首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperglycemia is the hallmark of diabetes mellitus. Poor glycemic control is correlated with increased cardiovascular morbidity and mortality. High glucose can trigger endothelial cell apoptosis by de-activation of endothelial nitric oxide synthase (eNOS). eNOS was recently demonstrated to be extensively regulated by Akt and heat shock protein 90 (HSP90). Yet, little is known about the molecular mechanisms that regulate eNOS activity during high glucose exposure. The present study was designed to determine the involvement of protein interactions between eNOS and HSP90 in high glucose-induced endothelial cell apoptosis. The protein interaction of eNOS/HSP90 and eNOS/Akt were studied in cultured human umbilical vein endothelial cells (HUVECs) exposed to either control-level (5.5 mM) or high-level (33 mM) glucose for different durations (2, 4, 6, and 24 h). The results showed that the protein interactions between eNOS and HSP90 and between eNOS and Akt and the phosphorylation of eNOS were up-regulated by high glucose exposure for 2-4 h. With longer exposures, these effects decreased gradually. During early hours of exposure, the protein interactions of eNOS/HSP90 and eNOS/Akt and the phosphorylation of eNOS were all inhibited by geldanamycin, an HSP90 inhibitor. High glucose-induced endothelial cell apoptosis was also enhanced by geldanamycin and was reversed by NO donors. LY294002, a phosphatidylinositol 3 (PI3) kinase inhibitor, inhibited the association of eNOS/Akt and the phosphorylation of eNOS but had no effect on the interaction between eNOS and HSP90 during early hours of exposure. From our results we propose that, in HUVECs, during early phase of high glucose exposure, apoptosis can be prevented by enhancement of eNOS activity through augmentation of the protein interaction between eNOS and HSP90 and recruitment of the activated Akt. With longer exposure, dysregulation of eNOS activity would result in apoptosis. The present study provides a molecular basis for the effects of eNOS in the prevention of endothelial cells apoptosis during early phase of high glucose exposure. These observations may contribute to the understanding of the pathogenesis of vascular complications in diabetes mellitus.  相似文献   

2.
3.
目的:观察红杉醇(Scq)对高糖诱导的人脐静脉内皮细胞(HUVECs)损伤的保护作用及机制。方法:原代培养HUVECs,红杉醇(0.1,1,10μmol/L)预处理1h后,30mmol/L葡萄糖诱导内皮细胞损伤。5-溴脱氧尿嘧啶核苷(BrdU)掺入法检测细胞增殖,流式细胞术检测细胞周期,2’7’-二乙酰二氯荧光素(DCFH-DA)免疫荧光法检测细胞内活性氧簇(R0s)水平,比色法检测细胞-氧化氮(NO)、丙二醛(MDA)及过氧化氢(H202)水平,real-timePCR和Westernblot检测细胞内皮型一氧化氮合酶(eNos)及NADPH氧化酶4(NOX4)mRNA和蛋白表达。结果:Seq预处理1h后能明显减轻高糖诱导的血管内皮细胞损伤,促进细胞增殖,降低胞内NOX4的表达及ROS、MDA及H202水平,上调eNOS的表达及NO水平。结论:Seq对高糖诱导的内皮细胞损伤具有一定的保护作用,其机制可能与其抗氧化、上调eNOS的表达有关。  相似文献   

4.
Hyperglycemia and elevation of methylglyoxal (MG) are symptoms of diabetes mellitus (DM). We previously showed that high glucose (HG; 30 mM) or MG (50-400 microM) could induce apoptosis in mammalian cells, but these doses are higher than the physiological concentrations of glucose and MG in the plasma of DM patients. The physiological concentration of MG and glucose in the normal blood circulation is about 1 microM and 5 mM, respectively. Here, we show that co-treatment with concentrations of MG and glucose comparable to those seen in the blood circulation of DM patients (5 microM and 15-30 mM, respectively) could cause cell apoptosis or necrosis in human umbilical vein endothelial cells (HUVECs) in vitro. HG/MG co-treatment directly increased the reactive oxygen species (ROS) content in HUVECs, leading to increases in intracellular ATP levels, which can control cell death through apoptosis or necrosis. Co-treatment of HUVECs with 5 microM MG and 20 mM glucose significantly increased cytoplasmic free calcium levels, activation of nitric oxide synthase (NOS), caspase-3 and -9, cytochrome c release, and apoptotic cell death. In contrast, these apoptotic biochemical changes were not detected in HUVECs treated with 5 microM MG and 30 mM glucose, which appeared to undergo necrosis. Pretreatment with nitric oxide (NO) scavengers could inhibit 5 microM MG/20 mM glucose-induced cytochrome c release, decrease activation of caspase-9 and caspase-3, and increase the gene expression and protein levels of p53 and p21, which are known to be involved in apoptotic signaling. Inhibition of p53 protein expression using small interfering RNA (siRNA) blocked the activation of p21 and the cell apoptosis induced by 5 microM MG/20 mM glucose. In contrast, inhibition of p21 protein expression by siRNA prevented apoptosis in HUVECs but had no effect on p53 expression. These results collectively suggest that the treatment dosage of MG and glucose could determine the mode of cell death (apoptosis vs. necrosis) in HUVECs, and both ROS and NO played important roles in MG/HG-induced apoptosis of these cells.  相似文献   

5.
Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions. Retinal endothelial cells were exposed to elevated glucose, nitric oxide (NO) and hydrogen peroxide (H(2)O(2)). Cell viability and apoptosis were assessed by MTT assay, Hoechst staining, TUNEL assay and Annexin V labeling. The production of reactive oxygen species (ROS) was detected by the oxidation of 2',7'-dichlorodihydrofluorescein diacetate. The content of HO-1 was assessed by immunobloting and immunofluorescence. HO activity was determined by bilirubin production. Long-term exposure (7 days) of retinal endothelial cells to elevated glucose decreased cell viability and had no effect on HO-1 content. However, a short-time exposure (24 h) to elevated glucose did not alter cell viability, but increased both the levels of intracellular ROS and HO-1 content. Moreover, the inhibition of HO with SnPPIX unmasked the toxic effect of high glucose and revealed the protection conferred by HO-1. Oxidative/nitrosative stress conditions increased cell death and HO-1 protein levels. These effects of elevated glucose and HO inhibition on cell death were confirmed in primary endothelial cells (HUVECs). When cells were exposed to oxidative/nitrosative stress conditions there was also an increase in retinal endothelial cell death and HO-1 content. The inhibition of HO enhanced ROS production and the toxic effect induced by exposure to H(2)O(2) and NOC-18 (NO donor). Overexpression of HO-1 prevented the toxic effect induced by H(2)O(2) and NOC-18. In conclusion, HO-1 exerts a protective effect in retinal endothelial cells exposed to hyperglycemic and oxidative/nitrosative stress conditions.  相似文献   

6.
The aim of this study was to investigate the role of nitric oxide (NO), and the expression of endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF) genes in developing hearts at embryonic day 13.5 of embryos from diabetic mice. The protein and mRNA expression levels of eNOS and VEGF were significantly altered in the developing hearts of embryos from diabetic mice. The NO level was significantly decreased, whereas the VEGF concentration was significantly increased in the developing hearts of the embryos from diabetic mice. In vitro study showed a significant reduction in eNOS expression and cell proliferation in cardiac myoblast cells exposed to high glucose concentrations. Further, high glucose induced apoptosis in myoblast cells. Ultrastructural changes characteristics of apoptosis, including cell blebbing, aggregation of ribosomes and vacuoles in the cytoplasm were also evident in myoblast cells exposed to high glucose. It is suggested that hyperglycemia alters the expression of eNOS and VEGF genes that are involved in the regulation of cell growth and vasculogenesis, thereby contributing to the cardiac malformations seen in embryos from diabetic mice.  相似文献   

7.
Hyperglycaemia is associated with oxidative stress. The inducible isoform of heme oxygenase (HO-1) is an effective system to counteract oxidative stress, yet it is unclear how hyperglycaemia affects HO-1. In this study, we explored: 1) the HO-1 protein content and HO activity in human umbilical vein endothelial cells (HUVECs) exposed to different glucose concentrations, and 2) the mechanisms which account for the high glucose-induced effects on HO-1. We evaluated HO-1 protein expression, HO activity, apoptosis and reactive oxygen species (ROS) in HUVECs treated for 48 h with 5.5, 10 and 20 mM glucose. A dose-dependent production of reactive oxygen species was observed. At 10 mM glucose, an increase of HO-1 protein expression and HO activity was observed, whereas at 20 mM, there was no change in protein content and activity relative to at 5.5 mM glucose. HO-1 protein expression in HUVECs exposed to 20 mM of glucose was increased in the presence of 20 U/ml superoxide dismutase (SOD). HO-1 gene silencing augments ROS production both at 5.5 and 10 mM glucose, leading to an increased apoptosis. We conclude that, in endothelial cells, the regulation of HO-1 by glucose is dependent upon levels of glucose itself. Lack of homeostatic HO-1 upregulation fails to protect from oxidative damage and results in a higher rate of apoptotic cell death.  相似文献   

8.
Endothelial dysfunction is thought to be a major cause of vascular complications in diabetes. Our research shows that ghrelin attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells (ECV-304). Exposure to glucose (33.3mM) for 72 h caused a significant increase in apoptosis, as evaluated by TUNEL and flow cytometry, but pretreatment of ghrelin (10(-7)M) eliminated high glucose-induced apoptosis in ECV-304. Ghrelin also prevented the induction of caspase-3 activation, in cells incubated with glucose (33.3 mM). Exposure of cells to ghrelin (10(-7)M) caused rapid activation of Akt. PI3K inhibitor, LY294002 attenuated ghrelin's inhibitory effect on caspase-3 activity. Ghrelin protected endothelial cells from high glucose by inhibiting reactive oxygen species (ROS) generation. Results of our study indicate that ghrelin inhibits both high glucose-induced apoptosis via PI3K/Akt pathway and ROS production in ECV-304. This peptide may have potential in preventing diabetic complications, especially in obese patients.  相似文献   

9.
Liu J  Wei S  Tian L  Yan L  Guo Q  Ma X 《Peptides》2011,32(1):86-92
The endomorphin-1 (EM1) and endomorphin-2 (EM2) are endogenous opioid peptides, which modulate extensive bioactivities such as pain, cardiovascular responses, immunological responses and so on. The present study was undertaken to investigate the effects of EM1/EM2 on the primary cultured human umbilical vein endothelial cells (HUVECs) damaged by high glucose. PI AnnexinV-FITC detection was performed to evaluate the apoptosis rate. Levels of nitric oxide (NO) and nitric oxide synthase (NOS) activity were measured by the Griess reaction and the conversion of 3H-arginine to 3H-citrulline, respectively. Endothelin-1 (ET-1) was evaluated by the enzyme-linked immunosorbent assay (ELISA). Cell proliferation was determined by the MTT viability assay. mRNA expression of endothelial nitric oxide synthase (eNOS) and ET-1 were measured by real-time PCR. Our data showed that EM1/EM2 inhibited cell apoptosis. The high glucose induced increase in expression of NO, NOS and ET-1 were significantly attenuated by pretreatment with EM1/EM2 in a dose dependent manner. In addition, EM1/EM2 suppressed the mRNA eNOS and mRNA ET-1 expression in HUVECs under high glucose conditions. Naloxone, the nonselective opioid receptor antagonist, did not influence the mRNA eNOS expression when it was administrated on its own; but it could significantly antagonize the effects induced by EM1/EM2. Furthermore, in all assay systems, EM1 was more potent than EM2. The results suggest that EM1/EM2 have a beneficial effect in protecting against the endothelial dysfunction by high glucose in vitro, and these effects were mediated by the opioid receptors in HUVECs.  相似文献   

10.
Diabetes mellitus (DM) is a major risk factor for atherosclerosis and causes multiple cardiovascular complications. Although high glucose can induce matrix metalloproteinases (MMPs), its inhibitors and cell apoptosis, little is known about the roles of MMPs in regulating cell apoptosis in response to high glucose. To address this issue, we elucidated the relationship between MMPs, its inhibitors and cell apoptosis in human umbilical vein endothelial cells (HUVECs). HUVECs were treated with medium containing 5.5 mM or 33 mM of glucose in the presence or the absence of ascorbic acid and MMP inhibitors (GM6001 and endogenous tissue inhibitors of MMPs, TIMP-1, and TIMP-2). For detection of cell apoptosis, the cell death detection ELISA assay was used. The results revealed that high glucose-induced apoptosis could be suppressed by ascorbic acid, GM6001 and TIMP-2, but not by TIMP-1. The activities of MMP-2, MMP-9 and its inhibitors, TIMP-1, TIMP-2 after high glucose treatment, were also detected by ELISA method. We found that the activated form of MMP-2, but not MMP-9, was increased, while the level of TIMP-2, but not TIMP-1, was decreased. In Western blot and RT-PCR analysis, the expression of TIMP-2, but not TIMP-1, after high glucose treatment was downregulated, whereas the levels of MMP-2 and -9 proteins and mRNA were not changed. The present study indicated that oxidative stress induced by high glucose might be involved in the opposite effects on MMP-2 activation and TIMP-2 downregulation. This reactive oxygen species (ROS)-dependent MMP-2 activation in turn mediates high glucose-induced cell apoptosis in HUVECs.  相似文献   

11.
Recent studies implicate hyperglycemia as a cause of vascular complications in diabetes. Our study confirmed that high concentration of glucose (30 mM) induces apoptosis in cultures of human umbilical vein endothelial cells. After 5 days of culture TUNEL positive cells in high concentration of glucose were nearly 63% higher when compared to normal concentration of glucose (5 mM). Transfection of pcDNA3-rat alphaB-crystallin into these cells inhibited high glucose-induced apoptosis by approximately 36%, such an effect was not observed when cells were transfected with an empty vector. AlphaB-crystallin transfection inhibited by about 35% of high glucose induced activation of caspase-3. High concentration of glucose enhanced formation of reactive oxygen species (ROS) in these cells but this was significantly (p < 0.001) curtailed by transfection of alphaB-crystallin. Results of our study indicate that alphaB-crystallin effectively inhibits both ROS formation and apoptosis in cultured vascular endothelial cells and provide a basis for future therapeutic interventions in diabetic vascular complications.  相似文献   

12.
Endothelial dysfunction secondary to persistent hyperglycemia plays a key role in the development of type 2 diabetic vascular disease. The aim of the present study was to examine the protective effect of resveratrol against hyperglycemia-induced endothelial dysfunction. In cultured human umbilical vein endothelial cells (HUVECs), resveratrol (10-100 μM) concentration dependently enhanced phosphorylation of endothelial nitric oxide synthesis (eNOS) at Ser1177 and nitric oxide (NO) production. In addition, resveratrol can increase the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) at Thr172 and suppress high glucose-induced generation of superoxide anion. In mouse aortic rings, resveratrol (1-100 μM) elicited endothelium-dependent vasodilatations and alleviated high glucose-mediated endothelial dysfunction. All these beneficial effects of resveratrol on the endothelium were abolished by pharmacological antagonism of AMPK by compound C. These results provide new insight into the protective properties of resveratrol against endothelial dysfunction caused by high glucose, which is attributed to the AMPK mediated reduction of superoxide level.  相似文献   

13.
High glucose-induced apoptosis in vascular endothelial cells may contribute to the acceleration of atherosclerosis associated with diabetes. Here, we show that erythropoietin attenuates high glucose-induced apoptosis in cultured human aortic endothelial cells (HAECs). Exposure of HAECs to high glucose level for 72h significantly increased the number of apoptotic cells compared with normal glucose level, as evaluated by TUNEL assay. Simultaneous addition of erythropoietin (100 U/ml) significantly attenuated high glucose-induced apoptosis. In parallel, exposure to high glucose level induced caspase-3 activation and erythropoietin also prevented it. Erythropoietin stimulated Akt phosphorylation in a dose-dependent manner (1-100 U/ml). PI3 kinase inhibitor, wortmannin or LY294002 eliminated erythropoietin's inhibitory effect on caspase-3 activity. In conclusion, erythropoietin may attenuate high glucose-induced endothelial cell apoptosis via PI-3 kinase pathway. Replacing therapy with erythropoietin is often used for correction of renal anemia, but may have potential in preventing atherosclerosis in diabetic patients with end-stage renal failure.  相似文献   

14.
15.
目的: 探讨雌激素处理人骨髓间充质干细胞(hBMSC)对高糖诱导的人脐静脉血管内皮细胞(HUVEC)损伤的保护作用及机制。方法: 采用30 mmol/L葡萄糖刺激hBMSC细胞建立高糖模型并分组:以无刺激者为高糖对照组(HG组)、以20 μmol/L雌激素处理者为高糖雌激素组(HG+E2组)、以5 μmo/L蛋白激酶B(PKB/Akt)抑制剂Triciribine预处理45 min后,再以20 μmol/L雌激素处理者为高糖Akt抑制剂组(HG+E2+Triciribine组)和正常条件培养的hBMSC为正常对照组(NG组)。分别于处理12 h后,采用CCK8法检测各组hBMSC的细胞活力,硝酸还原酶法和ELISA法检测各组培养基上清中NO、VEGF和IL-8的含量(n=6),48 h后采用Western blot检测内皮型一氧化氮合酶(eNOS)和磷酸化eNOS(p-eNOS)蛋白表达水平(n=3)。此外,提取各组hBMSC的培养基上清作为条件培养基(CM)培养人脐静脉血管内皮细胞(HUVEC)并分组为:HG-CM组(HG组条件培养基处理)、HG+E2-CM组(HG+E2组条件培养液处理)、HG+E2+Triciribine-CM组(HG+E2+Triciribine组条件培养基处理)和HG-H组(高糖对照组,30 mmol/L葡萄糖终浓度处理),分别于12 h后,采用CCK8法检测各组HUVEC的细胞活力(n=6),24 h后采用流式细胞术检测各组HUVEC细胞的凋亡率(n=3);48 h后采用划痕实验观察各组HUVEC细胞的迁移率(n=3)。结果: 与NG组相比,HG组中hBMSC细胞活力和细胞内eNOS蛋白磷酸化水平降低(P<0.05),细胞培养液上清中NO、VEGF和IL-8含量减少(P<0.05);与HG组相比,HG+E2组中hBMSC的细胞活力和细胞中eNOS蛋白磷酸化水平显著增加(P<0.05),细胞培养基上清中NO、VEGF和IL-8含量增加(P<0.05),而当hBMSC细胞中Akt蛋白活性被抑制后,HG+E2+Triciribine组中上述结果指标呈反向变化(P<0.05)。此外,与HG-CM组相比,HG+E2-CM组中HUVECs的细胞活力和迁移能力显著增加(P<0.05),细胞凋亡比例降低(P<0.05),而与HG+E2-CM组相比,HG+E2+Triciribine-CM组中HUVECs的细胞活力和迁移能力降低(P<0.05),细胞凋亡比例增加(P< 0.05)。结论: 雌激素可能通过激活hBMSC细胞Akt/eNOS信号通路,促进NO、VEGF和IL-8的分泌,进而增加HUVECs的细胞活力和迁移能力,并抑制细胞凋亡的发生,对高糖诱导的HUVECs细胞损伤发挥保护作用。  相似文献   

16.
17.

Background

The efficacy of Phosphodiesterase 5 (PDE5) inhibitors to re-establish endothelial function is reduced in diabetic patients. Recent evidences suggest that therapy with PDE5 inhibitors, i.e. sildenafil, may increase the expression of nitric oxide synthase (NOS) proteins in the heart and cardiomyocytes. In this study we analyzed the effect of sildenafil on endothelial cells in insulin resistance conditions in vitro.

Methodology/Principal Findings

Human umbilical vein endothelial cells (HUVECs) were treated with insulin in presence of glucose 30 mM (HG) and glucosamine 10 mM (Gluc-N) with or without sildenafil. Insulin increased the expression of PDE5 and eNOS mRNA assayed by Real time-PCR. Cytofluorimetric analysis showed that sildenafil significantly increased NO production in basal condition. This effect was partially inhibited by the PI3K inhibitor LY 294002 and completely inhibited by the NOS inhibitor L-NAME. Akt-1 and eNOS activation was reduced in conditions mimicking insulin resistance and completely restored by sildenafil treatment. Conversely sildenafil treatment can counteract this noxious effect by increasing NO production through eNOS activation and reducing oxidative stress induced by hyperglycaemia and glucosamine.

Conclusions/Significance

These data indicate that sildenafil might improve NOS activity of endothelial cells in insulin resistance conditions and suggest the potential therapeutic use of sildenafil for improving vascular function in diabetic patients.  相似文献   

18.
Hyperglycemia is a causal factor in the development of diabetic vascular complications including impaired vascular smooth muscle contractility and increased cell proliferation. The present study was designed to investigate the effects of Sasa borealis water-extract (SBwE) on chronic hyperglycemia-induced oxidative stress and apoptosis in human umbilical endothelial cells (HUVEC). HUVEC were cultured in 5.5 mM low glucose, 5.5 mM glucose plus 27.5 mM mannitol as an osmotic control, or 33 mM high glucose for 5 days in the absence and presence of 1-30 microg/ ml SBwE. Caspase-3 activation and Annexin V staining revealed chronic high glucose-induced endothelial apoptotic toxicity with a generation of oxidants detected by DCF-fluorescence, and these effects were reversed by SBwE at > or =1 microg/ml in a dose-dependent manner. Cytoprotective SBwE substantially reduced the sustained high glucose-induced expression of endothelial nitric oxide synthase and attenuated the formation of peroxynitrite radicals. The suppressive effects of SBwE were most likely mediated through blunting activation of PKC beta 2 and NADPH oxidase promoted by high glucose. In addition, this bamboo extract modulated the high glucose-triggered mitogen-activated protein kinase-dependent upregulation of heat-shock proteins. Our results suggest that SBwE suppressed these detrimental effects caused by PKC-dependent peroxynitrite formation via activation of NADPH oxidase and induction of nitric oxide synthase and heat-shock protein family that may be essential mechanisms responsible for increased apoptotic oxidative stress in diabetic vascular complications. Moreover, the blockade of high glucose-elicited heat-shock protein induction appeared to be responsible for SBwE-alleviated endothelial apoptosis. Therefore, SBwE may be a therapeutic agent for the prevention and treatment of diabetic endothelial dysfunction and related complications.  相似文献   

19.
Elevated oxidative stress plays a key role in diabetes-associated vascular disease. In this study, we tested the hypothesis that high glucose-induced oxidative stress was associated with changes in the expression of NADPH oxidase, superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS). Oxidative stress was assessed in cell cultures of mouse microvessel endothelial cells (MMECs) by fluorescence labelling with dihydroethidium, lucigenin-enhanced chemiluminescence and determining NADPH oxidase subunit and eNOS expression with real-time polymerase chain reaction protocol and Western blotting. Oxidative stress and expression of the NADPH oxidase subunit, p22phox, were both increased, SOD1 and 3 expression lowered and eNOS significantly elevated in MMECs treated with 40 mM glucose for 72 h compared to low glucose medium. Oxidative stress, p22phox mRNA, eNOS mRNA, and protein were lowered by concurrent incubation with sepiapterin. When eNOS protein expression in endothelial cells was significantly decreased by eNOS siRNA treatment, superoxide generation was significantly higher in the MMECs grown in low glucose, but reduced in those grown in high glucose for 72 h. Thus, exposure of MMECs to high glucose results in increased oxidative stress that is associated with increased eNOS and NADPH oxidase subunit expression, notably p22phox, and decreased expression of SOD1 and 3.  相似文献   

20.
The present study addressed whether chronic hypoxia is associated with reduced nitric oxide (NO) release due to decreased activation of endothelial NO synthase (eNOS). Primary cultures of endothelial cells from human umbilical veins (HUVECs) were used and exposed to different oxygen levels for 24 h, after which NO release, intracellular calcium, and eNOS activity and phosphorylation were measured after 24 h. Direct measurements using a NO microsensor showed that in contrast to 1-h exposure to 5% and 1% oxygen (acute hypoxia), histamine-evoked (10 microM) NO release from endothelial cells exposed to 5% and 1% oxygen for 24 h (chronic hypoxia) was reduced by, respectively, 58% and 40%. Furthermore, chronic hypoxia also lowered the amount and activity of eNOS enzyme. The decrease in activity could be accounted for by reduced intracellular calcium and altered eNOS phosphorylation. eNOS Ser(1177) and eNOS Thr(495) phosphorylations were reduced and increased, respectively, consistent with lowered enzyme activity. Akt kinase, which can phosphorylate eNOS Ser(1177), was also decreased by hypoxia, regarding both total protein content and the phosphorylated (active) form. Moreover, the protein content of beta- actin, which is known to influence the activity of eNOS, was almost halved by hypoxia, further supporting the fall in eNOS activity. In conclusion, chronic hypoxia in HUVECs reduces histamine-induced NO release as well as eNOS expression and activity. The decreased activity is most likely due to changed eNOS phosphorylation, which is supported by decreases in Akt expression and phosphorylation. By reducing NO, chronic hypoxia may accentuate endothelial dysfunction in cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号