首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
【目的】研究趋磁细菌AMB-1生物矿化相关蛋白Mms6与磁小体合成的关系。【方法】在液体静置培养条件和好氧条件下对AMB-1进行培养,分析基因mms6在不同培养条件下转录水平的变化;对基因mms6进行基因敲除,分析突变株的生长和产磁变化。【结果】基因mms6的转录水平随着磁小体的合成逐渐升高;mms6的突变导致菌株在液体静置培养条件下趋磁性降低约50%,但不会影响菌株的生长水平。【结论】基因mms6参与了趋磁细菌AMB-1胞内磁小体的合成。  相似文献   

2.
在格瑞斯瓦尔德磁螺菌(Magnetospirillum gryphiswa ldense)MSR-1中分别过量表达3种抗氧化酶Fe-超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶HPII,并分析过量表达这3种酶对趋磁螺菌MSR-1耐氧性的影响。通过PCR分别扩增大肠杆菌DH5α的Fe-超氧化物歧化酶(sodB)、谷胱甘肽过氧化物酶(btuE)、过氧化氢酶HPⅡ(katE)基因序列,将前两个片段分别连接到广宿主质粒pBBR1MCS-2上,后一个片段连接到广宿主质粒pBBR1MCS-5上,构建成表达质粒pBBR1MCS-sodB,pBBR1MCS-btuE和pBBR1MCS-katE,将3个质粒通过双亲接合转移的方法分别转入趋磁螺菌MSR-1。3种抗氧化酶过表达对趋磁螺菌MSR-1耐氧性影响的试验结果为过量表达Fe-超氧化物歧化酶对菌体生长影响不明显;过量表达谷胱甘肽过氧化物酶、过氧化氢酶HPII使趋磁螺菌MSR-1致死。上述试验结果表明抗氧化酶系在菌体耐氧过程中的全局协调调控的重要性。  相似文献   

3.
趋磁细菌(MTB)依赖于体内磁小体结构在磁场中取向,多个磁小体以一定的组 织形式排列是形成菌体内生物磁罗盘的重要环节.多数趋磁细菌中磁小体成链排列,有效增加了细胞磁偶极矩,从而使菌体表现出在环境磁场中定向的能力.趋磁螺菌M. magneticum AMB-1和M. gryphiswaldense MSR-1中磁小体均沿细胞长轴形成一条磁 小体链.通过对相关基因突变体表型的研究,结合对磁小体链形成过程的实时动态观 察,人们已初步了解MamJ、MamK和MamA等基因在磁小体链装配和维护过程中的功能.本文介绍了近年来趋磁螺菌磁小体链装配过程中重要功能性基因的研究进展,并重点分析了AMB-1和MSR-1中磁小体链装配的差异.  相似文献   

4.
利用基因工程技术,体外重组小分子类泛素修饰蛋白酶1(Ulp1)的活性片段,获得高表达、高特异性重组蛋白酶。从酿酒酵母Saccharomyces cerevisia中提取Ulp1编码第403到621个氨基酸残基之间的DNA片段(Ulp1p),在其C端加入6×His并连接到大肠杆菌表达载体pGEX中,构建重组表达质粒pGEX-Ulp1p-his6。将重组质粒转化至大肠杆菌Rosetta(DE3)中,氨苄青霉素抗性筛选转化子。表达、纯化后,以SUMO融合蛋白检测其活性。经过优化,该蛋白可溶性表达,表达量占菌体总蛋白的40.12%。可通过谷胱甘肽琼脂糖凝胶柱或Ni-NTA凝胶亲和层析纯化得到纯度98%的蛋白。经酶切分析,比活力为1.375×104U/mg。融合蛋白GST-Ulp1p-His6无需切除谷胱甘肽S-转移酶(GST)标签,具有很高的活性,制备简易;6×His标签,有利于底物蛋白切割后纯化,减少蛋白损失。本研究为制备高活力的SUMO蛋白酶提供了一个新方法。  相似文献   

5.
目的:对His/GST-HDAC1在大肠杆菌BL-21中的表达进行研究。方法:HDAC1的完整基因片断被克隆到pColdⅠ载体和pGEX载体上,并在其N末端分别联有His和GST;采用大肠杆菌BL21对HDAC1进行表达;采用亲和色谱对HDAC1进行纯化;用SDS-PAGE和蛋白质印迹来验证表达和纯化效果;对HDAC1活性进行测定。结果:多数HDAC1存在于大肠杆菌BL-21细胞裂解液的沉淀组分和纯化过程中的未结合组分中,小部分HDAC1可从细胞裂解液的上清液中得以纯化,但未显现出酶活性。用FPLC对HDAC1进行进一步分离,结果表明,HDAC1发生了分子聚集,使得它们的分子量大于正常分子量。结论:活性His/GST-HDAC1不能用大肠杆菌BL21成功表达。  相似文献   

6.
丙酮酸甲酸裂解酶(pyruvate format-lyas,PFL)是厌养或兼性厌养微生物中,代谢途径的关键酶之一,为了进一步研究其功能,我们以大肠杆菌JM109菌株基因组DNA为模板,进行PCR扩增大肠杆菌中的pfl基因,为测序方便将所得DNA片段连接到pMD18-T载体上,将测序正确后的pfl基因连接到表达载体pET-22b(+)中,重组表达载体在大肠杆菌BL21(DE3)中诱导表达, 通过SDS-PAGE电泳分析,在分子量为85kDa处出现新生的蛋白条带。利用金属亲和层析对添加了6×组氨酸标签的PFL进行纯化,对PFL的酶学性质进行了研究。结果表明:此酶的最适温度为35 ℃,最适pH为7.5,米氏常数Km=2.3mmol,Tm=49.9℃。  相似文献   

7.
对盆栽十二叶龄的3个烟草近等基因系进行淹水处理后的结果表明:随着淹水时间的延长,细胞质膜透性、超氧化物歧化酶(SOD)和过氧化物酶(POD)活性均显著升高;叶绿素和可溶性蛋白质含量、株高、叶片数及生物量均下降.各种指标在短时间内不能恢复到正常水平或者根本不能恢复.3个品系抗涝性强弱依序为:转基因抗坏血酸过氧化物酶(APX)高表达品系>转Mn-SOD基因叶绿体高表达品系>非转基因品系.  相似文献   

8.
MK表达载体的构建及在大肠杆菌中的表达   总被引:3,自引:0,他引:3  
MK是属于肝素结合因子家族的一种多肽,仅在胚胎中期和成年期肾脏表达,在某些肿瘤细胞中也有异常表达.MK能够促进细胞特别是神经细胞的生长和分化,并抑制某些肿瘤细胞的生长.通过RT-PCR从胚胎肾脏中获得了MK成熟肽DNA编码序列,克隆入载体pBV221中,并转入大肠杆菌,建立了重组MK的高表达菌株.  相似文献   

9.
解毒酶基因的克隆及在大肠杆菌中的融合表达   总被引:9,自引:0,他引:9  
黄菁  乔传令  邢建民 《遗传学报》2001,28(6):583-588
用RT-PCR克隆了酯酶B1 5′端B1(a),并对其者了序列测定,将其与3′端B1(b)一起连接到pET-28a中,构了完整融合表达载体pET-ESTB1。转化大肠杆菌BL21,在IPTG诱导下,经过12小时,酯酶B1在大肠杆菌内的融合表达达到27%。通过纯化获得1条带的重组蛋白,用粗酶对马拉硫磷的降解显示,该解毒酶在15分钟即降解22.1%,具有较高降解有机磷酸酯类农药的能力,为利用真核生物的自然资源进行农药污染的生物治理等提供了新途径。  相似文献   

10.
利用PCR和分子克隆技术从雷氏普罗威登斯菌(Prouidencia rettgeri)(ATCC29944)的基因组DNA中获得一个青霉素G酰化酶(penicillinGacylase,PGA)基因并将其装入表达质粒pET24a。携带有重组质粒pETPGA的Escherichia coli基因工程菌BL21(DE3)/pETPGA实现了PGA的高效表达,对发酵条件的研究表明基因工程菌在24℃,添加5g/L甘油条件下以1.0mmol/LIPTG诱导1.5h酶活力即达到993.4U/L,比野生菌酶活力(15U/L)提高了66倍。  相似文献   

11.
Bacterial magnetic particles (BacMPs) produced by the magnetotactic bacterium Magnetospirillum magneticum AMB-1 are used for a variety of biomedical applications. In particular, the lipid bilayer surrounding BacMPs has been reported to be amenable to the insertion of recombinant transmembrane proteins; however, the display of transmembrane proteins in BacMP membranes remains a technical challenge due to the cytotoxic effects of the proteins when they are overexpressed in bacterial cells. In this study, a tetracycline-inducible expression system was developed to display transmembrane proteins on BacMPs. The expression and localization of the target proteins were confirmed using luciferase and green fluorescent protein as reporter proteins. Gene expression was suppressed in the absence of anhydrotetracycline, and the level of protein expression could be controlled by modulating the concentration of the inducer molecule. This system was implemented to obtain the expression of the tetraspanin CD81. The truncated form of CD81 including the ligand binding site was successfully displayed at the surface of BacMPs by using Mms13 as an anchor protein and was shown to bind the hepatitis C virus envelope protein E2. These results suggest that the tetracycline-inducible expression system described here will be a useful tool for the expression and display of transmembrane proteins in the membranes of BacMPs.Transmembrane proteins play critical roles in cellular metabolism, participating in processes such as ion transport, nutrient uptake, signal transduction, and intercellular communication. As evidence of the essential functions of these proteins, more than half of all drug targets have been shown to be transmembrane proteins, and the analysis of the interactions of transmembrane proteins and their ligands is one of the most promising avenues for the discovery of new drug candidates. As a means of producing sufficient amounts of transmembrane proteins for binding analyses, heterologous protein expression systems have been developed using Escherichia coli (10), yeast (16), insect, and mammalian (4) cells as hosts. Transmembrane proteins generally are expressed at low levels and are extremely hydrophobic, rendering the analysis of interactions with ligands very difficult. In all cases, the analysis of membrane proteins requires a lipid or similar synthetic environment to maintain the native structure and function of the proteins. The purification of transmembrane proteins from cells frequently is time-consuming and typically results in the loss of the proteins’ native conformation.Magnetospirillum magneticum AMB-1 synthesizes intracellular nanosized bacterial magnetic particles (BacMPs; 50 to 100 nm); these are surrounded by a lipid bilayer membrane and exhibit strong ferrimagnetism. Functional soluble proteins have been expressed on BacMP surfaces through gene fusion techniques (11, 21, 24, 27) using BacMP membrane proteins (MagA, Mms16, and Mms13) as anchor proteins; this approach permits heterologous proteins to be localized efficiently and oriented appropriately on BacMPs. In a previous report, we demonstrated the successful display of the D1 dopamine receptor, a G protein-coupled receptor possessing seven transmembrane domains, on BacMPs. Mms16-D1, an dopamine receptor fusion protein, was expressed under the mms16 promoter, and a ligand-binding assay was performed (28). The assembly of transmembrane proteins on magnetic particles provides significant advantages for binding assays, including the easing of the purification of target proteins from bacterial cells without the loss of native conformation and the availability of a fully automated bioassay using robotic magnetic separation. Despite these advantages, there are not enough studies for the overexpression of transmembrane proteins other than the D1 dopamine receptor in M. magneticum AMB-1 because of its difficulty. In other host cells, a system for controlling gene expression has been employed to overcome its difficulty, and some successful efforts had achieved this for crystal structure analysis (5, 15, 18). The lack of these systems for M. magneticum has hampered the extension of this application to other transmembrane proteins.In this study, the tetracycline-inducible expression system was adapted for displaying transmembrane proteins on BacMPs in M. magneticum AMB-1. Expression vectors carrying the tetracycline repressor gene (tetR) and the target gene under the control of a strong promoter and the tetracycline operator (tetO) sequence were constructed, and the function of the system was evaluated using reporter genes. Finally, this system was applied to the overexpression of the transmembrane protein, tetraspanin CD81. This is the first report of an inducible expression system in M. magneticum, and it the demonstrates efficient display of a transmembrane protein at the surface of BacMPs.  相似文献   

12.
Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1 is elicited by sufficient iron rather than by iron starvation. In order to clarify this unusual pattern, siderophore production was monitored in parallel to iron assimilation using the chrome azurol sulfonate assay and the ferrozine method respectively. Iron concentration lowered approximately five times less than its initial concentration only within 4 h post-inoculation, rendering the medium iron deficient. A concentration of at least 6 microM Fe(3+) is required to initiate siderophore production. The propensity of M. magneticum AMB-1 for the assimilation of large amounts of iron accounts for the rapid depletion of iron in the medium, thereby triggering siderophore excretion. M. magneticum AMB-1 produces both hydroxamate and catechol siderophores.  相似文献   

13.
Magnetic bacteria produce intracellular vesicles that envelope single domain magnetite crystals. Although many proteins are present in this intracellular vesicle membrane, five are specific to this membrane. A 16-kDa protein, designated Mms16, is the most abundant of the magnetosome-specific proteins, and to establish its function we cloned and sequenced its gene from Magnetospirillum magneticum AMB-1. This was achieved by determination of the N-terminal amino acid sequence of the protein following two dimensional polyacrylamide gel electrophoresis, and sequencing of the gene was performed by gene walking using anchored polymerase chain reaction. Mms16 contains a putative ATP/GTP binding motif (P-loop). Recombinant Mms16 with a hemagglutinin tag, was expressed in Escherichia coli and purified. Recombinant Mms16 protein could bind GTP and showed GTPase activity. GTP was the preferred substrate for Mms16-catalyzed nucleotide triphosphate hydrolysis. These results suggest that a novel protein specifically localized on the magnetic particle membrane, Mms16, is a GTPase. Mms16 protein showed similar characteristics to small GTPases involved in the formation of intracellular vesicles. Furthermore, addition of the GTPase inhibitor AlF(4)- also inhibited magnetic particle synthesis, suggesting that GTPase is required for magnetic particles synthesis.  相似文献   

14.
Iron uptake systems were identified by global expression profiling of Magnetospirillum magneticum AMB-1. feo, tpd, and ftr, which encode ferrous iron transporters, were up-regulated under iron-rich conditions. The concomitant rapid iron uptake and magnetite formation suggest that these uptake systems serve as iron supply lines for magnetosome synthesis.  相似文献   

15.
Aims: Intracellular magnetosome synthesis in magnetotactic bacteria has been proposed to be a process involving functions of a variety of proteins. To learn more about the genetic control that is involved in magnetosome formation, nonmagnetic mutants are screened and characterized. Methods and Results: Conjugation‐mediated transposon mutagenesis was applied to screen for nonmagnetic mutants of Magnetospirillum magneticum AMB‐1 that were unable to respond to the magnetic field. A mutant strain with disruption of a gene locus encoding nitric oxide reductase was obtained. Growth and magnetosome formation under different conditions were further characterized. Conclusions: Interruption of denitrification by inactivating nitric oxide reductase was responsible for the compromised growth and magnetosome formation in the mutant with shorter intracellular chains of magnetite crystals than those of wild‐type cells under anaerobic conditions. Nevertheless, the mutant displayed apparently normal growth in aerobic culture. Significance and Impact of the Study: Efficient denitrification in the absence of oxygen is not only necessary for maintaining cell growth but may also be required to derive sufficient energy to mediate the formation of magnetosome vesicles necessary for the initiation or activation of magnetite formation.  相似文献   

16.
A non-magnetic mutant of Magnetospirillum magneticum AMB-1 (NMA61), harboring a defective gene located in ORF4 (gene ID: amb4111) was generated by transposon mutagenesis. Biochemical characterization of the gene product of ORF4 revealed that it was localized in the cytoplasm and displayed ATPase activity. The ability of NMA61 to take up iron was severely compromised. Ferrous ion concentration in the medium decreased more with the wild-type than with NMA61, while the iron content in the cytoplasmic fraction of NMA61 was much lower than the wild-type strain. This cytoplasmic ATPase is essential for iron trafficking within M. magneticum AMB-1.  相似文献   

17.
Magnetic bacteria synthesize magnetite crystals with species-dependent morphologies. The molecular mechanisms that control nano-sized magnetite crystal formation and the generation of diverse morphologies are not well understood. From the analysis of magnetite crystal-associated proteins, several low molecular mass proteins tightly bound to bacterial magnetite were obtained from Magnetospirillum magneticum strain AMB-1. These proteins showed common features in their amino acid sequences, which contain hydrophobic N-terminal and hydrophilic C-terminal regions. The C-terminal regions in Mms5, Mms6, Mms7, and Mms13 contain dense carboxyl and hydroxyl groups that bind iron ions. Nano-sized magnetic particles similar to those in magnetic bacteria were prepared by chemical synthesis of magnetite in the presence of the acidic protein Mms6. These proteins may be directly involved in biological magnetite crystal formation in magnetic bacteria.  相似文献   

18.
Tropomyosin receptor kinase A (TrkA), a receptor tyrosine kinase, is known to be associated with various diseases. Thus, TrkA has become a major drug-screening target for these diseases. Despite the fact that the production of recombinant proteins by prokaryotic hosts has advantages, such as fast growth and ease of genetic engineering, the efficient production of functional receptor tyrosine kinase by prokaryotic hosts remains a major experimental challenge. Here, we report the functional expression of full-length TrkA on magnetosomes in Magnetospirillum magneticum AMB-1 by using a magnetosome display system. TrkA was fused with the magnetosome-localized protein Mms13 and expressed on magnetosome surfaces. Recombinant TrkA showed both nerve growth factor (NGF)-binding and autophosphorylation activities. TrkA expressed on magnetosomes has the potential to be used, not only for further functional analysis of TrkA, but also for ligand screening.  相似文献   

19.
Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magneto-aerotaxis. Little is known about MTB phototaxis, a response that might also aid navigation. In this study, we analyzed the relationship between phototaxis and magnetotaxis in Magnetospirillum magneticum strain AMB-1. Magnotactic AMB-1 cells migrated toward light, and migration increased with higher light intensity. This response was independent of wavelength, as AMB-1 cells migrated equally toward light from 400 to 750 nm. When AMB-1 cells were exposed to zero magnetic fields or to 0.2 mT magnetic fields that were opposite or orthogonal to the light beam, cells still migrated toward the light, indicating that phototaxis was independent of magnetotaxis. The R mag value and coercive force (H c) of AMB-1 increased when the bacteria were illuminated for 20 h, consistent with an increase in magnetosome synthesis or in magnetosome-containing cells. These results demonstrated that the M. magneticum AMB-1 responded to light as well as other environmental factors. To our knowledge, this is the first report of phototactic behavior in the bacteria of Magnetospirillum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号