共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem 总被引:2,自引:0,他引:2
Christopher W. Harper John M. Blair Philip A. Fay† Alan K. Knapp Jonathan D. Carlisle 《Global Change Biology》2005,11(2):322-334
Predicted climate changes in the US Central Plains include altered precipitation regimes with increased occurrence of growing season droughts and higher frequencies of extreme rainfall events. Changes in the amounts and timing of rainfall events will likely affect ecosystem processes, including those that control C cycling and storage. Soil carbon dioxide (CO2) flux is an important component of C cycling in terrestrial ecosystems, and is strongly influenced by climate. While many studies have assessed the influence of soil water content on soil CO2 flux, few have included experimental manipulation of rainfall amounts in intact ecosystems, and we know of no studies that have explicitly addressed the influence of the timing of rainfall events. In order to determine the responses of soil CO2 flux to altered rainfall timing and amounts, we manipulated rainfall inputs to plots of native tallgrass prairie (Konza Prairie, Kansas, USA) over four growing seasons (1998–2001). Specifically, we altered the amounts and/or timing of growing season rainfall in a factorial combination that included two levels of rainfall amount (100% or 70% of naturally occurring rainfall quantity) and two temporal patterns of rain events (ambient timing or a 50% increase in length of dry intervals between events). The size of individual rain events in the altered timing treatment was adjusted so that the quantity of total growing season rainfall in the ambient and altered timing treatments was the same (i.e. fewer, but larger rainfall events characterized the altered timing treatment). Seasonal mean soil CO2 flux decreased by 8% under reduced rainfall amounts, by 13% under altered rainfall timing, and by 20% when both were combined (P<0.01). These changes in soil CO2 flux were consistent with observed changes in plant productivity, which was also reduced by both reduced rainfall quantity and altered rainfall timing. Soil CO2 flux was related to both soil temperature and soil water content in regression analyses; together they explained as much as 64% of the variability in CO2 flux across dates under ambient rainfall timing, but only 38–48% of the variability under altered rainfall timing, suggesting that other factors (e.g. substrate availability, plant or microbial stress) may limit CO2 flux under a climate regime that includes fewer, larger rainfall events. An analysis of the temperature sensitivity of soil CO2 flux indicated that temperature had a reduced effect (lower correlation and lower Q10 values) under the reduced quantity and altered timing treatments. Recognition that changes in the timing of rainfall events may be as, or more, important than changes in rainfall amount in affecting soil CO2 flux and other components of the carbon cycle highlights the complex nature of ecosystem responses to climate change in North American grasslands. 相似文献
2.
Paul S. J. Verburg Jessica Larsen Dale W. Johnson† David E. Schorran John A. Arnone III 《Global Change Biology》2005,11(10):1720-1732
Modeling analyses suggest that an increase in growth rate of atmospheric CO2 concentrations during an anomalously warm year may be caused by a decrease in net ecosystem production (NEP) in response to increased heterotrophic respiration (Rh). To test this hypothesis, 12 intact soil monoliths were excavated from a tallgrass prairie site near Purcell, Oklahoma, USA and divided among four large dynamic flux chambers (Ecologically Controlled Enclosed Lysimeter Laboratories (EcoCELLs)). During the first year, all four EcoCELLs were subjected to Oklahoma air temperatures. During the second year, air temperature in two EcoCELLs was increased by 4°C throughout the year to simulate anomalously warm conditions. This paper reports on the effect of warming on soil CO2 efflux, representing the sum of autotrophic respiration (Ra) and Rh. During the pretreatment year, weekly average soil CO2 efflux was similar in all EcoCELLs. During the late spring, summer and early fall of the treatment year, however, soil CO2 efflux was significantly lower in the warmed EcoCELLs. In general, soil CO2 efflux was correlated with soil temperature and to a lesser extent with moisture. A combined temperature and moisture regression explained 64% of the observed variation in soil CO2 efflux. Soil CO2 efflux correlated well with a net primary production (NPP) weighted greenness index derived from digital photographs. Although separate relationships for control and warmed EcoCELLs showed better correlations, one single relationship explained close to 70% of the variation in soil CO2 efflux across treatments and years. A strong correlation between soil CO2 efflux and canopy development and the lack of initial response to warming indicate that soil CO2 efflux is dominated by Ra. This study showed that a decrease in soil CO2 efflux in response to a warm year was most likely dominated by a decrease in Ra instead of an increase in Rh. 相似文献
3.
Soil CO2 efflux in a boreal pine forest under atmospheric CO2 enrichment and air warming 总被引:3,自引:0,他引:3
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1 ) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2 +↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction. 相似文献
4.
The response of heterotrophic CO2 flux to soil warming 总被引:3,自引:0,他引:3
Peter E. Eliasson Ross E. McMurtrie† David A. Pepper† Monika Strömgren‡ Sune Linder‡ Göran I. Ågren 《Global Change Biology》2005,11(1):167-181
In a forest ecosystem at steady state, net carbon (C) assimilation by plants and C loss through soil and litter decomposition by heterotrophic organisms are balanced. However, a perturbation to the system, such as increased mean soil temperature, will lead to faster decay, enhancing CO2 release from decomposers, and thus upsetting the balance. Recent in situ experiments have indicated that the stimulation of soil respiration following a step increase in annual average soil temperature declines over time. One possible explanation for this decline may be changes in substrate availability. This hypothesis is examined by using the ecosystem model G'DAY, which simulates C and nitrogen (N) dynamics in plants and soil. We applied the model to observations from a soil‐warming experiment in a Norway spruce (Picea abies (L.) Karst.) stand by simulating a step increase of soil temperature. The model provided a good qualitative reproduction of the observed reduction of heterotrophic respiration (Rh) under sustained warming. The simulations showed how the combined effects of faster turnover and reduced substrate availability lead to a transient increase of Rh. The simulated annual increase in Rh from soil was 60% in the first year after perturbation but decreased to 30% after a decade. One conclusion from the analysis of the simulations is that Rh can decrease even though the temperature response function for decomposition remains unchanged. G'DAY suggests that acclimation of Rh to soil warming is partly an effect of substrate depletion of labile C pools during the first decade of warming as a result of accelerated rates of mineralization. The response is attributed mainly to changing levels of C in pools with short time constants, reflecting the importance of high‐quality soil C fractions. Changes of the structure or physiology of the decomposer community were not invoked. Therefore, it becomes a question of definition whether the simulated dynamics of the declining response of CO2 release to the warming should be named acclimation or seen as a natural part of the system dynamics. 相似文献
5.
DUSTIN R. BRONSON STITH T. GOWER MYRON TANNER† SUNE LINDER‡ INGRID VAN HERK 《Global Change Biology》2008,14(4):856-867
Soil surface carbon dioxide (CO2) flux (RS) was measured for 2 years at the Boreal Soil and Air Warming Experiment site near Thompson, MB, Canada. The experimental design was a complete random block design that consisted of four replicate blocks, with each block containing a 15 m × 15 m control and heated plot. Black spruce [Picea mariana (Mill.) BSP] was the overstory species and Epilobium angustifolium was the dominant understory. Soil temperature was maintained (~5 °C) above the control soil temperature using electric cables inside water filled polyethylene tubing for each heated plot. Air inside a 7.3‐m‐diameter chamber, centered in the soil warming plot, contained approximately nine black spruce trees was heated ~5 °C above control ambient air temperature allowing for the testing of soil‐only warming and soil+air warming. Soil surface CO2 flux (RS) was positively correlated (P < 0.0001) to soil temperature at 10 cm depth. Soil surface CO2 flux (RS) was 24% greater in the soil‐only warming than the control in 2004, but was only 11% greater in 2005, while RS in the soil+air warming treatments was 31% less than the control in 2004 and 23% less in 2005. Live fine root mass (< 2 mm diameter) was less in the heated than control treatments in 2004 and statistically less (P < 0.01) in 2005. Similar root mass between the two heated treatments suggests that different heating methods (soil‐only vs. soil+air warming) can affect the rate of decomposition. 相似文献
6.
TOMOMICHI KATO YANHONG TANG† SONG GU‡ MITSURU HIROTA† MINGYUAN DU§ YINGNIAN LI‡ XINQUAN ZHAO‡ 《Global Change Biology》2006,12(7):1285-1298
Three years of eddy covariance measurements were used to characterize the seasonal and interannual variability of the CO2 fluxes above an alpine meadow (3250 m a.s.l.) on the Qinghai‐Tibetan Plateau, China. This alpine meadow was a weak sink for atmospheric CO2, with a net ecosystem production (NEP) of 78.5, 91.7, and 192.5 g C m?2 yr?1 in 2002, 2003, and 2004, respectively. The prominent, high NEP in 2004 resulted from the combination of high gross primary production (GPP) and low ecosystem respiration (Re) during the growing season. The period of net absorption of CO2 in 2004, 179 days, was 10 days longer than that in 2002 and 5 days longer than that in 2003. Moreover, the date on which the mean air temperature first exceeded 5.0°C was 10 days earlier in 2004 (DOY110) than in 2002 or 2003. This date agrees well with that on which the green aboveground biomass (Green AGB) started to increase. The relationship between light‐use efficiency and Green AGB was similar among the three years. In 2002, however, earlier senescence possibly caused low autumn GPP, and thus the annual NEP, to be lower. The low summertime Re in 2004 was apparently caused by lower soil temperatures and the relatively lower temperature dependence of Re in comparison with the other years. These results suggest that (1) the Qinghai‐Tibetan Plateau plays a potentially significant role in global carbon sequestration, because alpine meadow covers about one‐third of this vast plateau, and (2) the annual NEP in the alpine meadow was comprehensively controlled by the temperature environment, including its effect on biomass growth. 相似文献
7.
Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest 总被引:1,自引:0,他引:1
Global warming is projected to be greatest in northern regions, where forest fires are also increasing in frequency. Thus, interactions between fire and temperature on soil respiration at high latitudes should be considered in determining feedbacks to climate. We tested the hypothesis that experimental warming will augment soil CO2 flux in a recently burned boreal forest by promoting microbial and root growth, but that this increase will be less apparent in more severely burned areas. We used open‐top chambers to raise temperatures 0.4–0.9°C across two levels of burn severity in a fire scar in Alaskan black spruce forest. After 3 consecutive years of warming, soil respiration was measured through a portable gas exchange system. Abundance of active microbes was determined by using Biolog EcoPlates? for bacteria and ergosterol analysis for fungi. Elevated temperatures increased soil CO2 flux by 20% and reduced root biomass, but had no effect on bacterial or fungal abundance or soil organic matter (SOM) content. Soil respiration, fungal abundance, SOM, and root biomass decreased with increasing burn severity. There were no significant interactions between temperature and burn severity with respect to any measurement. Higher soil respiration rates in the warmed plots may be because of higher metabolic activity of microbes or roots. All together, we found that postfire soils are a greater source of CO2 to the atmosphere under elevated temperatures even in severely burned areas, suggesting that global warming may produce a positive feedback to atmospheric CO2, even in young boreal ecosystems. 相似文献
8.
Responses of soil respiration to elevated CO2 , air warming, and changing soil water availability in a model old-field grassland 总被引:1,自引:0,他引:1
SHIQIANG WAN † RICHARD J. NORBY† JOANNE LEDFORD† JAKE F. WELTZIN‡ 《Global Change Biology》2007,13(11):2411-2424
Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global carbon (C) cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, air warming, and changing precipitation in a constructed old‐field grassland in eastern Tennessee, USA. Model ecosystems of seven old‐field species were established in open‐top chambers and treated with factorial combinations of ambient or elevated (+300 ppm) CO2 concentration, ambient or elevated (+3 °C) air temperature, and high or low soil moisture content. During the 19‐month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in the other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of time period. Treatment‐induced changes in soil temperature and moisture together explained 49%, 44%, and 56% of the seasonal variations of soil respiration responses to elevated CO2, air warming, and changing precipitation, respectively. Additional indirect effects of seasonal dynamics and responses of plant growth on C substrate supply were indicated. Given the importance of indirect effects of the forcing factors and plant community dynamics on soil temperature, moisture, and C substrate, soil respiration response to climatic warming should not be represented in models as a simple temperature response function, and a more mechanistic representation including vegetation dynamics and substrate supply is needed. 相似文献
9.
Biomass production and species composition change in a tallgrass prairie ecosystem after long-term exposure to elevated atmospheric CO2 总被引:4,自引:0,他引:4
Clenton E. Owensby Jay. M. Ham Alan. K. Knapp Lisa. M. Auen 《Global Change Biology》1999,5(5):497-506
To determine the long-term impact of elevated CO2 on primary production of native tallgrass prairie, we compared the responses of tallgrass prairie at ambient and twice-ambient atmospheric CO2 levels over an 8-year period. Plots in open-top chambers (4.5 m diameter) were exposed continuously (24 h) to ambient and elevated CO2 from early April to late October each year. Unchambered plots were monitored also. Above-ground peak biomass was determined by clipping each year in early August, and root growth was estimated by harvesting roots from root ingrowth bags. Plant community composition was censused each year in early June. In the last 2 years of the study, subplots were clipped on 1 June or 1 July, and regrowth was harvested on 1 October. Volumetric soil water content of the 0–100 cm soil layer was determined using neutron scattering, and was generally higher in elevated CO2 plots than ambient. Peak above-ground biomass was greater on elevated CO2 plots than ambient CO2 plots with or without chambers during years with significant plant water stress. Above-ground regrowth biomass was greater under elevated CO2 than under ambient CO2 in a year with late-season water stress, but did not differ in a wetter year. Root ingrowth biomass was also greater in elevated CO2 plots than ambient CO2 plots when water stress occurred during the growing season. The basal cover and relative amount of warm-season perennial grasses (C4) in the stand changed little during the 8-year period, but basal cover and relative amount of cool-season perennial grasses (C3) in the stand declined in the elevated CO2 plots and in ambient CO2 plots with chambers. Forbs (C3) and members of the Cyperaceae (C3) increased in basal cover and relative amount in the stand at elevated compared to ambient CO2. Greater biomass production under elevated CO2 in C4-dominated grasslands may lead to a greater carbon sequestration by those ecosystems and reduce peak atmospheric CO2 concentrations in the future. 相似文献
10.
11.
Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming 总被引:6,自引:0,他引:6
Yuan An † Shiqiang Wan†‡ Xuhui Zhou† Afzal A. Subedar† Linda L. Wallace† Yiqi Luo† 《Global Change Biology》2005,11(10):1733-1744
Plant nitrogen (N) relationship has the potential to regulate plant and ecosystem responses strongly to global warming but has not been carefully examined under warmed environments. This study was conducted to examine responses of plant N relationship (i.e. leaf N concentration, N use efficiency, and plant N content in this study) to a 4‐year experimental warming in a tallgrass prairie in the central Great Plains in USA. We measured mass‐based N and carbon (C) concentrations of stem, green, and senescent leaves, and calculated N resorption efficiency, N use efficiency, plant N content, and C : N ratios of five dominant species (two C4 grasses, one C3 grass, and two C3 forbs). The results showed that warming decreased N concentration of both green and senescent leaves, and N resorption efficiency for all species. N use efficiencies and C : N ratios were accordingly higher under warming than control. Total plant N content increased under warming because of warming‐induced increases in biomass production that are larger than the warming‐induced decreases in tissue N concentration. The increases in N contents in both green and senescent plant tissues suggest that warming enhanced both plant N uptake and return through litterfall in the tallgrass ecosystem. Our results also suggest that the increased N use efficiency in C4 grasses is a primary mechanism leading to increased biomass production under warming in the grassland ecosystem. 相似文献
12.
Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest: comparison of two chamber techniques 总被引:1,自引:0,他引:1
JUKKA PUMPANEN HANNU ILVESNIEMI MARTTI PERÄMÄKi PERTTI HARI 《Global Change Biology》2003,9(3):371-382
A non‐vented non‐steady state flow‐through chamber and a non‐vented non‐steady state non‐flow‐through chamber technique were used to measure CO2 efflux of a young Scots pine forest on a fertile till soil in southern Finland. Soil temperature, soil moisture and soil CO2 concentration were measured concurrently with CO2 efflux for two and a half successive years. The CO2 efflux showed a seasonal pattern, effluxes ranging from low 0.0–0.1 g CO2 m ? 2 h ? 1 in winter to peak values of 2.3 g CO2 m ? 2 h ? 1 occurring in late June and in July. The daily average effluxes in July measured by flow through chambers were 1.23 and 0.98 g CO2 m ? 2 h ? 1 in 1998 and 1999, respectively. The annual accumulated CO2 efflux was 3117 and 3326 g CO2 m ? 2 in 1998 and 1999, respectively. The spatial variation in CO2 efflux was high (CV 0.18–0.45) and increased with increasing efflux. Soil air CO2 concentration showed similar seasonal pattern the peak concentrations occurring in July–August. The CO2 concentrations ranged from 580 to 780 µ mol mol ? 1 in the humus layer to 13 620–14 470 µ mol mol ? 1 in the C‐horizon. In winter the soil air CO2 concentrations were lower, especially in deeper soil layers. Drought decreased CO2 efflux and soil air CO2 concentration. The in situ comparison on forest soil between the chamber methods showed the non‐flow‐through chamber to give ~~50% lower efflux values than that of the flow‐through chamber. When calibrated against known CO2 efflux ranging from 0.4 to 0.8 g CO2 m ? 2 h ? 1 generated with a diffusion box method developed by Widén and Lindroth [Acta Universitatis Agriculturae Suecia Silvestria, 2001], the flow‐through chamber gave equal effluxes at the lower end of the calibration range, but overestimated high effluxes by 20%. Non‐flow‐through chamber underestimated the CO2 efflux by 30%. 相似文献
13.
ADRIAN V. ROCHA MICHAEL L. GOULDEN ALLISON L. DUNN† STEVEN C. WOFSY† 《Global Change Biology》2006,12(8):1378-1389
We used a 10‐year record of the CO2 flux by an old growth boreal forest in central Manitoba (the Northern Old Black Spruce Site (NOBS)), a ~150‐year‐old Picea mariana [Mill.] stand) to determine whether and how whole‐forest CO2 flux is related to tree ring width. We compared a 37‐year ring width chronology collected at NOBS to a second chronology that was collected at a nearby Black Spruce stand with a different disturbance history, and also to three measures of annual whole‐forest photosynthesis [gross ecosystem production (GEP)], two measures of annual respiration (R), and one measure of annual carbon balance [net ecosystem production (NEP)]. The year‐to‐year ring width fluctuations were well correlated between the two sites; increasing our confidence in the NOBS chronology and implying that ring width variation is driven and synchronized by the physical environment. Both chronologies exhibited serial correlation, with a fluctuation in ring width that had an apparent periodicity of ~7 years. Neither chronology was correlated with variation in annual precipitation or temperature. Ring width and NEP increased, while R decreased from 1995 to 2004. GEP either remained constant or decreased from 1995 to 2004, depending on which measure was considered. The lack of relationship between ring width and GEP may indicate that ring growth is controlled almost entirely by something other than carbon uptake. Alternative explanations for the ring width chronologies include the possibility that wood production varies as a result of shifts in respiration, or that an unidentified aspect of the environment, rather than the balance between GEP and respiration, controls wood production. The serial correlation in ring width may be related to increases and decreases in carbohydrate pools, or to gradual changes in nutrient availability, pathogens, herbivores, soil frost or soil water table. The cause or causes of serial correlation, and the controls on the allocation of photosynthate to wood production, emerge as critical uncertainties for efforts in predicting the carbon balance of boreal ecosystems and inferring past climate from tree rings. 相似文献
14.
RYAN A. SPONSELLER 《Global Change Biology》2007,13(2):426-436
Precipitation is a major driver of biological processes in arid and semiarid ecosystems. Soil biogeochemical processes in these water‐limited systems are closely linked to episodic rainfall events, and the relationship between microbial activity and the amount and timing of rainfall has implications for the whole‐system carbon (C) balance. Here, the influences of storm size and time between events on pulses of soil respiration were explored in an upper Sonoran Desert ecosystem. Immediately following experimental rewetting in the field, CO2 efflux increased up to 30‐fold, but generally returned to background levels within 48 h. CO2 production integrated over 48 h ranged from 2.5 to 19.3 g C m−2 and was greater beneath shrubs than in interplant spaces. When water was applied on sequential days, postwetting losses of CO2 were only half a large as initial fluxes, and the size of the second pulse increased with time between consecutive events. Soil respiration was more closely linked to the organic matter content of surface soils than to rainfall amount. Beneath shrubs, rates increased nonlinearly with storm size, reaching an asymptote at approximately 0.5 cm simulated storms. This nonlinear relationship stems from (1) resource limitation of microbial activity that is manifest at small time scales, and (2) greatly reduced process rates in deeper soil strata. Thus, beyond some threshold in storm size, increasing the duration or depth of soil moisture has little consequence for short‐term losses of CO2. In addition, laboratory rewetting across a broad range in soil water content suggest that microbial activity and CO2 efflux following rainfall may be further modified by the routing and redistribution of water along hillslopes. Finally, analysis of long‐term precipitation data suggests that half the monsoon storms in this system are sufficient to induce soil heterotrophic activity and C losses, but are not large enough to elicit autotrophic activity and C accrual by desert shrubs. 相似文献
15.
Elevated atmospheric CO2 increases fine root production, respiration, rhizosphere respiration and soil CO2 efflux in Scots pine seedlings 总被引:2,自引:0,他引:2
IVAN. A. JANSSENS MEG. CROOKSHANKS† GAIL. TAYLOR† REINHART CEULEMANS 《Global Change Biology》1998,4(8):871-878
In this study, we investigated the impact of elevated atmospheric CO2 (ambient + 350 μmol mol–1) on fine root production and respiration in Scots pine (Pinus sylvestris L.) seedlings. After six months exposure to elevated CO2, root production measured by root in-growth bags, showed significant increases in mean total root length and biomass, which were more than 100% greater compared to the ambient treatment. This increased root length may have lead to a more intensive soil exploration. Chemical analysis of the roots showed that the roots in the elevated treatment accumulated more starch and had a lower C/N-ratio. Specific root respiration rates were significantly higher in the elevated treatment and this was probably attributed to increased nitrogen concentrations in the roots. Rhizospheric respiration and soil CO2 efflux were also enhanced in the elevated treatment. These results clearly indicate that under elevated atmospheric CO2 root production and development in Scots pine seedlings is altered and respiratory carbon losses through the root system are increased. 相似文献
16.
Accurate estimates of soil CO2 efflux are important in the current discussion on the carbon balance of forests, and can be used to validate models and remotely sensed data. Due to the typically large spatial variability, large sample numbers are required to estimate mean forest soil CO2 efflux with reasonable confidence intervals. Most infrared gas analysis (IRGA) systems are not well suited to simultaneously produce daily means and handle this spatial variability problem. The soda lime technique gives daily means and allows the required large sample numbers, but is less accurate than the IRGA systems. Using an elaborate cross-calibration, we tried to combine the accuracy of an IRGA method with the spatial integration potential of the soda lime technique. This paper reports on the calibration technique used to improve the accuracy of the soda lime technique and confirms the spatial variability in soil CO2 efflux in a heterogeneous forest. 相似文献
17.
18.
GEORG WOHLFAHRT LYNN F. FENSTERMAKER† JOHN A. ARNONE III‡ 《Global Change Biology》2008,14(7):1475-1487
The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2 , taking up 102±67 and 110±70 g C m−2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3–4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed – especially since arid and semiarid biomes make up >30% of Earth's land surface. 相似文献
19.
C. I. Salimon E. A. Davidson† R. L. Victoria A. W. F. Melo 《Global Change Biology》2004,10(5):833-843
Stocks of carbon in Amazonian forest biomass and soils have received considerable research attention because of their potential as sources and sinks of atmospheric CO2. Fluxes of CO2 from soil to the atmosphere, on the other hand, have not been addressed comprehensively in regard to temporal and spatial variations and to land cover change, and have been measured directly only in a few locations in Amazonia. Considerable variation exists across the Amazon Basin in soil properties, climate, and management practices in forests and cattle pastures that might affect soil CO2 fluxes. Here we report soil CO2 fluxes from an area of rapid deforestation in the southwestern Amazonian state of Acre. Specifically we addressed (1) the seasonal variation of soil CO2 fluxes, soil moisture, and soil temperature; (2) the effects of land cover (pastures, mature, and secondary forests) on these fluxes; (3) annual estimates of soil respiration; and (4) the relative contributions of grass‐derived and forest‐derived C as indicated by δ13CO2. Fluxes were greatest during the wet season and declined during the dry season in all land covers. Soil respiration was significantly correlated with soil water‐filled pore space but not correlated with temperature. Annual fluxes were higher in pastures compared with mature and secondary forests, and some of the pastures also had higher soil C stocks. The δ13C of CO2 respired in pasture soils showed that high respiration rates in pastures were derived almost entirely from grass root respiration and decomposition of grass residues. These results indicate that the pastures are very productive and that the larger flux of C cycling through pasture soils compared with forest soils is probably due to greater allocation of C belowground. Secondary forests had soil respiration rates similar to mature forests, and there was no correlation between soil respiration and either forest age or forest biomass. Hence, belowground allocation of C does not appear to be directly related to the stature of vegetation in this region. Variation in seasonal and annual rates of soil respiration of these forests and pastures is more indicative of flux of C through the soil rather than major net changes in ecosystem C stocks. 相似文献
20.
ELENEIDE DOFF SOTTA EDZO VELDKAMP LUITGARD SCHWENDENMANN† BRENDA ROCHA GUIMARÃES‡ ROSIENE KEILA PAIXÃO‡ MARIA de LOURDES P. RUIVO‡ ANTONIO CARLOS LOLA da COSTA ¶ PATRICK MEIR§ 《Global Change Biology》2007,13(10):2218-2229
In the next few decades, climate of the Amazon basin is expected to change, as a result of deforestation and rising temperatures, which may lead to feedback mechanisms in carbon (C) cycling that are presently unknown. Here, we report how a throughfall exclusion (TFE) experiment affected soil carbon dioxide (CO2) production in a deeply weathered sandy Oxisol of Caxiuanã (Eastern Amazon). Over the course of 2 years, we measured soil CO2 efflux and soil CO2 concentrations, soil temperature and moisture in pits down to 3 m depth. Over a period of 2 years, TFE reduced on average soil CO2 efflux from 4.3±0.1 μmol CO2 m−2 s−1 (control) to 3.2±0.1 μmol CO2 m−2 s−1 (TFE). The contribution of the subsoil (below 0.5 m depth) to the total soil CO2 production was higher in the TFE plot (28%) compared with the control plot (17%), and it did not differ between years. We distinguished three phases of drying after the TFE was started. The first phase was characterized by a translocation of water uptake (and accompanying root activity) to deeper layers and not enough water stress to affect microbial activity and/or total root respiration. During the second phase a reduction in total soil CO2 efflux in the TFE plot was related to a reduction of soil and litter decomposers activity. The third phase of drying, characterized by a continuing decrease in soil CO2 production was dominated by a water stress‐induced decrease in total root respiration. Our results contrast to results of a drought experiment on clay Oxisols, which may be related to differences in soil water retention characteristics and depth of rooting zone. These results show that large differences exist in drought sensitivity among Amazonian forest ecosystems, which primarily seem to be affected by the combined effects of texture (affecting water holding capacity) and depth of rooting zone. 相似文献