首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a multi-scale mathematical model of erythropoiesis is proposed in which erythroid progenitors are supposed to be able to self-renew. Three cellular processes control erythropoiesis: self-renewal, differentiation and apoptosis. We describe these processes and regulatory networks that govern them. Two proteins (ERK and Fas) are considered as the basic proteins participating in this regulation. All erythroid progenitors are divided into several sub-populations depending on their maturity level. Feedback regulations by erythropoietin, glucocorticoids and Fas ligand (FasL) are introduced in the model. The model consists of a system of ordinary differential equations describing intracellular protein concentration evolution and cell population dynamics. We study steady states and their stability. We carry out computer simulations of an anaemia situation and analyse the results.  相似文献   

2.
Issues remain to be elucidated in the developmental regulation of erythropoiesis. In particular the role of Fas, a member of the tumor necrosis factor family of receptors despite much work remains unclear. During erythropoiesis, Fas is expressed at low levels on erythroblasts. For most cell types, Fas to FasL interaction causes apoptotic cell death via caspase activation. Here, we show that in humans, early erythroid progenitors are refractory to apoptosis triggered through Fas. Further during early human erythropoiesis, Fas triggered caspase activation provides a positive stimulus for erythroid maturation, and does not alter cellular proliferation or trigger apoptosis.  相似文献   

3.
Erythropoietin (Epo) and its receptor (EpoR) are required for the regulation of erythropoiesis. Epo binds to the EpoR homodimer on the surface of erythroid progenitors and erythroblasts, and positions the intracellular domains of the homodimer to be in close proximity with each other. This conformational change is sufficient for the initiation of Epo-EpoR signal transduction. Here, we established a system of chemically regulated erythropoiesis in transgenic mice expressing a modified EpoR intracellular domain (amino acids 247–406) in which dimerization is induced using a specific compound (chemical inducer of dimerization, CID). Erythropoiesis is reversibly induced by oral administration of the CID to the transgenic mice. Because transgene expression is limited to hematopoietic cells by the Gata1 gene regulatory region, the effect of the CID is limited to erythropoiesis without adverse effects. Additionally, we show that the 160 amino acid sequence is the minimal essential domain of EpoR for intracellular signaling of chemically inducible erythropoiesis in vivo. We propose that the CID-dependent dimerization system combined with the EpoR intracellular domain and the Gata1 gene regulatory region generates a novel peroral strategy for the treatment of anemia.  相似文献   

4.
Negative autoregulation by FAS mediates robust fetal erythropoiesis   总被引:2,自引:0,他引:2  
Tissue development is regulated by signaling networks that control developmental rate and determine ultimate tissue mass. Here we present a novel computational algorithm used to identify regulatory feedback and feedforward interactions between progenitors in developing erythroid tissue. The algorithm makes use of dynamic measurements of red cell progenitors between embryonic days 12 and 15 in the mouse. It selects for intercellular interactions that reproduce the erythroid developmental process and endow it with robustness to external perturbations. This analysis predicts that negative autoregulatory interactions arise between early erythroblasts of similar maturation stage. By studying embryos mutant for the death receptor FAS, or for its ligand, FASL, and by measuring the rate of FAS-mediated apoptosis in vivo, we show that FAS and FASL are pivotal negative regulators of fetal erythropoiesis, in the manner predicted by the computational model. We suggest that apoptosis in erythroid development mediates robust homeostasis regulating the number of red blood cells reaching maturity.  相似文献   

5.
6.
A comparative study has been made of erythroid cell development pathways in the peripheral blood of pigeons during severe, moderate and weak forms of anaemia. Three modes of erythrocyte formation from bone marrow precursor are described: 1. A reserve erythropoiesis--the principal process during severe anaemia; the bone marrow precursors are basophylic erythroblasts which are reversibly blocked in phase G2 of the cell cycle; in results the rapid, increase of erythrocyte population above the normal level, although the cells have 25-30 per cent deficiency in haemoglobin content. 2) A mode of erythropoiesis, whose precursors are proliferating polychromatophylic erythroblasts; this is the principal mode of erythropoiesis at the moderate anaemia, leading to restoration of the normal quantity of erythrocytes with a normal haemoglobin content. 3) A mode of erythropoiesis with proliferating orthochromatic erythroblasts being precursors (which do not divide normally); this is the principal mode during the weak anaemia to result in a slow restoration of the number of erythrocytes with an excess in haemoglobin content. It is shown that regulation of the restoration processes during anaemia are characterized by a specific combination of cell proliferation and differentiation.  相似文献   

7.
The review describes the role of positive and negative feedback released through end-products of erythroid cells in the regulation of erythropoiesis.  相似文献   

8.
9.
IL-7 promotes survival of resting T lymphocytes and induces T cell proliferation in lymphopenic conditions. As elevated IL-7 levels occur in HIV-infected individuals in addition to high Fas expression on T cells and increased sensitivity to Fas-induced apoptosis, we analyzed whether IL-7 has a regulatory role in Fas-mediated T cell apoptosis. We show that IL-7 up-regulates Fas expression on naive and memory T cells through a mechanism that involves translocation of Fas molecules from intracellular compartments to the cell membrane. IL-7 induced the association of Fas with the cytoskeletal component ezrin and a polarized Fas expression on the cell surface. The potential role of IL-7 in Fas up-regulation in vivo was verified in IL-7-treated macaques and in HIV-infected or chemotherapy treated patients by the correlation between serum IL-7 levels and Fas expression on T cells. IL-7 treatment primed T cells for Fas-induced apoptosis in vitro and serum IL-7 levels correlated with the sensitivity of T cells to Fas-induced apoptosis in HIV-infected individuals. Our data suggest an important role for IL-7 in Fas-mediated regulation of T cell homeostasis. Elevated IL-7 levels associated with lymphopenic conditions, including HIV-infection, might participate in the increased sensitivity of T cells for activation-induced apoptosis.  相似文献   

10.
11.
Phenylhydrazine has been used to induce anaemia in Xenopus laevis. The dosage used causes the complete destruction of all mature erythrocytes within twelve days. The anaemia results in the initiation of a wave of erythropoiesis and large numbers of immature erythroid cells are released into the circulation. The morphological and biosynthetic changes which these cells undergo as they differentiate in circulation are described. The origin of the circulating erythroid cells is also discussed.  相似文献   

12.
The mitogen-activated protein kinase (MAPK) network is a conserved signalling module that regulates cell fate by transducing a myriad of growth-factor signals. The ability of this network to coordinate and process a variety of inputs from different growth-factor receptors into specific biological responses is, however, still not understood. We investigated how the MAPK network brings about signal specificity in PC-12 cells, a model for neuronal differentiation. Reverse engineering by modular-response analysis uncovered topological differences in the MAPK core network dependent on whether cells were activated with epidermal or neuronal growth factor (EGF or NGF). On EGF stimulation, the network exhibited negative feedback only, whereas a positive feedback was apparent on NGF stimulation. The latter allows for bi-stable Erk activation dynamics, which were indeed observed. By rewiring these regulatory feedbacks, we were able to reverse the specific cell responses to EGF and NGF. These results show that growth factor context determines the topology of the MAPK signalling network and that the resulting dynamics govern cell fate.  相似文献   

13.
14.
Quorum sensing (QS) enables bacterial multicellularity and selective advantage for communicating populations. While genetic "switching" phenomena are a common feature, their mechanistic underpinnings have remained elusive. The interplay between circuit components and their regulation are intertwined and embedded. Observable phenotypes are complex and context dependent. We employed a combination of experimental work and mathematical models to decipher network connectivity and signal transduction in the autoinducer-2 (AI-2) quorum sensing system of E. coli. Negative and positive feedback mechanisms were examined by separating the network architecture into sub-networks. A new unreported negative feedback interaction was hypothesized and tested via a simple mathematical model. Also, the importance of the LsrR regulator and its determinant role in the E. coli QS "switch", normally masked by interfering regulatory loops, were revealed. Our simple model allowed mechanistic understanding of the interplay among regulatory sub-structures and their contributions to the overall native functioning network. This "bottom up" approach in understanding gene regulation will serve to unravel complex QS network architectures and lead to the directed coordination of emergent behaviors.  相似文献   

15.
16.
Daily administration of 40—60 kg rape for 9 weeks to 8 cows produced no changes in the red blood picture. On the other hand a reduction of the myeloid: erythroid ratio and the maturity ratio of the erythroid cells of the bone marrow was found. This is interpreted as a sign of increased erythropoiesis. The Brassica-induced anaemia found in other investigations is assumed on several grounds to be haemolytic. The present study confirms this assumption, the increased breakdown of erythrocytes being entirely compensated by an increased erythropoiesis. The difference between the present and earlier reports, in which anaemia was found after a shorter time of feeding on roughly the same quantities of rape, is discussed, one possible explanation being that differences exist in rhodanid content between Brassica species.  相似文献   

17.
18.
Regulatory factors other than erythropoietin (Epo) dependence, that control mammalian erythroid terminal differentiation, are currently uncertain. Here we report the existence of erythroid differentiation factors in erythroid cytoplasm. Purification of these factors from cultured Friend virus anaemia (FVA)-infected mouse splenic erythroblasts was carried out using isoelectrophoresis and high performance of liquid chromatography techniques. We have identified intracellular erythroid differentiation denucleation factors (EDDFs) that were able to mediate the events of post-Epo-dependent erythroblast terminal differentiation. Purified EDDF proteins bound specifically to the enhancer HS2 sequence of the globin gene activated the expression of haemoglobin in mouse erythroleukaemia and K562 erythroleukaemic cells and promoted them to differentiate into mature erythrocytes. EDDF proteins began to emerge at the pro-early erythroblast stages upon exposure to Epo in culture, and increased dramatically in early erythroblast stage. The dynamic of EDDF expression and its action on the key events of erythroblast differentiation and denucleation appeared to be closely consistent with its spatiotemporal distribution. These results suggest that EDDFs are the critical intracellular regulatory factors that may act as the successive regulators to Epo, responsible for the final stages of erythroid terminal differentiation.  相似文献   

19.
Although it is appreciated that canonical signal‐transduction pathways represent dominant modes of regulation embedded in larger interaction networks, relatively little has been done to quantify pathway cross‐talk in such networks. Through quantitative measurements that systematically canvas an array of stimulation and molecular perturbation conditions, together with computational modeling and analysis, we have elucidated cross‐talk mechanisms in the platelet‐derived growth factor (PDGF) receptor signaling network, in which phosphoinositide 3‐kinase (PI3K) and Ras/extracellular signal‐regulated kinase (Erk) pathways are prominently activated. We show that, while PI3K signaling is insulated from cross‐talk, PI3K enhances Erk activation at points both upstream and downstream of Ras. The magnitudes of these effects depend strongly on the stimulation conditions, subject to saturation effects in the respective pathways and negative feedback loops. Motivated by those dynamics, a kinetic model of the network was formulated and used to precisely quantify the relative contributions of PI3K‐dependent and ‐independent modes of Ras/Erk activation.  相似文献   

20.
The exact molecular mechanism underlying erythroblast enucleation has been a fundamental biological question for decades. In this study, we found that miR-144/451 critically regulated erythroid differentiation and enucleation. We further identified CAP1, a G-actin-binding protein, as a direct target of miR-144/451 in these processes. During terminal erythropoiesis, CAP1 expression declines along with gradually increased miR-144/451 levels. Enforced CAP1 up-regulation inhibits the formation of contractile actin rings in erythroblasts and prevents their terminal differentiation and enucleation. Our findings reveal a negative regulatory role of CAP1 in miR-144/451-mediated erythropoiesis and thus shed light on how microRNAs fine-tune terminal erythroid development through regulating actin dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号