首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonwoven fibrous matrices have been widely used in cell and tissue cultures because their three-dimensional (3-D) structures with large surface areas and pore spaces can support high-density cell growth. Although cell adherence and growth on 2-D surfaces have been thoroughly investigated, very little is known for cells cultured in 3-D matrices. The effects of mixing intensity on cell seeding, adherence, and growth in fibrous matrices were thus investigated. Chinese Hamster Ovary and osteosarcoma cells were inoculated into nonwoven polyethylene terephthalate matrices by dynamic and static seeding methods, of which the former was found to be superior in seeding efficiency and cell distribution in the matrices. Dynamic seeding increased seeding efficiency from approximately 40% to more than 90%. When higher mixing intensities were applied, both cell attachment and detachment rates increased. Cell attachment was transport limited, as indicated by the increased attachment rate with increasing the mass transfer coefficient of the cells. Meanwhile, cell detachment from the 3-D matrix can be described by the Bell model. The effects of matrix pore size on cell adherence and proliferation were also investigated. In general, the smaller pore size is favorable to cell attachment and proliferation. Further analysis revealed that the interaction between mixing intensity and pore size played a vital role in hydrodynamic damage to cells, which was found to be significant when the Kolomogorov eddy size was smaller than the matrix pores. Increasing mixing intensity also increased oxygen transfer, decreased the lactate yield from glucose, and improved cell growth.  相似文献   

2.
This paper deals with the effects of mixing time on the homogeneity and dispersion performance of adhesive mixtures for inhalation. Interactions between these effects and the carrier size fraction, the type of drug and the inhalation flow rate were studied. Furthermore, it was examined whether or not changes in the dispersion performance as a result of prolonged mixing can be explained with a balance of three processes that occur during mixing, knowing drug redistribution over the lactose carrier; (de-) agglomeration of the drug (and fine lactose) particles; and compression of the drug particles onto the carrier surface. For this purpose, mixtures containing salmeterol xinafoate or fluticasone propionate were mixed for different periods of time with a fine or coarse crystalline lactose carrier in a Turbula mixer. Drug detachment experiments were performed using a classifier based inhaler at different flow rates. Scanning electron microscopy and laser diffraction techniques were used to measure drug distribution and agglomeration, whereas changes in the apparent solubility were measured as a means to monitor the degree of mechanical stress imparted on the drug particles. No clear trend between mixing time and content uniformity was observed. Quantitative and qualitative interactions between the effect of mixing time on drug detachment and the type of drug, the carrier size fraction and the flow rate were measured, which could be explained with the three processes mentioned. Generally, prolonged mixing caused drug detachment to decrease, with the strongest decline occurring in the first 120 minutes of mixing. For the most cohesive drug (salmeterol) and the coarse carrier, agglomerate formation seemed to dominate the overall effect of mixing time at a low inhalation flow rate, causing drug detachment to increase with prolonged mixing. The optimal mixing time will thus depend on the formulation purpose and the choice for other, interacting variables.  相似文献   

3.
Formation of liposome/polynucleotide complexes (lipoplexes) involves electrostatic interactions, which induce changes in liposome structure. The ability of these complexes to transfer DNA into cells is dependent on the physicochemical attributes of the complexes, therefore characterization of binding-induced changes in liposomes is critical for the development of lipid-based DNA delivery systems. To clarify the apparent lack of correlation between membrane fusion and in vitro transfection previously observed, we performed a multi-step lipid mixing assay to model the sequential steps involved in transfection. The roles of anion charge density, charge ratio and presence of salt on lipid mixing and liposome aggregation were investigated. The resonance-energy transfer method was used to monitor lipid mixing as cationic liposomes (DODAC/DOPE and DODAC/DOPC; 1:1 mole ratio) were combined with plasmid, oligonucleotides or Na(2)HPO(4). Cryo-transmission electron microscopy was performed to assess morphology. As plasmid or oligonucleotide concentration increased, lipid mixing and aggregation increased, but with Na(2)HPO(4) only aggregation occurred. NaCl (150 mM) reduced the extent of lipid mixing. Transfection studies suggest that the presence of salt during complexation had minimal effects on in vitro transfection. These data give new information about the effects of polynucleotide binding to cationic liposomes, illustrating the complicated nature of anion induced changes in liposome morphology and membrane behavior.  相似文献   

4.
Abstract Genetically engineered microorganisms (GEMs) released into the environment may persist and spread, depending on their features and conditions encountered. In streams, the extent of dispersion depends largely on cycles of attachment to, and detachment from, biofilms, because distribution of microorganisms is limited only by stream flow and settling rates, and because biofilms are the primary generator of bacterial cells. To simulate dissemination of introduced bacteria, multiple antibiotic-resistant bacteria (Chryseobacterium (Flavobacterium) indologenes) were introduced into microcosms containing water, sediments, and leaves. Marked bacteria reached greatest abundances in sediments, and contributions of bacteria from sediments to other habitats was relatively low. Bacterial attachment and detachment occurred rapidly, but the ability of marked bacteria to successfully exploit receiving habitats was comparatively low. Current speed influenced bacterial dissemination. A mechanistic model, using mortality and attachment/detachment rates, determined experimentally, was developed to predict bacterial exchanges in nature. The model was predictive of experimental results when only 5% of bacteria in sediments were available for detachment. Based on model results, an introduced bacterial strain, with mortality rates comparable to those of the model strain, is predicted to maintain highest abundances in sediments. However, within a month, abundance was predicted to be reduced by 98%; long-term persistence is possible if these low population sizes can be sustained. Received: 11 August 1997; Accepted: 9 December 1997  相似文献   

5.
Intracellular cargo transport by kinesin family motor proteins is crucial for many cellular processes, particularly vesicle transport in axons and dendrites. In a number of cases, the transport of specific cargo is carried out by two classes of kinesins that move at different speeds and thus compete during transport. Despite advances in single-molecule characterization and modeling approaches, many questions remain regarding the effect of intermotor tension on motor attachment/reattachment rates during cooperative multimotor transport. To understand the motor dynamics underlying multimotor transport, we analyzed the complexes of kinesin-1 and kinesin-3 motors attached through protein scaffolds moving on immobilized microtubules in vitro. To interpret the observed behavior, simulations were carried out using a model that incorporated motor stepping, attachment/detachment rates, and intermotor force generation. In single-molecule experiments, isolated kinesin-3 motors moved twofold faster and had threefold higher landing rates than kinesin-1. When the positively charged loop 12 of kinesin-3 was swapped with that of kinesin-1, the landing rates reversed, indicating that this “K-loop” is a key determinant of the motor reattachment rate. In contrast, swapping loop 12 had negligible effects on motor velocities. Two-motor complexes containing one kinesin-1 and one kinesin-3 moved at different speeds depending on the identity of their loop 12, indicating the importance of the motor reattachment rate on the cotransport speed. Simulations of these loop-swapped motors using experimentally derived motor parameters were able to reproduce the experimental results and identify best fit parameters for the motor reattachment rates for this geometry. Simulation results also supported previous work, suggesting that kinesin-3 microtubule detachment is very sensitive to load. Overall, the simulations demonstrate that the transport behavior of cargo carried by pairs of kinesin-1 and -3 motors are determined by three properties that differ between these two families: the unloaded velocity, the load dependence of detachment, and the motor reattachment rate.  相似文献   

6.
Chemical lysis of bacterial cells using an alkaline solution containing a detergent may provide an efficient scalable means for selectively removing covalently closed circular plasmid DNA from high-molecular-weight contaminating cellular components including chromosomal DNA. In this article we assess the chemical lysis of E. coli cells by SDS in a NaOH solution and determine the impact of pH environment and shear on the supercoiled plasmid and chromosomal DNA obtained. Experiments using a range of plasmids from 6 kb to 113 kb determined that in an unfavorable alkaline environment, where the NaOH concentration during lysis is greater than 0.15 +/- 0.03 M (pH 12.9 +/- 0.2), irreversible denaturation of the supercoiled plasmid DNA occurs. The extent of denaturation is shown to increase with time of exposure and NaOH concentration. Experiments using stirred vessels show that, depending on NaOH concentration, moderate to high mixing rates are necessary to maximize plasmid yield. While NaOH concentration does not significantly affect chromosomal DNA contamination, a high NaOH concentration is necessary to ensure complete conversion of chromosomal DNA to single-stranded form. In a mechanically agitated lysis reactor the correct mixing strategy must balance the need for sufficient mixing to eliminate potential regions of high NaOH concentrations and the need to avoid excessive breakage of the shear sensitive chromosomal DNA. The effect of shear on chromosomal DNA is examined over a wide range of shear rates (10(1)-10(5) s(-1)) demonstrating that, while increasing shear leads to fragmentation of chromosomal DNA to smaller sizes, it does not lead to significantly increased chromosomal DNA contamination except at very high shear rates (about 10(4)-10(5) s(-1)). The consequences of these effects on the choice of lysis reactor and scale-up are discussed.  相似文献   

7.
Summary In P. hybrida and B. nigra an enhancement of transformation rates (direct gene transfer) of about six to seven-fold was obtained after irradiation of protoplasts with 12.5 Gy (X-ray). The effect of protoplast irradiation was similar in experiments where protoplasts were irradiated 1h before transformation (X-ray/DNA) or 1h after completion of the transformation procedure (DNA/X-ray). Increased X-ray doses up to 62.5 Gy resulted in further enhancement of percentages of transformed colonies, indicating a correlation between relative transformation frequencies (RTF) and the doses applied. Estimation of degradation rates of plasmid sequences in plant protoplasts yielded a reduction of plasmid concentration to 50% 8–12 h after transformation. In 1-day-old protoplasts, the level of plasmid fragments dropped to 0%–10% compared to 1h after transformation. The results demonstrate that the integration rates of plasmid sequences into the plant genome may in part be governed by DNA repair mechanisms. This could be an explanation for the observed genotypic dependence of transformation rates in different plant species and plant genotypes. Gene copy number reconstructions revealed enhanced integration rates of plasmid sequences in transformed colonies derived from irradiated protoplasts.  相似文献   

8.
Introduction of the ColV, I-K94 virulence plasmid into strains of Escherichia coli led (for four out of five strains tested) to a marked increase in the ability of organisms to adhere to glass beads. For strain 1829, the plasmid led to increased attachment to other materials including sand, agar, agarose, chitin and cellulose. The increased adhesion to glass beads was due to the presence of the plasmid and not to its introduction into a variant with altered adhesive properties. The plasmid-encoded VmpA protein did not appear to be necessary for the ColV, I-K94-promoted adhesion but adhesion was absolutely dependent on the presence of derepressed levels of transfer components in the ColV+ strains and partially dependent on the presence of colicin components. The extent of the plasmid-promoted adhesion was greatest for organisms grown at 30 degrees, 37 degrees or 42 decrees C and adhesion was almost abolished by growth at 21 degrees or 25 degrees C; this finding is in accord with transfer and colicin components being involved in adhesion. Of several other plasmids tested for their effects on adhesion, those with derepressed transfer properties showed a marked effect as did the RI resistance plasmid. Because of the ease of handling glass bead-attached organisms, such preparations were used as a model for studying the relevance of attachment to the resistance of E. coli to chlorination in the water purification process. Organisms of 1829 ColV, I-K94, attached to glass beads, were more resistant to damage and killing by chlorine than were unattached organisms. Three findings suggest that such chlorine resistance may be significant for survival during water chlorination. Firstly, ColV, I-K94+ bacteria became attached if incubated in sewage effluent with glass beads at 20 degrees C. Secondly, ColV+ organisms already attached to glass beads maintained their attachment during 24 h incubation in effluent at 20 degrees C and thirdly such effluent incubated organisms remained chlorine resistant provided that they retained their attachment.  相似文献   

9.
Recombinant lambda phages were isolated that resulted from recombination between the lambda genome and plasmid pBR322 in Escherichia coli, even though these deoxyribonucleic acids (DNAs) did not share extensive regions of homology. The characterization of these recombinant DNAs by heteroduplex analysis and restriction endonucleases is described. All but one of the recombinants appeared to have resulted from reciprocal recombination between a site on lambda DNA and a site on the plasmid. In general, there were two classes of recombinants. One class appeared to have resulted from recombination at the phage attachment site that probably resulted from lambda integration into secondary attachment sites on the plasmid. Seven different secondary attachment sites on pBR322 were found. The other class resulted from plasmid integration at other sites that were widely scattered on the lambda genome. For this second class of recombinants, more than one site on the plasmid could recombine with lambda DNA. Thus, the recombination did not appear to be site specific with respect to lambda or the plasmid. Possible mechanisms for generating these recombinants are discussed.  相似文献   

10.
Agrobacterium tumefaciens cells carrying a tumour inducing plasmid (Ti‐plasmid) can transfer a defined region of transfer DNA (T‐DNA) to plant cells as well as to yeast. This process of Agrobacterium‐mediated transformation (AMT) eventually results in the incorporation of the T‐DNA in the genomic DNA of the recipient cells. All available evidence indicates that T‐strand transfer closely resembles conjugal DNA transfer as found between Gram‐negative bacteria. However, where conjugal plasmid DNA transfer starts via relaxase‐mediated processing of a single origin of transfer (oriT), the T‐DNA is flanked by two imperfect direct border repeats which are both substrates for the Ti‐plasmid encoded relaxase VirD2. Yeast was used as a model system to investigate the requirements of the recipient cell for the formation of T‐DNA circles after AMT. It was found that, despite the absence of self‐homology on the T‐DNA, the homologous repair proteins Rad52 and Rad51 are involved in T‐DNA circle formation. A model is presented involving the formation of T‐DNA concatemers derived from T‐strands by a process of strand‐transfer catalysed by VirD2. These concatemers are then resolved into T‐DNA circles by homologous recombination in the recipient cell.  相似文献   

11.
A simple and efficient transfection technique based on lipopolyamine-coated DNA that can be used for gene transfer in cerebellar granular neurons is described. Gene transfer is achieved by exposure of cells to a DNA/lipid complex obtained by simple mixing of lipopolyamine and plasmid DNA. This procedure may represent a general tool of physiological investigations in primary cells. We show that the promoters of the introduced chimera genes are regulated by their respective trans-acting factors and may be modulated via membrane receptors and second messengers. This procedure has no noticeable toxic effects, nor does it seem to interfere with complex physiological behavior like neuronal differentiation.  相似文献   

12.
The successful transfer of a marker gene (hpt gene) from Brassica nigra into B. napus via direct gene transfer was demonstrated. Total DNA was isolated from a hygromycin-resistant callus line, which contained three to five copies of the hpt gene. This line had been produced via direct gene transfer with the hygromycin resistance-conferring plasmid pGL2. The treatment of B. napus protoplasts with genomic DNA of B. nigra (HygR) resulted in relative transformation frequencies of 0.1–0.4%. Similar transformation rates were obtained in direct gene transfer experiments using B. napus protoplasts and plasmid pGL2.  相似文献   

13.
Growth of heterogeneous culture collections in microtiter plates is advantageous for logistic reasons and also in enabling significant savings in medium costs, labor input and use of equipment during large screening projects. The main hurdles to overcome for aerobic microbial strains are the prevention of cross-contamination and excessive evaporation while assuring sufficient aeration rates. For this purpose we developed a sandwich spongy silicone/cotton wool cover to close the wells of square-deepwell microtiter plates. Oxygen transfer rates were derived from growth curves of Pseudomonas putida and were shown to be threefold higher during orbital shaking at a shaking diameter of 5cm at 300rpm (24mmolO(2)l(-1)h(-1) at a culture volume of 0.75ml) in comparison to a shaking diameter of 2.5cm. Photographic analysis showed a clear influence of the shaking diameter on the hydrodynamic behavior in the wells; during shaking at a 2.5cm amplitude, out-of-phase conditions occurred resulting in poor vertical mixing, while a 5cm shaking amplitude led to an optimal surface to volume ratio and a turbulent flow.  相似文献   

14.
DNA segregation ensures the stable inheritance of genetic material prior to cell division. Many bacterial chromosomes and low‐copy plasmids, such as the plasmids P1 and F, employ a three‐component system to partition replicated genomes: a partition site on the DNA target, typically called parS, a partition site binding protein, typically called ParB, and a Walker‐type ATPase, typically called ParA, which also binds non‐specific DNA. In vivo, the ParA family of ATPases forms dynamic patterns over the nucleoid, but how ATP‐driven patterning is involved in partition is unknown. We reconstituted and visualized ParA‐mediated plasmid partition inside a DNA‐carpeted flowcell, which acts as an artificial nucleoid. ParA and ParB transiently bridged plasmid to the DNA carpet. ParB‐stimulated ATP hydrolysis by ParA resulted in ParA disassembly from the bridging complex and from the surrounding DNA carpet, which led to plasmid detachment. Our results support a diffusion‐ratchet model, where ParB on the plasmid chases and redistributes the ParA gradient on the nucleoid, which in turn mobilizes the plasmid.  相似文献   

15.
16.
The detailed engineering characterisation of shaken microtitre-plate bioreactors will enhance our understanding of microbial and mammalian cell culture in these geometries and will provide guidance on the scale-up of microwell results to laboratory and pilot scale stirred bioreactors. In this work computational fluid dynamics (CFD) is employed to provide a detailed characterisation of fluid mixing, energy dissipation rate and mass transfer in single well bioreactors from deep square 24-well and 96-well microtitre plates. The numerical predictions are generally found to be in good agreement with experimental observation of the fluid motion and measured values of the key engineering parameters. The CFD simulations have shown that liquid mixing is more intensive in 96-well than in 24-well bioreactors due to a significant axial component to the fluid velocity. Liquid motion is strongly dependent on the orbital shaking amplitude which generally has a greater impact than the shaking frequency. Average power consumptions of 70–100 W m−3 and 500–1000 W m−3, and overall mass transfer coefficient, kLa, values of 0.005–0.028 s−1 and 0.056–0.10 s−1 were obtained for 24-well and 96-well bioreactors respectively at an orbital shaking amplitude of 3 mm and shaking frequencies ranging from 500 rpm to 1500 rpm. The distribution of energy dissipation rates within each bioreactor showed these to be greatest at the walls of the well for both geometries. Batch culture kinetics of E. coli DH5 showed similar maximum specific growth rates and final biomass yields in shaken 24-well and shake flask bioreactors and in stirred miniature and 20 L bioreactors at matched kLa values. The CFD simulations thus give new insights into the local and overall engineering properties of microwell bioreactor geometries and further support their use as high throughput tools for the study and optimisation of microbial and mammalian cell culture kinetics at this scale.  相似文献   

17.
Gene transfer into muscle upon injection of plasmid DNA is feasible but occurs with low frequency. However, by using electroporation after injection of plasmid DNA into mouse muscle it has been demonstrated that gene expression can be increased more than 150-fold. In this communication, we have used this technique in combination with plasmids containing a tandem repeat of three 72-bp DNA elements from the SV40 enhancer to study gene expression. Our results show that the combination of electroporation and a plasmid vector carrying these DNA elements results in increased and more persistent gene expression of the luciferase reporter gene in BALB/c mouse muscle. At 14 days after gene delivery, the gene expression was 16-fold higher in muscles injected and electroporated with the plasmid carrying the SV40 enhancers than with control plasmid. We have also studied the effects of the vehicle in which the plasmid was delivered, and the DNase inhibitor aurintricarboxylic acid (ATA), on gene expression. By combining ATA with 150 mM sodium phosphate buffer we were able to obtain a 2-fold increase in gene expression compared to delivery of the plasmid in physiological saline. These results are of importance for the development of efficient delivery techniques for naked DNA.  相似文献   

18.
The tra gene of Streptomyces lividans plasmid plJ101 is required for both plasmid DNA transfer and plJ101-induced mobilization of chromosomal genes during mating. We show that a chromosomally inserted copy of tra mediates transfer of chromosomal DNA at high frequency but promotes efficient transfer of plasmids only when they contain a previously unknown locus, here named clt. Insertional mutation or deletion of clt from plJ101 reduced plasmid transfer mediated by either plasmid-borne or chromosomally located tra by at least three orders of magnitude, abolished the transfer-associated pocking phenomenon, and interfered with the ability of tra+ plasmids to promote transfer of chromosomal DNA. Our results indicate that plasmid transfer in S. lividans involves a cis-acting function dispensable for chromosomal gene transfer and imply that either the S. lividans chromosome encodes its own clt-like function or, alternatively, that transfer of plasmid and chromosomal DNA occurs by different mechanisms.  相似文献   

19.
The effects of rifampin and chloramphenicol on the transfer of ColIdrd-1 have been examined to determined whether transfer requires the synthesis of an untranslated species of ribonucleic acid (RNA), as proposed in models for the transfer of another IncIalpha plasmid, R64drd-11. When RNA synthesis was inhibited throughout mating by rifampin, ColI transfer between dna+ bacteria occurred at the normal rate for about 10 min and then stopped abruptly. Conjugational deoxyribonucleic acid (DNA) synthesis in dnaB mutants indicates that plasmid DNA was made in the rifampin-treated donors to replace the transferred material but the DNA tended to be unstable. In the presence of chloramphenicol, transfer of ColI gradually diminished over a longer period. Rifampin, but not chloramphenicol, was found to have unpredicted effects on chromosomal DNA metabolism in unmated dna+ and dnaB bacteria when they harbor any of three IncIalpha plasmids (ColIdrd-1, R144drd-3, and R64drd-11). Replication of the bacterial chromosome in such cells stopped abruptly about 15 min after the addition of rifampin, and at 41 degrees C, but not 37 degrees C, this was followed by extensive DNA breakdown. These findings suggest that curtailment of IncIalpha plasmid transfer by the drug results from a general disruption of DNA metabolism rather than from inhibition of a species of RNA essential for transfer.  相似文献   

20.
The M-band technique was used to assess the number of attachment points of DNA to the cell membrane of Streptococcus faecalis grown at three different rates. Cells were X irradiated in liquid nitrogen and then analyzed simultaneously for the introduction of double-strand breaks into the chromosome and the degree of removal of DNA from the cell membrane (M band). Consideration of the data from these experiments and of the topology of the bacterial chromosome resulted in a reevaluation of former quantitative models. Our results are consistent with a semiquantitative model in which the bacterial chromosome is organized around a core structure. We interpret our data to mean that the core is attached to the membrane and that the complexity of the core changes more drastically with growth rate than does the number of membrane-DNA attachment points. An alternative model in which RNA hybridizes with DNA containing single- and double-strand breaks is also discussed. In any event, the complexity of these interactions precludes a reliable estimate of the number of membrane-DNA attachment sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号