首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The process-based simulation library SALMO-OO represents an object-oriented implementation of mass balance equations for pelagic food webs consisting of diatoms, green algae, blue-green algae and cladocerans, as well as nutrient cycles based on PO4–P, NO3–N, DO and detritus in lakes. It gains its structural flexibility from alternative process representations for algal growth and grazing, and zooplankton growth and mortality.Generic model structures of SALMO-OO were determined for three lake categories classified by circulation types reflecting the local climate and morphometry of lakes, and by trophic states reflecting community structures and habitat properties of lakes.Data of six lakes belonging to either of the three lake categories were used to validate the lake category specific structures of SALMO-OO.The study has demonstrated that: (1) JAVA suits well for object-oriented implementations of ecological simulation libraries, (2) object-oriented simulation libraries facilitate the identification of generic model structures for ecosystem categories.  相似文献   

2.
SUMMARY. 1. The hypothesis that dissolved humic material (DHM) stimulates bacterial involvement in phosphorus transformations and may thus lead to decreased accessibility of phosphorus to algae was investigated by studying three small forest lakes in southern Finland representing a wide range of concentrations of DHM. 2. Other chemical differences between the three lakes were slight, although the most humic lake exhibited higher concentrations of total phosphorus and of molybdate-reactive phosphorus. Bacterial biomass did not differ significantly between the lakes, but algal biomass was significantly lower at higher DHM concentrations. Consequently the ratio of algal biomass to bacterial biomass was significantly lower in the most humic lake. 3. Uptake of phosphorus from added 33PO4 was partitioned between algal and bacterial size fractions by differential filtration. No significant variation between lakes was found in the proportion of particulate 33P recovered from the algal fraction. 4. Turnover times for phosphate were significantly longer in the most humic lake and also showed lower variability. In general turnover times were long in comparison with values reported from many other lakes. Only briefly in mid summmer did turnover times in two of the lakes shorten to values which would indicate that demand for phosphate was outstripping supply. 5. Short-term storage of samples from the most humic lake stimulated biological incorporation of 33P, but additions of nitrogen and iron had little effect on phosphate uptake. 6. In these small forest lakes it is probable that no single nutrient consistently limits plankton development. Since no evidence was found that DHM shifts the balance of plankton phosphate uptake away from algae towards bacteria, the influence of DHM on phosphorus transformations may rather be through chemical regulation of free phosphate availability.  相似文献   

3.
Studies of the seasonal and spatial distribution of the epipelic algal standing crop and primary productivity were conducted in Marion Lake, British Columbia. Possible biological, chemical, and physical factors controlling the epipelic algal community dynamics were also investigated. The epipelic algal flora of the lake was very diverse, however, it can be generally considered as acidophilic associations of algae. The vertical distribution of the epipelic algae is partially influenced by the amount of light reaching the sediment, but also strongly influenced by the grazing of animals and erosion by wave action. Temperature, light, and grazing by animals all appear to influence the seasonal fluctuations in the algal standing crop. Concentrations of nutrients immediately above the sediment surface appear to be less important as controlling factors. The most important variables influenceing the primary productivity of the epipelic community are temperature, total algal standing crop, and light. Nutrients, again, appear to be less important as controlling factors. The study supports the idea that epipelic algal growth is high in shallow, low nutrient lakes and that the epipelic algal productivity is extremely important to the total energy budget of the lake.  相似文献   

4.
Bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling. They influence the climate, mediate primary production, participate in biogeochemical cycles, and maintain ecological balance. A greater insight on the control of the interactions between microalgae and other microorganisms, particularly bacteria, would be helpful in exploring the role of bacteria on algal blooms in lakes. The present study is to investigate the effects of bacteria on the occurrence of algal blooms in lakes. We propose a nonlinear mathematical model by taking into account interactions among nutrients, algae, detritus and bacteria in a lake. We assume that bacteria enhance the growth of algal biomass through remineralization only. Equilibria are analyzed for feasibility and stability, substantiated via numerical simulations. Increase in uptake rate of nutrients by algae and bacteria death rate generates transcritical bifurcations. We perform a global sensitivity analysis to identify the important parameters of the model having a significant impact on the densities of algae and bacteria in the lake. Our findings show that massive algal production might occur in the presence of bacteria, and microalgae-bacteria interactions can be beneficial to the massive production of microalgae. Further, the effect of time delays involved in the bacterial decomposition conversion of detritus into nutrients is studied. Chaotic oscillations may arise via equilibrium destabilization on increasing the values of the time lag. To support chaos occurrence, the Poincaré map is drawn and the Lyapunov exponents are also computed. The findings, critically important for lake restoration, indicate that hypoxia in the lake can be prevented if detritus removal is performed on a regular basis, at time intervals smaller than the critical threshold in the delay with which detritus is decomposed into nutrients.  相似文献   

5.
北京4海藻类群落结构特征与水体营养水平的研究   总被引:5,自引:0,他引:5  
高玉荣 《生态学报》1992,12(2):173-180
  相似文献   

6.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   

7.
The interactions between phytoplankton and zooplankton were studied in two large lakes in the Saimaa lake system, Finland. Both are subjected to substantial waste water loading, and exhibit a clear trophic gradient between the loaded and unloaded areas. The phytoplankton and zooplankton were compared in terms of composition, abundance and biomass at 34–39 stations located in different parts of the lakes. At least four mechanisms were thought to affect the composition of plankton communities: (1) the amount of nutrients (trophic gradient), (2) grazing of algae by herbivores, (3) the effect of the algal species composition on feeding by zooplankters (large, colonial algae in the more loaded parts of the lakes) and (4) the regeneration and reorganization of nutrients.  相似文献   

8.
Nutrient ratios have been related to nutrient limitation of algal growth in lakes. Retention of nutrients in lakes, by sedimentation and by denitrification, reduces the nutrient concentrations in the water column, thereby enhancing nutrient limitation. Differential retention of nitrogen and phosphorus alters their ratios in lakes and thereby contributes to determine whether nitrogen or phosphorus limits algal growth. We examined the relationships between differential nutrient retention, nutrient ratios, and nutrient limitation in Lake Brunner, a deep oligotrophic lake. The observed retention of nitrogen (20%) and phosphorus (47%) agreed with predictions by empirical equations from literature. As a result of differential retention with a much larger proportion of phosphorus retained than that of nitrogen, the nitrogen:phosphorus ratio was higher in the lake (69) than in the inflows (46). While the mean ratio in the inflows suggested no or only moderate phosphorus limitation, the lake appeared to be severely phosphorus limited. Combining empirical equations from literature that predict nitrogen and phosphorus retention suggests that the nitrogen:phosphorus ratio is enhanced by greater retention of phosphorus compared to nitrogen only in deep lakes with relatively short residence times, such as Lake Brunner. In contrast, in most lakes differential retention is expected to result in lower nitrogen:phosphorus ratios.  相似文献   

9.
The major classes of tropical lakes include shallow, lowland lakes; deep, tertiary lakes; high altitudinal lakes; rainforests lakes; and man-made lakes at all latitudes and altitudes. Basic ecological processes are similar in temperate and tropical lakes, including grazing, competition, predation and abiotic adaptation. Small tropical lakes of intermediate age are probably not biotically more complicated than similar-sized temperate lakes. The structure of the areas of adaptative radiation and the dispersal ability of the species are important for the present distribution of taxa. Fish play a key role in the tropics since many species both consume zooplankton and compete with them for algal and pelagic sestonic food. This important co-evolution between fish and algae, leaving a fraction of the algal community with a predation refuge, may have decreased the ability of zooplankton to exploit algae. In addition, heavy predation from juvenile and adult fish may greatly simplify the zooplankton community, and have resulted in the scarcity of Cladocera, notably the efficient filter-feeder Daphnia. Little is known of possible physiological constraints to cladoceran distribution, however. Thus similar co-evolution as hypothesized between fish and algae seems not to have occurred to such a great extent between fish and zooplankton. Diurnal patterns in habitat selection of fish may also influence nutrient re-distribution in the tropics as in many temperate lakes. Serious environmental problems threaten tropical lakes, including eutrophication, clear-cutting of the rain forest, unwise introduction of new species not adapted to prevailing conditions, overfishing, extensive use of biocids, and probably acidic rain in areas with poorly buffered waters. Important processes in tropical lakes could be elucidated by concentrating research upon the fate of phytoplankton successional production, involving competition, grazing, sinking, fungi and bacterial attack. Co-evolution of fish and algae should be further investigated as it could in part explain the general scarcity and simplicity of the zooplankton community. Limnocorral experiments should also be used for further assessing processes in tropical lakes.  相似文献   

10.
11.
Precious ecological information extracted from limnological long-term time series advances the theory on functioning and evolution of freshwater ecosystems. This paper presents results of applications of artificial neural networks (ANN) and evolutionary algorithms (EA) for ordination, clustering, forecasting and rule discovery of complex limnological time-series data of two distinctively different lakes. Ten years of data of the shallow and hypertrophic Lake Kasumigaura (Japan) are utilized in comparison with 13 years of data of the deep and mesotrophic Lake Soyang (Korea). Results demonstrate the potential that: (1) recurrent supervised ANN and EA facilitate 1-week-ahead forecasting of outbreaks of harmful algae or water quality changes, (2) EA discover explanatory rule sets for timing and abundance of harmful outbreaks algal populations, and (3) non-supervised ANN provide clusters to unravel ecological relationships regarding seasons, water quality ranges and long-term environmental changes.  相似文献   

12.
Algal biomass, C:N:P (carbon:nitrogen:phosphorus) ratios and APA (biomass specific alkaline phosphatase activity) were measured in benthic algal communities on living substrates (mussels and macrophytes) and on rocks and stones (epilithon) in three lakes of different trophy. Benthic algal communities on living substrates had lower C:N:P ratios than epilithon, whereas algal biomass was highest on rocks and stones. Benthic algal biomass increased with the trophic level of a lake despite an increase of C:N:P ratios in the benthic community. The differences in C:N:P ratios and algal biomass between lakes of different trophy were higher on inert substrates than on macrophytes and mussels, probably because algae on living substrates could compensate a poor nutrient supply from lake water with substrate nutrients. However, the substrate was not, as expected, the most important nutrient supply in the oligotrophic lake, but in the eutrophic lake. Therefore, differences between inert and living substrates in a single lake were highest in the eutrophic lake. APA values of the oligotrophic lake were very high especially for benthic algae on stones, indicating an ability of the community to take up nutrients from organic sources. In conclusion, living substrates were an important nutrient source for benthic algae and the importance of this nutrient supply did not decrease with increasing lake trophy.  相似文献   

13.
1. Positive effects of fish on algal biomass have variously been attributed to cascading top‐down effects and to nutrient enrichment by fish excretion. 2. Here, we used a combination of field and laboratory approaches to test an additional hypothesis, namely that the physical resuspension of settled algal cells by fish enhances algal biomass and alters community composition. 3. A multi‐lake survey showed that phytoplankton biomass and the fraction of motile algae increased with the concentration of inorganic suspended solids. This correlation could not be explained by wind‐induced resuspension because of the small size of the lakes. 4. In an enclosure experiment, chlorophyll‐a concentration, phytoplankton abundance and inorganic suspended solids increased significantly in the presence of Cyprinus carpio (common carp), but only if the fish had access to the sediment. No such effects were seen when a net prevented carp reaching the sediment. 5. The effects of enhanced nutrients and reduced zooplankton grazing as a result of fish feeding could not (fully) explain these observations, suggesting that the resuspension by carp of settled algae from a surface film on the sediment was the major factor in the outcome of the experiment. 6. An increase in diatoms and green algae (organisms with a relatively large sedimentation velocity) only in enclosures where carp could reach the sediment supported this view. 7. Several lines of evidence indicate that fish‐induced resuspension of algal cells from the sediment is an important mechanism that affects phytoplankton biomass and community composition in shallow lakes.  相似文献   

14.
Hans Güde 《Hydrobiologia》1988,159(1):63-73
Herbivorous crustacean zooplankton may influence bacterial populations of lakes directly by grazing on them or indirectly by grazing on algae. In Lake Constance a regularly observed decrease of bacterial density during periods of high abundance of cladocerans (clearwater phase) indicated bacterial grazing losses. However, cladoceran grazing on bacteria appeared to be less efficient than on algae. Moreover, cladocera reduced grazing pressure on bacteria by grazing on bacterivorous flagellates. Additionally, a shift of bacterial composition from an originally higher percentage of filamentous and aggregate growth forms towards a population of homogenously distributed small single celled bacteria was observed regularly at the beginning of the clearwater phase. Transient increases of bacterial abundance and productivity coinciding with the increase of cladocera at the end of the algal spring bloom were interpreted as field indications of indirect bacteria-zooplankton interactions due to crustacean grazing on phytoplankton. The release of organic carbon during grazing of crustacea on algae was considered as explanation for the observed stimulation of bacterial populations. Thereby, additional, otherwise inaccessible algal carbon would be made available to bacteria by zooplankton. Experimental support for this hypothesis was given by showing that bacteria were able to respond to crustacean grazing on algae by enhanced growth and activities. The possible impact of these direct and indirect crustacea-bacteria interactions on the abundance, activity and composition of bacterioplankton as well as on the structure and function of the total planktonic community is discussed.  相似文献   

15.
16.
The proliferation of algal bloom in water bodies due to the enhanced concentration of nutrient inflow is becoming a global issue. A prime reason behind this aquatic catastrophe is agricultural runoff, which carries a large amount of nutrients that make the lakes more fertile and cause algal blooms. The only solution to this problem is curtailing the nutrient loading through agricultural runoff. This could be achieved by raising awareness among farmers to minimize the use of fertilizers in their farms. In view of this, in this paper, we propose a mathematical model to study the effect of awareness among the farmers of the mitigation of algal bloom in a lake. The growth rate of awareness among the farmers is assumed to be proportional to the density of algae in the lake. It is further assumed that the presence of awareness among the farmers reduces the inflow rate of nutrients through agricultural runoff and helps to remove the detritus by cleaning the bottom of the lake. The results evoke that raising awareness among farmers may be a plausible factor for the mitigation of algal bloom in the lake. Numerical simulations identify the most critical parameters that influence the blooms and provide indications to possibly mitigate it.  相似文献   

17.
Internal phosphorus recycling (IPR) is an important nutrient source driving algal growth and eutrophication in lakes. The complexity of eutrophication behaviours caused by high IPR complicates lake management and undermines restoration efforts. Hence, knowledge about the possible types of bifurcation behaviours caused by high IPR is essential for effective and sustainable lake eutrophication management. For this purpose, numerical bifurcation analysis is performed on an algae‑phosphorus model to investigate how IPR drives complex and rich eutrophication behaviours in two tropical and two subtropical lakes. The two tropical lakes are Tasik Harapan and Sunway Lagoon in Malaysia, while the two subtropical lakes are Lake Fuxian and Lake Taihu in China. For each specified level of IPR, co-dimension one bifurcation analysis is performed by means of XPPAUT. Co-dimension two bifurcation analysis is then carried out by means of MatCont. At low IPR, Lake Fuxian exhibits reversible behaviour, accompanied by higher external phosphorus loading (EPL) thresholds. Lake Fuxian is also more conducive to stable equilibrium and its lake dynamics are easily predictable. At moderate IPR, Sunway Lagoon is likely to exhibit stable equilibrium, accompanied by possible shifting between two stable steady states (hysteresis behaviour) and oscillations. With higher IPR, Lake Taihu and Tasik Harapan are prone to irreversibility, accompanied by lower EPL thresholds. Because of increased complexity in lake dynamics in Lake Taihu and Tasik Harapan, small changes in EPL or in algal mortality rates could trigger various transitions in lake dynamics. Overall, high IPR can trigger unexpected sharp increases in algal concentration and can reduce the resilience of an oligotrophic lake. For shallow lakes, high IPR would cause unexpected sharp increases in algal concentrations, undermine resilience of lakes, complicate lake management, and delay lake recovery process.  相似文献   

18.
重金属是影响湖泊水质和生态健康的重要胁迫因子,系统识别生物对长期污染胁迫的响应模式是开展污染湖泊生态修复的重要基础.本研究以经历持续砷污染的大屯海为研究对象,于2017年6月—2018年3月对水体浮游植物和环境因子开展季节性调查.结果显示:大屯海的浮游植物群落主要由蓝藻门组成,与已有研究反映的长期砷胁迫下浮游植物组成以...  相似文献   

19.
In 49 unpolluted lakes of north-eastern Poland the biomass of algae in summer is significantly related to the concentration of total phosphorus and to the rate of phosphorus regeneration by zooplankton. Using a model with equations describing these relationships, the biomass of blue-green algae and other phytoplankton groups was predicted for 14 polluted lakes. A good approximation of actual values was obtained only for the biomass of blue-green algae calculated from the estimated rate of P regeneration by zooplankton in these lakes. It is hypothesized that more-or-less edible algae of other classes did not show dependence on the rate of input of regenerated P because their biomass was heavily reduced by grazing of zooplankton.  相似文献   

20.
Extracellular phosphatase can be produced by phytoplankton to utilize organic phosphorus under phosphorus (P) deficiency. However, there is a controversy about its use as an indicator of P deficiency in natural phytoplankton community inferred by such an “induction–repression” mechanism. Size-fractionation of alkaline phosphatase activity (APA), soluble reactive phosphorus (SRP) concentration, algal density, and composition were determined in six Chinese shallow lakes ranking in gradient of trophic status, where a positive relationship between SRP concentration and algal density was observed. Enzyme-labeled fluorescence (ELF) method was used to localize phosphatase on cell membrane of algae. The so-called algal APA that associated with coarser particle (>3.0 μm) accounted for the largest part of total APA. Within a lake with lower SRP concentration, the “induction–repression” mechanism held true. Contrastingly, both algal and total APA were positively related to SRP concentration based on the data across all study lakes with statistical significance, which may be explained firstly by algal composition. The lakes with higher SRP concentration were dominated by diatoms and green algae, while they easily produced extracellular phosphatases as evidenced by ELFA labeling. In parallel, the lakes with lower SRP concentration were dominated by cyanobacteria, while it was never ELFA-positive; secondly, ELFA-positive dots or structures suggested that, in lakes with higher trophic status, attached bacteria or heterotrophic microorganisms could substantially contribute to extracellular phosphatases for hydrolyzing organophosphoric compounds but probably utilizing the organic moiety as an organic carbon source. This process simultaneously produces inorganic P, leading to the co-occurrence of high phosphate concentration and APA. So, the contributor of APA are complex, which may produce extracellular phosphatase species-specific or not exclusively for P nutrient and consequently make it difficult to normalize APA with the exact biomass estimators. Therefore, it is not reasonable to use APA, normalized or not, as a general indicator for describing P deficiency of phytoplankton in shallow lakes especially eutrophic ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号