ecological and evolutionary conditions that allow for evolutionary branching in predator phenotype. Generally, if there is a small switching cost near the singular strategy, then this singular strategy is an evolutionary branching point, in which predator population will change from monomorphism to dimorphism. Second, we find that if the trade-off curve is globally convex, predator population eventually branches into two extreme specialists, each completely specializing on a particular prey species. However, if the trade-off curve is concave-convex-concave, after branching in predator phenotype, the two predator species will evolve to an evolutionarily stable dimorphism at which they can continue to coexist. The analysis reveals that an attractive dimorphism will always be evolutionarily stable and that no further branching is possible under this model.  相似文献   

6.
A reaction-diffusion model describing the evolutionary dynamics of a food-web was constructed. In this model, predator-prey relationships among organisms were determined by their position in a two-dimensional phenotype space defined by two traits: as prey and as predator. The mutation process is expressed with a diffusion process of biomass in the phenotype space. Numerical simulation of this model showed co-evolutionary dynamics of isolated phenotypic clusters, including various types of evolutionary branching, which were classified into branching as prey, branching as predators, and co-evolutionary branching of both prey and predators. A complex food-web develops with recursive evolutionary branching from a single phenotypic cluster. Biodiversity peaks at the medium strength of the predator-prey interaction, where the food-web is maintained at medium biomass by a balanced frequency between evolutionary branching and extinction.  相似文献   

7.
On the ecological timescale, two predator species with linear functional responses can stably coexist on two competing prey species. In this paper, with the methods of adaptive dynamics and critical function analysis, we investigate under what conditions such a coexistence is also evolutionarily stable, and whether the two predator species may evolve from a single ancestor via evolutionary branching. We assume that predator strategies differ in capture rates and a predator with a high capture rate for one prey has a low capture rate for the other and vice versa. First, by using the method of critical function analysis, we identify the general properties of trade-off functions that allow for evolutionary branching in the predator strategy. It is found that if the trade-off curve is weakly convex in the vicinity of the singular strategy and the interspecific prey competition is not strong, then this singular strategy is an evolutionary branching point, near which the resident and mutant predator populations can coexist and diverge in their strategies. Second, we find that after branching has occurred in the predator phenotype, if the trade-off curve is globally convex, the predator population will eventually branch into two extreme specialists, each completely specializing on a particular prey species. However, in the case of smoothed step function-like trade-off, an interior dimorphic singular coalition becomes possible, the predator population will eventually evolve into two generalist species, each feeding on both of the two prey species. The algebraical analysis reveals that an evolutionarily stable dimorphism will always be attractive and that no further branching is possible under this model.  相似文献   

8.
Evolutionary branching points are a paradigmatic feature of adaptive dynamics, because they are potential starting points for adaptive diversification. The antithesis to evolutionary branching points are continuously stable strategies (CSS's), which are convergent stable and evolutionarily stable equilibrium points of the adaptive dynamics and hence are thought to represent endpoints of adaptive processes. However, this assessment is based on situations in which the invasion fitness function determining the adaptive dynamics have non-zero second derivatives at CSS. Here we show that the scope of evolutionary branching can increase if the invasion fitness function vanishes to higher than first order at CSS. Using classical models for frequency-dependent competition, we show that if the invasion fitness vanishes to higher orders, a CSS may be the starting point for evolutionary branching. Thus, when invasion fitness functions vanish to higher than first order at equilibrium points of the adaptive dynamics, evolutionary diversification can occur even after convergence to an evolutionarily stable strategy.  相似文献   

9.
Top predators that forage in a purely exploitative manner on smaller stages of a size-structured prey population have been shown to exhibit an Allee effect. This Allee effect emerges from the changes that predators induce in the prey-population size distribution and represents a feedback of predator density on its own performance, in which the feedback operates through and is modified by the life history of the prey. We demonstrate that these emergent Allee effects will occur only if the prey, in the absence of predators, is regulated by density dependence in development through one of its juvenile stages, as opposed to regulation through adult fecundity. In particular, for an emergent Allee effect to occur, over-compensation is required in the maturation rate out of the regulating juvenile stage, such that a decrease in juvenile density will increase the total maturation rate to larger/older stages. If this condition is satisfied, predators with negative size selection, which forage on small prey, exhibit an emergent Allee effect, as do predators with positive size selection, which forage on large adult prey. By contrast, predators that forage on juveniles in the regulating stage never exhibit emergent Allee effects. We conclude that the basic life-history characteristics of many species make them prone to exhibiting emergent Allee effects, resulting in an increased likelihood that communities possess alternative stable states or exhibit catastrophic shifts in structure and dynamics.  相似文献   

10.
It has recently been demonstrated that ecological feedback mechanisms can facilitate the emergence and maintenance of cooperation in public goods interactions: the replicator dynamics of defectors and cooperators can result, for example, in the ecological coexistence of cooperators and defectors. Here we show that these results change dramatically if cooperation strategy is not fixed but instead is a continuously varying trait under natural selection. For low values of the factor with which the value of resources is multiplied before they are shared among all participants, evolution will always favour lower cooperation strategies until the population falls below an Allee threshold and goes extinct, thus evolutionary suicide occurs. For higher values of the factor, there exists a unique evolutionarily singular strategy, which is convergence stable. Because the fitness function is linear with respect to the strategy of the mutant, this singular strategy is neutral against mutant invasions. This neutrality disappears if a nonlinear functional response in receiving benefits is assumed. For strictly concave functional responses, singular strategies become uninvadable. Evolutionary branching, which could result in the evolutionary emergence of cooperators and defectors, can occur only with locally convex functional responses, but we illustrate that it can also result in coevolutionary extinction.  相似文献   

11.
With a series of mathematical models, we explore impacts of predation on a prey population structured into two age classes, juveniles and adults, assuming generalist, age-specific predators. Predation on any age class is either absent, or represented by types II or III functional responses, in various combinations. We look for Allee effects or more generally for multiple stable steady states in the prey population. One of our key findings is the occurrence of a predator pit (low-density ??refuge?? state of prey induced by predation; the chance of escaping predation thus increases both below and above an intermediate prey density) when only one age class is consumed and predators use a type II functional response ??this scenario is known to occur for an unstructured prey consumed via a type III functional response and can never occur for an unstructured prey consumed via a type II one. In the case where both age classes are consumed by type II generalist predators, an Allee effect occurs frequently, but some parameters give also rise to a predator pit and even three stable equilibria (one extinction equilibrium and two positive ones??Allee effect and predator pit combined). Multiple positive stable equilibria are common if one age class is consumed via a type II functional response and the other via a type III functional response??here, in addition to the behaviours mentioned above one may even observe three stable positive equilibria????double?? predator pit. Some of these results are discussed from the perspective of population management.  相似文献   

12.
In this paper, we propose a general ratio-dependent prey-predator model with disease in predator subject to the strong Allee effect in prey. We obtain the complete dynamics of both models: (a) full model with Allee effect; (b) full model without Allee effect. Model (a) may have more than one interior equilibrium point, but model (b) has only one interior equilibrium point. Numerical results reveal that the coexistence of all the populations at the endemic state is possible for both the models. But for the model with Allee effect, the coexistence can be destroyed by an increased supply of alternative food for the predators. It can also be proved that for the full model with Allee effect, the disease can be suppressed under certain parametric conditions. Also by comparing models (a) and (b), we conclude that Allee effect can create or destroy the interior attractor. Finally, we have studied the disease free-submodel (prey and susceptible predator model) with and without Allee effect. The comparative study between these two submodels leads to the following conclusions: 1) In the presence of Allee effect, the number of interior equilibrium points can change from zero to two whereas the submodel without Allee effect has unique interior equilibrium point; 2) Both with and without Allee effect, initial conditions play an important role on the survival and extinction of prey as well as its corresponding predator; 3) In the presence of Allee effect, bi-stability occurs with stable or periodic coexistence of prey and susceptible predator and the extinction of prey and susceptible predator; 4) Allee effect can generate or destroy the interior equilibrium points.  相似文献   

13.
A refuge model is developed for a single predator species and either one or two prey species where no predators are present in the prey refuge. An individual’s fitness depends on its strategy choice or ecotype (predators decide which prey species to pursue and prey decide what proportion of their time to spend in the refuge) as well as on the population sizes of all three species. It is shown that, when there is a single prey species with a refuge or two prey species with no refuge compete only indirectly (i.e. there is only apparent competition between prey species), that stable resident systems where all individuals in each species have the same ecotype cannot be destabilized by the introduction of mutant ecotypes that are initially selectively neutral. In game-theoretic terms, this means that stable monomorphic resident systems, with ecotypes given by a Nash equilibrium, are both ecologically and evolutionarily stable. However, we show that this is no longer the case when the two indirectly-competing prey species have a refuge. This illustrates theoretically that two ecological factors, that are separately stabilizing (apparent competition and refuge use), may have a combined destabilizing effect from the evolutionary perspective. These results generalize the concept of an evolutionarily stable strategy (ESS) to models in evolutionary ecology. Several biological examples of predator–prey systems are discussed from this perspective.  相似文献   

14.
We describe the dynamics of an evolutionary model for a population subject to a strong Allee effect. The model assumes that the carrying capacity k(u), inherent growth rate r(u), and Allee threshold a(u) are functions of a mean phenotypic trait u subject to evolution. The model is a plane autonomous system that describes the coupled population and mean trait dynamics. We show bounded orbits equilibrate and that the Allee basin shrinks (and can even disappear) as a result of evolution. We also show that stable non-extinction equilibria occur at the local maxima of k(u) and that stable extinction equilibria occur at local minima of r(u). We give examples that illustrate these results and demonstrate other consequences of an Allee threshold in an evolutionary setting. These include the existence of multiple evolutionarily stable, non-extinction equilibria, and the possibility of evolving to a non-evolutionary stable strategy (ESS) trait from an initial trait near an ESS.  相似文献   

15.
In order to determine conditions which allow the Allee effect (caused by biparental reproduction) to conserve and create spatial heterogeneity in population densities, we studied a deterministic model of a symmetric two-patch metapopulation. We proved that under certain conditions there exist stable equilibria with unequal population densities in the two patches, a situation which can be interpreted as conserved heterogeneity. Furthermore, the Allee effect can lead to instability of the equilibrium with equal population densities if some degree of competition is assumed to occur between the subpopulations (non-local competition). This indicates the potential of the Allee effect to create spatial heterogeneity. Neither of these effects appear under biologically realistic parameter values in a model where uniparental reproduction is assumed. We proved that both the between-patch migration intensity and the degree of non-local competition are decisive in determining boundaries between these types of behaviour of the spatial system with Allee effect. Therefore, we propose that the Allee effect, migration intensity, and non-local competition should be considered jointly in studies focusing on problems like pattern formation in space and invasions of spreading species.  相似文献   

16.
In this article, we study population dynamics of a general two-species discrete-time competition model where each species suffers from both strong Allee effects and scramble intra-specific competitions. We focus on how the combinations of the scramble intra-specific and inter-specific competition affect the extinction and coexistence of these two competing species where each species is subject to strong Allee effects. We derive sufficient conditions on the extinction, essential-like extinction and coexistence for such models. One of the most interesting findings is that scramble competitions can promote coexistence of these two species at their high densities. This is supported by the outcome of single species models with strong Allee effects. In addition, we apply theoretical results to a symmetric competition model with strong Allee effects induced by predator saturations where we give a completed study of its possible equilibria and attractors. Numerical simulations are performed to support our results.  相似文献   

17.
王文婷  王万雄 《生态学报》2014,34(16):4596-4602
在Dubis动力系统的基础上,建立了具有Allee效应的捕食系统模型。对系统的稳定性进行了分析,受Allee效应的影响,食饵种群可能因为种群大小处于临界点以下而趋于灭绝。通过对系统进行模拟,结果表明:不受Allee效应的影响,系统的演化属于一种理想化的情形系统到达P(平衡)点的时间较不受Allee效应影响时系统到达P点的时间短,不利于生物的进化,而在Allee效应的影响下,系统的演化将达到一个平衡状态。由此,说明Allee效应为濒临灭绝物种的管理提供了重要的理论依据,对管理部门的决策有参考指导作用。  相似文献   

18.
Wang W  Liu H  Li Z  Guo Z  Yang Y 《Bio Systems》2011,105(1):25-33
Investigating the likely success of epidemic invasion is important in the epidemic management and control. In the present study, the invasion of epidemic is initially introduced to a predator-prey system, both species of which are considered to be subject to the Allee effect. Mathematically, the invasion dynamics is described by three nonlinear diffusion-reaction equations and the spatial implicit and explicit models are designed. By means of extensive numerical simulations, the results of spatial implicit model show that the Allee effect has an opposite impact on the invasion criteria and local dynamics when that on the different species. As the intensity of the Allee effect increases, the domain of epidemic invasion reduces and the system dynamics is changed from the stable state to the limit cycle and finally becomes the chaotic state when the susceptible prey with the Allee effect, but the domain expands and the system dynamics is changed from limit cycle to a table point when the predator is subject to the Allee effect. Results from the spatial explicit model show that the strong intensity of the Allee effect can lead to the catastrophic global extinction of all species in the case of that on the susceptible prey. While the predator with the Allee effect, the increased intensity of which makes spatial species reach a stable state. Furthermore, numerical simulations reveal a certain relationship between the invasion speed and spatial patterns.  相似文献   

19.
Spatially moving predators are often considered for biological control of invasive species. The question arises as to whether introduced predators are able to stop an advancing pest or foreign population. In recent studies of reaction–diffusion models, it has been shown that the prey invasion can only be stopped if the prey dynamics observes an Allee effect. In this paper, we include prey-taxis into the model. Prey-taxis describe the active movement of predators to regions of high prey density. This effect leads to the observation that predators are drawn away from the leading edge of a prey invasion where its density is low. This leads to counterintuitive result that prey-taxis can actually reduce the likelihood of effective biocontrol.  相似文献   

20.
The extinction of species is a major threat to the biodiversity. The species exhibiting a strong Allee effect are vulnerable to extinction due to predation. The refuge used by species having a strong Allee effect may affect their predation and hence extinction risk. A mathematical study of such behavioral phenomenon may aid in management of many endangered species. However, a little attention has been paid in this direction. In this paper, we have studied the impact of a constant prey refuge on the dynamics of a ratio-dependent predator–prey system with strong Allee effect in prey growth. The stability analysis of the model has been carried out, and a comprehensive bifurcation analysis is presented. It is found that if prey refuge is less than the Allee threshold, the incorporation of prey refuge increases the threshold values of the predation rate and conversion efficiency at which unconditional extinction occurs. Moreover, if the prey refuge is greater than the Allee threshold, situation of unconditional extinction may not occur. It is found that at a critical value of prey refuge, which is greater than the Allee threshold but less than the carrying capacity of prey population, system undergoes cusp bifurcation and the rich spectrum of dynamics exhibited by the system disappears if the prey refuge is increased further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号