首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The current paradigm for the role of nerve growth factor (NGF) or FGF-2 in the differentiation of neuronal cells implies their binding to specific receptors and activation of kinase cascades leading to the expression of differentiation specific genes. We examined herein the hypothesis that FGF receptors (FGFRs) are involved in NGF-induced neuritogenesis of pheochromocytoma-derived PC12 cells. We demonstrate that in PC12 cells, FGFR expression and activity are modulated upon NGF treatment and that a dominant negative FGFR-2 reduces NGF-induced neuritogenesis. Moreover, FGF-2 expression is modulated by NGF, and FGF-2 is detected at the cell surface. Oligonucleotides that specifically inhibit FGF-2 binding to its receptors are able to significantly reduce NGF-induced neurite outgrowth. Finally, the duration of mitogen-activated protein kinase (MAPK) activity upon FGF or NGF stimulation is shortened in FGFR-2 dominant negative cells through inactivation of signaling from the receptor to the Ras/MAPK pathway. In conclusion, these results demonstrate that FGFR activation is involved in neuritogenesis induced by NGF where it contributes to a sustained MAPK activity in response to NGF.  相似文献   

3.
Myelin-associated inhibitors expressed following injury to the adult central nervous system (CNS) induce growth cone collapse and retraction of the axonal cytoskeleton. Myelin-associated glycoprotein (MAG) is a bi-functional molecule that promotes neuritogenesis in some immature neurons during development then becomes inhibitory to neurite outgrowth as neurons mature. Progress is being made towards the elucidation of the downstream events that regulate myelin inhibition of regeneration in neuronal populations. However it is not known how adult-derived neural stem cells or progenitors respond to myelin during neuronal differentiation and neuritogenesis. Here we examine the effect of MAG on neurons derived from an adult rat hippocampal progenitor cell line (AHPCs). We show that, unlike their developmental counterparts, AHPC-derived neurons are susceptible to MAG inhibition of neuritogenesis during differentiation and display a 57% reduction in neurite outgrowth when compared with controls. We demonstrate that this effect can be overcome (by up to 69%) by activation of the neurotrophin, cyclic AMP and protein kinase A pathways or by Rho-kinase suppression. We also demonstrate that combination of these factors enhanced neurite outgrowth from differentiating neurons in the presence of MAG. This work provides important information for the successful generation of new neurons from adult neural stem cell populations within compromised adult circuitry and is thus directly relevant to endogenous repair and regeneration of the adult CNS.  相似文献   

4.
Previous studies have shown that both fibroblast growth factor (FGF)-1 and nerves play an important function during limb regeneration, but no correlation between these two regeneration factors has yet been demonstrated. In the present study we first establish that exogenous FGF-2, a member of the FGF family that binds to the same high-affinity receptors as FGF-1, is able to stimulate both [3H]-thymidine incorporation and the mitotic index in the mesenchyme and the epidermal cells of denervated blastemas. We then use cocultures of spinal cord and blastema on heparin-coated dishes, an in vitro system mimicking the in vivo interactions during limb regeneration, to show that interactions between nerve fibers from the spinal cord and the blastema enhance the release of bioactive FGF-1. Release of this growth factor seemed to correlate with nerve fiber regeneration, as it decreased in the presence of the dipeptide Leu-Ala, known to inhibit neurite outgrowth, while the inverse dipeptide Ala-Leu was inactive. Therefore, these results support our hypothesis that the interaction between nervous tissue and blastema is permissive for the release of FGF-1, which in turn stimulates blastema cell proliferation.  相似文献   

5.
Transient Receptor Potential Canonical (TRPC) channels are implicated in modulating neurite outgrowth. The expression pattern of TRPCs changes significantly during brain development, suggesting that fine-tuning TRPC expression may be important for orchestrating neuritogenesis. To study how alterations in the TRPC expression pattern affect neurite outgrowth, we used nerve growth factor (NGF)-differentiated rat pheochromocytoma 12 (PC12) cells, a model system for neuritogenesis. In PC12 cells, NGF markedly up-regulated TRPC1 and TRPC6 expression, but down-regulated TRPC5 expression while promoting neurite outgrowth. Overexpression of TRPC1 augmented, whereas TRPC5 overexpression decelerated NGF-induced neurite outgrowth. Conversely, shRNA-mediated knockdown of TRPC1 decreased, whereas shRNA-mediated knockdown of TRPC5 increased NGF-induced neurite extension. Endogenous TRPC1 attenuated the anti-neuritogenic effect of overexpressed TRPC5 in part by forming the heteromeric TRPC1-TRPC5 channels. Previous reports suggested that TRPC6 may facilitate neurite outgrowth. However, we found that TRPC6 overexpression slowed down neuritogenesis, whereas dominant negative TRPC6 (DN-TRPC6) facilitated neurite outgrowth in NGF-differentiated PC12 cells. Consistent with these findings, hyperforin, a neurite outgrowth promoting factor, decreased TRPC6 expression in NGF-differentiated PC12 cells. Using pharmacological and molecular biological approaches, we determined that NGF up-regulated TRPC1 and TRPC6 expression via a p75(NTR)-IKK(2)-dependent pathway that did not involve TrkA receptor signaling in PC12 cells. Similarly, NGF up-regulated TRPC1 and TRPC6 via an IKK(2) dependent pathway in primary cultured hippocampal neurons. Thus, our data suggest that a balance of TRPC1, TRPC5, and TRPC6 expression determines neurite extension rate in neural cells, with TRPC6 emerging as an NGF-dependent "molecular damper" maintaining a submaximal velocity of neurite extension.  相似文献   

6.
The A2A adenosine receptor (A2AR) is a G‐protein–coupled receptor. We previously reported that the C terminus of the A2AR binds to translin‐associated protein X (TRAX) and modulates nerve growth factor (NGF)‐evoked neurite outgrowth in PC12 cells. Herein, we show that neuritogenesis of primary hippocampal neurons requires p53 because blockage of p53 suppressed neurite outgrowth. The impaired neuritogenesis caused by p53 blockage was rescued by activation of the A2AR (designated the A2A rescue effect) in a TRAX‐dependent manner. Importantly, suppression of a TRAX‐interacting protein (kinesin heavy chain member 2A, KIF2A) inhibited the A2A rescue effect, whereas overexpression of KIF2A caused a rescue effect. Expression of a KIF2A fragment (KIF2A514), which disturbed the interaction between KIF2A and TRAX, blocked the rescue effect. Transient colocalization of TRAX and KIF2A was detected in the nucleus of PC12 cells upon NGF treatment. These data suggest that functional interaction between KIF2A and TRAX is critical for the A2A rescue effect. Moreover, p53 blockage during NGF treatment prevented the redistribution of KIF2A from the nucleus to the cytoplasmic region. Expression of a nuclear‐retained KIF2A variant (NLS‐KIF2A) did not rescue the impaired neurite outgrowth as did the wild‐type KIF2A. Therefore, redistribution of KIF2A to the cytoplasmic fraction is a prerequisite for neurite outgrowth. Collectively, we demonstrate that KIF2A functions downstream of p53 to mediate neuritogenesis of primary hippocampal neurons and PC12 cells. Stimulation of the A2AR rescued neuritogenesis impaired by p53 blockage via an interaction between TRAX and KIF2A. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 604–621, 2010  相似文献   

7.
We have used PC12 cells to examine the effects of factors secreted by Schwann cells that promote cell survival and neurite outgrowth, and hence are likely candidates for promoting neuronal regeneration. RT-PCR showed that primary Schwann cells produced a range of neurotrophins, excluding NT3, but this profile was different from either of two cell lines SCTM41 or PVGSCSV40T, or forskolin-expanded Schwann cells. The effects of Schwann cell conditioned media on neurite outgrowth was tested against a range of factors, and showed clear neuritogenic effects. Of the factors tested, only NGF had a significant response on neuritogenesis. Western blotting for neurofilaments showed that primary Schwann cells induced a strong response close to that of NGF. The Trk tyrosine kinase inhibitor K252a did not block the neuritogenic effects of primary Schwann cells. In contrast, K252a blocked both NGF and the SCTM41 cell effects. Schwann cell conditioned media also enhanced PC12 cell survival. Again, in contrast with NGF or SCTM41 cells, the primary Schwann cell effect was Trk tyrosine kinase independent. The Schwann cell conditioned medium contains a protein factor (greater than 12 kDa and broken down by trypsin treatment) with remarkable thermal stability (unaffected at 95 degrees C for 15 min) and the ability to bind heparin. Our results provide clear evidence that Schwann cells produce factors other than those already known to stimulate a neural phenotype in PC12 cells, and which thus have potential regeneration enhancing effects.  相似文献   

8.
Electrical stimulation (ES) can be useful for promoting the regeneration of injured axons, but the mechanism underlying its positive effects is largely unknown. The current study aimed to investigate whether ES could enhance the regeneration of injured neurites in dorsal root ganglion explants and regulate the MMP-2 expression level, which is correlated with regeneration. Significantly increased neurite regeneration and MMP-2 expression was observed in the ES group compared with the sham group. However, an MMP inhibitor significantly decreased this ES-induced neurite regeneration. Our data suggest that the positive effect of ES on neurite regeneration could likely be mediated by an increase in MMP-2 expression, thereby promoting the regeneration of injured neurites.  相似文献   

9.
Although the role of agrin in the formation of the neuromuscular junction is well established, other functions for agrin have remained elusive. The present study was undertaken to assess the role of agrin in neurite outgrowth mediated by the heparin-binding growth factor basic fibroblast growth factor (FGF-2), which we have shown previously to bind to agrin with high affinity and that has been shown to mediate neurite outgrowth from a number of neuronal cell types. Using both an established neuronal cell line, PC12 cells, and primary chick retina neuronal cultures, we find that agrin potentiates the ability of FGF-2 to stimulate neurite outgrowth. In PC12 cells and retinal neurons agrin increases the efficacy of FGF-2 stimulation of neurite outgrowth mediated by the FGF receptor, as an inhibitor of the FGF receptor abolished neurite outgrowth in the presence of agrin and FGF-2. We also examined possible mechanisms by which agrin may modulate neurite outgrowth, analyzing ERK phosphorylation and c-fos phosphorylation. These studies indicate that agrin augments a transient early phosphorylation of ERK in the presence of FGF-2, and augments and sustains FGF-2 mediated increases in c-fos phosphorylation. These data are consistent with established mechanisms where heparan sulfate proteoglycans such as agrin may increase the affinity between FGF-2 and the FGF receptor. In summary, our studies suggest that neural agrin contributes to the establishment of axon pathways by modulating the function of neurite promoting molecules such as FGF-2.  相似文献   

10.
Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.  相似文献   

11.
The promotion of neurite formation in Neuro2A cells by mouse Mob2 protein   总被引:1,自引:0,他引:1  
Lin CH  Hsieh M  Fan SS 《FEBS letters》2011,(3):1433-530
The molecular mechanism of neuritogenesis has been extensively studied but remains unclear. In this study, we identified Mob2 protein which plays a significant role in promoting neurite formation in Neuro2A (N2A) cells. Our results showed that Mob2 was expressed in developing N2A cells. To study whether Mob2 was involved in neurite formation, we downregulated Mob2 expression using RNA interference and found that neurite formation decreased in low serum induced N2A cells. In addition, we found that overexpression of Mob2 promoted neurite formation in N2A cells. Furthermore, downregulation of Mob2 expression altered the rearrangement of the actin cytoskeleton and decreased the expression of phosphorylated Moesin. Together, these results provide information on the role of Mob2 in mediating neurite formation.  相似文献   

12.
The initial outgrowth of neuritogenesis in mouse NB2a/d1 neuroblastoma cells may be regulated by thrombin or a thrombin-like protease, present either in serum or adsorbed to the plasma membrane, since neuritogenesis is induced by serum deprivation and treatment with the specific thrombin inhibitor, hirudin (Shea et al., 1991, J. Neurochem., 56:842). Cultured astroglial cells secrete factors that promote neuritogenesis, including protease inhibitors active against thrombin, leading to suggestions that the inhibition of specific neuronal surface proteases by the surrounding glial environment may represent an initial step in axonal outgrowth in situ. To examine the relative importance of glial-derived protease inhibitory activities on neurine outgrowth, we tested the neurite promoting effect of glial-conditioned medium (GCM) on NB2a/d1 cells. Like serum deprivation and hirudin treatment, GCM induced neurite outgrowth within 4 hr. Exogenous thrombin inhibited the effect of GCM, and cell-free enzyme assays confirmed the presence of thrombin-inhibitory activity in GCM, suggesting that GCM induces neuritogenesis by inhibition of a thrombin-like protease. Unlike neurites induced by serum removal or hirudin addition, which are rapidly resorbed following serum replenishment or hirudin depletion, however, GCM-induced neurites continued to elongate after GCM removal. Furthermore, cultures treated simultaneously with GCM and thrombin exhibited delayed outgrowth of neurites following GCM removal which were insensitive to further thrombin treatment. These findings indicate that the initial elaboration of neurites can be mediated by glial-derived protease inhibitor(s) active against a thrombin-like protease, but indicate the requirement of additional glial-derived factors for the maintenance and continued elaboration of these neurites.  相似文献   

13.
14.
15.
The neuronal survival promoting ability of brain derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF), individually and in combination, was evaluated in dissociated cell cultures of postnatal day 5 (P5) rat acoustic ganglia. The neuritogenic promoting effect of these same neurotrophic factors was examined in organotypic explants of P5 rat acoustic ganglia. The results showed that BDNF was maximally effective at a concentration of 10 ng/mL in promoting both survival and neuritogenesis of these postnatal auditory neurons in vitro. CNTF was maximally effective at a concentration of 0.01 ng/mL at promoting both survival and neuritogenesis in the acoustic ganglion cultures. BDNF had its strongest effect on neuronal survival while CNTF was most effective in stimulating neurite outgrowth. These two neurotrophic factors, when added together at their respective maximally effective concentrations, behave in an additive manner for promoting both survival and neuritic outgrowth by the auditory neurons. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
17.

Background

Neurotrophins are important regulators for neural development and regeneration. Nerve growth factor (NGF) therapy has been tested in various models of neural injury and degeneration. However, whether NGF can reach target tissues and maintain effective concentration for a certain period of time remains uncertain. To facilitate neural regeneration, we investigate the possibility of combining NGF and electrical stimulation (ES) in promoting neurite outgrowth, an essential process during neural regeneration.

Methods

PC12 cells were seeded on collagen and indium tin oxide (ITO)-coated area on the transparent conductive devices. Cells were then subjected to the combination of ES and NGF treatment. Neurite outgrowth was compared.

Results

Our findings suggest that ES of 100 mV/mm together with NGF provides optimal effect on neurite outgrowth of PC12 cells. ES increases NGF-induced neurite length but reduces neurite branching, indicative of its primary effect on neurite elongation instead of initiation. One mechanism that ES enhances neurite outgrowth is through increasing NGF-induced phosphorylation of ERK1/2 (pERK1/2) and expression of Egr1 gene. ES has previously been demonstrated to increase the activity of protein kinase C (PKC). Our result indicates that activating PKC further increases NGF-induced pERK1/2 and thus neurite outgrowth.

Conclusion

It is likely that ES promotes NGF-induced neurite outgrowth through modulating the activity of ERK1/2.

General significance

Findings from this study suggest that combining ES and NGF provides a promising strategy for promoting neurite outgrowth.  相似文献   

18.
Fibroblast growth factor 2 (FGF-2) has a dual role as a classical extracellular signaling protein and as an intracellular factor. Isoforms of FGF-2, resulting from alternatively used start codons on one mRNA species, locate differentially to nuclear compartments. In this study we aimed to analyze functions of intracellular FGF-2 by identification of interacting proteins. We identified the 66-kDa subunit of splicing factor 3a (SF3a66) as a binding partner in a yeast two-hybrid screen and confirmed this interaction by pull-down assays. The splicing factor interacted with the 18-kDa (FGF-2(18)) and with the 23-kDa (FGF-2(23)) isoforms, indicating an interaction with a domain common to both isoforms. Moreover, FGF-2 interacted with the C-terminus of SF3a66, a sequence that has not previously been assigned a functional role. In a functional neurite outgrowth assay, SF3a66 enhanced neurite lengths similar to FGF-2(18). We have previously identified the spliceosomal assembly factor survival of motoneuron (SMN) protein as a protein interacting specifically with the FGF-2(23) isoform [Claus et al., J. Biol. Chem. 278 (2003), 479-485]. The identification of two FGF-2 interacting proteins from the same biochemical pathway suggests a novel intranuclear role of FGF-2.  相似文献   

19.
Ndel1, the mammalian homologue of the Aspergillus nidulans NudE, is emergently viewed as an integrator of the cytoskeleton. By regulating the dynamics of microtubules and assembly of neuronal intermediate filaments (IFs), Ndel1 promotes neurite outgrowth, neuronal migration, and cell integrity (1-6). To further understand the roles of Ndel1 in cytoskeletal dynamics, we performed a tandem affinity purification of Ndel1-interacting proteins. We isolated a novel Ndel1 molecular complex composed of the IF vimentin, the molecular motor dynein, the lissencephaly protein Lis1, and the cis-Golgi-associated protein alphaCOP. Ndel1 promotes the interaction between Lis1, alphaCOP, and the vimentin-dynein complex. The functional result of this complex is activation of dynein-mediated transport of vimentin. A loss of Ndel1 functions by RNA interference fails to incorporate Lis1/alphaCOP in the complex, reduces the transport of vimentin, and culminates in IF accumulations and altered neuritogenesis. Our findings reveal a novel regulatory mechanism of vimentin transport during neurite extension that may have implications in diseases featuring transport/trafficking defects and impaired regeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号