首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of continuous cell lines from shrimp is essential to investigate viral pathogens. Unfortunately, there is no valid cell line developed from crustaceans in general and shrimps in particular to address this issue. Lack of information on the requirements of cells in vitro limits the success of developing a cell line, where the microenvironment of a cell culture, provided by the growth medium, is of prime importance. Screening and optimization of growth medium components based on statistical experimental designs have been widely used for improving the efficacy of cell culture media. Accordingly, we applied Plackett–Burman design and response surface methodology to study multifactorial interactions between the growth factors in shrimp cell culture medium and to identify the most important ones for growth of lymphoid cell culture from Penaeus monodon. The statistical screening and optimization indicated that insulin like growth factor-I (IGF-I) and insulin like growth factor-II (IGF-II) at concentrations of 100 and 150 ng ml−1, respectively, could significantly influence the metabolic activity and DNA synthesis of the lymphoid cells. An increase of 53 % metabolic activity and 24.8 % DNA synthesis could be obtained, which suggested that IGF-I and IGF-II had critical roles in metabolic activity and DNA synthesis of shrimp lymphoid cells.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-014-9697-0) contains supplementary material, which is available to authorized users.  相似文献   

2.
Standard tissue culture methods advise freezing cells in small aliquots (≤1 × 107 cells in 1 mL), and storing in liquid nitrogen. This is inconvenient for laboratories culturing large quantities of insect cells for recombinant baculovirus expression, owing to the length of time taken to produce large scale cultures from small aliquots of cells. Liquid nitrogen storage requires use of specialized cryovials, personal protective equipment and oxygen monitoring systems. This paper describes the long-term, large scale cryopreservation of 8 × 108 insect cells at −80 °C, using standard 50 mL conical tubes to contain a 40 mL cell suspension. Sf9, Sf21 and High 5 cells were recovered with a viability > 90 % after storage for one year under these conditions, which compared favorably with the viability of cells stored in liquid nitrogen for the same length of time. Addition of green fluorescent protein encoding baculovirus demonstrated that cells were “expression ready” immediately post thaw. Our method enables large scale cultures to be recovered rapidly from stocks cryopreserved at −80 °C, thus avoiding the inconvenience, hazards and expense associated with liquid nitrogen.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-014-9781-5) contains supplementary material, which is available to authorized users.  相似文献   

3.
利用对虾原代细胞增殖对虾杆状病毒HHNBV的研究   总被引:4,自引:0,他引:4  
自1993年起,国内养殖的中国对虾(Penaeuschinensis)出现暴发性流行病。该病来势猛,发病急,传播快,死亡率高,严重影响我国的对虾养殖。在青岛地区,发病时间在6~8月。一旦发病,全池对虾可在3~10d内大部或全部死亡。现已查明,该流行病的病原体为对虾皮下?..  相似文献   

4.
The DSIR-HA-1179 coleopteran cell line is a susceptible and permissive host to the Oryctesrhinoceros nudivirus (OrNV), which has been used as a biocontrol agent against the coconut rhinoceros beetle (Oryctes rhinoceros); a pest of palms in the Asia-Pacific region. However, little is known about growth and metabolism of this cell line, knowledge of which is necessary to develop an in vitro large-scale OrNV production process. The strong anchorage-dependent characteristics of the cell line, its particular fragility and its tendency to form dense clumps when manipulated, are the most likely reasons that have precluded further development of the cell line. In order to characterize DSIR-HA-1179 cells, there was first a need for a reliable technique to count the cells. A homogenous cell suspension suitable for enumeration could be produced by treatment with TrypLE Express™ with optimum mean time for cell release calculated as 30 min. The cell line was adapted to grow in four serum-supplemented culture media namely TC-100, IPL-41, Sf-900 II and Sf-900 III and cell growth, glucose consumption, lactate and ammonia production were assessed from static-batch cultures. The maximum viable cell density was reached in Sf-900 II (17.9 × 105 cells/ml), with the maximum specific growth rate observed in this culture medium as well (0.0074 h−1). Higher production of OrNV was observed in IPL-41 and TC-100 (4.1 × 107 TCID50/ml) than in cultures infected in Sf-900 III (2.0 × 107 TCID50/ml) and Sf-900 II (1.4 × 107 TCID50/ml). At the end of the growth period, glucose was completely consumed in cultures grown in TC-100, while remained in excess in the other three culture media. The cell line produced lactate and ammonia to very low levels in the TC-100 culture medium which is a promising aspect for its cultivation at large-scale.  相似文献   

5.
A continuous leukocyte cell line with phagocytic activity was established from peritoneal macrophages of rohu, Labeo rohita (LRPM). LRPM was initiated from adherent mononuclear leukocytes isolated from peritoneal cavity of rohu, without use of any growth factors or feeder cells. These cells exhibited maximum growth at 30 °C in L-15 medium containing 20 % foetal bovine serum, and has been subcultured for more than 60 passages till date. The cells showed 85 % viability after 6 months of storage in liquid nitrogen. The species of origin of the LRPM was confirmed by the amplification and sequencing of 655 bp fragment of cytochrome oxidase subunit I of mitochondrial DNA. Functionally, LRPM showed phagocytic activity of yeast cells and fluorescent latex beads as evaluated by phase contrast and scanning electron microscopy, respectively. Immuno-modulators such as bacterial lipopolysaccharide and phorbol myristate acetate resulted in functional activation of LRPM; and enhanced their microbicidal activity through release of reactive oxygen species and nitric oxide. Culture supernatant from activated cells also revealed lysozyme activity. Cells of LRPM were positive for alpha-naphthyl acetate esterase enzyme indicating macrophage lineage. Our results indicate that this cell line can be a useful in vitro tool to study the role of macrophages in teleost immune system and to evaluate the effects of new aquaculture drugs. The LRPM cell line represents the first reported leukocyte cell line of peritoneal origin from any freshwater species of fish.  相似文献   

6.
In the present study, a protocol was optimized for establishment of callus and cell suspension culture of Scrophularia striata Boiss. as a strategy to obtain an in vitro acteoside producing cell line for the first time. The effects of growth regulators were analyzed to optimize the biomass growth and acteoside production. The stem explant of S. striata was optimum for callus induction. Modified Murashige and Skoog medium supplemented with 0.5 mg/l naphthalene acetic acid + 2.0 mg/l benzyl adenine was the most favorable medium for callus formation with the highest induction rate (100 %), the best callus growth and the highest acteoside content (1.6 μg/g fresh weight). Incompact and rapid growing suspension cells were established in the liquid medium supplemented with 0.5 mg/l naphthalene acetic acid + 2.0 mg/l benzyl adenine. The optimum time of subculture was found to 17–20 days. Acteoside content in the cell suspension was high during exponential growth phase and decreased subsequently at the stationary phase. The maximum content of acteoside (about 14.25 μg/g cell fresh weight) was observed on the 17th day of the cultivation cycle. This study provided an efficient way to further regulation of phenylethanoid glycoside biosynthesis and production of valuable acteoside, a phenylethanoid glycoside, on scale-up in S. striata cell suspension culture.  相似文献   

7.
AIM: To investigate the impact of agitation speed on pectinase production and morphological changing of Aspergillus niger(A. niger) HFD5A-1 in submerged fermentation. METHODS: A. niger HFM5A-1 was isolated from a rotted pomelo. The inoculum preparation was performed by adding 5.0 m L of sterile distilled water containing 0.1% Tween 80 to a sporulated culture. Cultivation was carried out with inoculated 1 × 107 spores/m L suspension and incubated at 30 ℃ with different agitation speed for 6 d. The samples were withdrawn after 6 d cultivation time and were assayed for pectinase activity and fungal growth determination. The culture broth was filtered through filter paper(Whatman No. 1, London) to separate the fungal mycelium. The cell-free culture filtrate containing the crude enzyme was then assayed for pectinase activity. The biomass was dried at 80 ℃ until constant weight. The fungal cell dry weight was then expressed as g/L. The 6 d old fungal mycelia were harvested from various agitation speed, 0, 50, 100, 150, 200 and 250 rpm. The morphological changing of samples was then viewed under the light microscope and scanning electron microscope.RESULTS: In the present study, agitation speed was found to influence pectinase production in a batch cultivation system. However, higher agitation speeds than the optimal speed(150 rpm) reduced pectinase production which due to shear forces and also collision among the suspended fungal cells in the cultivation medium. Enzyme activity increased with the increasing of agitation speed up to 150 rpm, where it achieved its maximal pectinase activity of 1.559 U/m L. There were significant different(Duncan, P 0.05) of the pectinase production with the agitation speed at static, 50, 100, 200 and 250 rpm. At the static condition, a well growth mycelial mat was observed on the surface of the cultivation medium and sporulation occurred all over the fungal mycelial mat. However with the increased in agitation speed, the mycelial mat turned slowly to become a single circular pellet. Thus, it was found that agitation speed affected the morphological characteristics of the fungal hyphae/mycelia of A. niger HFD5A-1 by altering their external as well as internal cell structures.CONCLUSION: Exposure to higher shear stress with an increasing agitation speed could result in lower biomass yields as well as pectinase production by A. niger HFD5A-1.  相似文献   

8.
A protocol for in vitro propagation was developed for Viola pilosa, a plant of immense medicinal value. To start with in vitro propagation, the sterilized explants (buds) were cultured on MS basal medium supplemented with various concentrations of growth regulators. One of the medium compositions MS basal + 0.5 mg/l BA + 0.5 mg/l TDZ + 0.5 mg/l GA3 gave best results for in vitro shoot bud establishment. Although the problem of shoot vitrification occurred on this medium but this was overcome by transferring the vitrified shoots on MS medium supplemented with 1 mg/l BA and 0.25 mg/l Kn. The same medium was found to be the best medium for further in vitro shoot multiplication. 100 % root induction from in vitro grown shoots was obtained on half strength MS medium supplemented with 1 mg/l IBA. In vitro formed plantlets were hardened and transferred to soil with 83 % survival. Additionally, conservation of in vitro multiplying shoots was also attempted using two different approaches namely slowing down the growth at low temperature and cryopreservation following vitrification. At low temperature retrieval rate was better at 10 °C than at 4 °C after conservation of in vitro multiplying shoots. In cryopreservation–vitrification studies, the vitrified shoot buds gave maximum retrieval of 41.66 % when they were precooled at 4 °C, while only 16.66 % vitrified shoots were retrieved from those precooled at 10 °C. Genetic stability of the in vitro grown plants was analysed by RAPD and ISSR markers which indicated no somaclonal variation among in vitro grown plants demonstrating the feasibility of using the protocol without any adverse genetical effects.  相似文献   

9.
In this work, acetic acid was found as one promising substrate to improve xylose utilization by Gluconacetobacter xylinus CH001. Also, with the help of adding acetic acid into medium, the bacterial cellulose (BC) production by G. xylinus was increased significantly. In the medium containing 3 g l−1 acetic acid, the optimal xylose concentration for BC production was 20 g l−1. In the medium containing 20 g l−1 xylose, the xylose utilization and BC production by G. xylinus were stimulated by acetic acid within certain concentration. The highest BC yield (1.35 ± 0.06 g l−1) was obtained in the medium containing 20 g l−1 xylose and 3 g l−1 acetic acid after 14 days. This value was 6.17-fold higher than the yield (0.21 ± 0.01 g l−1) in the medium only containing 20 g l−1 xylose. The results analyzed by FE-SEM, FTIR, and XRD showed that acetic acid affected little on the microscopic morphology and physicochemical characteristics of BC. Base on the phenomenon observed, lignocellulosic acid hydrolysates (xylose and acetic acid are main carbon sources present in it) could be considered as one potential substrate for BC production.  相似文献   

10.
To evaluate the biological and biochemical characteristics of Trichomonas vaginalis KT9 isolate, the growth and size of trichomonads, pathogenicity in mouse, protein profiles and proteinase activity were examined after shifting the medium from TPS-1 into TYM. Generation time of trichomonads in TYM medium was 4.5 hr in comparison to TPS-1 with 7.1 hr. Size of trichomonads cultured in TPS-1 medium (8.5 ± 0.9 × 6.0 ± 0.9 µm) was significantly smaller than those in TYM medium (10.9 ± 1.4 × 8.2 ± 0.9 µm). Trichomonads cultured in TYM medium produced subcutaneous abscess in 9 out of 10 mice, whereas those in TPS-1 medium produced abscesses in 2 out of 10 mice. In SDS-PAGE, trichomonad lysates from both media showed ten common bands. However, trichomonads in TYM medium showed additional bands of 136 kDa, 116 kDa and 40 kDa in comparison to those in TPS-1 with 100 kDa. By immunoblot with T. vaginalis-immunized rabbit sera, T. vaginalis cultivated in both TYM and TPS-1 media showed 5 common bands, and unique bands of 116 kDa, 105 kDa, and 86 kDa were observed in trichomonads in TYM while a 140 kDa band in those in TPS-1. In gelatin SDS-PAGE, trichomonads in TYM degraded gelatin stronger than those in TPS-1. Also protease activity of trichomonads in TYM was significantly higher than that of trichomonads in TPS-1 using Bz-Pro-Phe-Arg-Nan as a substrate. According to the results, it is assumed that the shift from TPS-1 into TYM medium for cultivation of T. vaginalis might modulate the biological and biochemical properties of T. vaginalis in vitro.  相似文献   

11.
To clarify the mechanism of microbial inactivation by supercritical carbon dioxide (SCCO2), membrane damage of Rhodotorula mucilaginosa was investigated within specific pressure (10 Mpa), temperature (37 °C), and treatment time (10–70 min) ranges, including cell morphological structure, membrane permeability and fluidity. SEM and TEM observations showed morphological changes in the cell envelope and intracellular organization after SCCO2 treatment. Increase of membrane permeability was measured as increased uptake of the trypan blue dye with microscopy, and leakage of intracellular substances such as UV-absorbing materials and ions by determining the change of protein and electrical conductivity. The SCCO2 mediated reduction in CFU ml−1 was 0.5–1 log higher at 37 °C and 10 MPa for 60 min in Rose Bengal Medium containing 4 % sodium than a similar treatment in Rose Bengal Medium. Membrane fluidity analyzed by fluorescence polarization method using 1,6-diphenyl-1,3,5-hexatriene showed that the florescence polarization and florescence anisotropy of the SCCO2-treated cells were increased slightly and gently compared with the untreated cells. The correlation between membrane damage and death of cells under SCCO2 was clear, and the membrane damage was a key factor induced the inactivation of cells.  相似文献   

12.
An efficient protocol was developed for the rapid in vitro multiplication of an endemic and critically endangered medicinal herb, Ceropegia noorjahaniae Ans., via enhanced axillary bud proliferation from nodal explants. The effects of phytohormones [6-benzylaminopurine (BAP), kinetin (Kin) thidiazuron (TDZ), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA)] on in vitro regeneration were investigated. The highest number of shoots (18.3 ± 1.3), maximum shoot length (10.1 ± 0.8 cm) and the highest response of shoot induction (95 %) were recorded on MS medium supplemented with 2.0 mg/l BAP. Rooting was best achieved on half-strength MS medium augmented with IBA (1.0 mg/l). Half-strength MS medium supplemented with BAP (4 mg/l) and sucrose (5 %, w/v) produced an average of 5.6 flower buds per microshoots with highest (90 %) flower bud induction response. The plantlets regenerated in vitro with well-developed shoot and roots were successfully established in pots containing sterile sand and coco peat (1:1) and grown in a greenhouse with 85 % survival rate. The regenerated plants did not show any detectable morphological variation. The developed method can be successfully employed for large-scale multiplication and conservation of C. noorjahaniae.  相似文献   

13.
Glucosamine (GlcN) is a major and valuable component in the cell wall of fungi. In this study, the cell wall was treated via a two-stage alkali and acid process, and chitin and chitosan were fully deacetylated, partially depolymerized, and converted to GlcN oligosaccharides. Then, the oligosaccharides were analyzed by high performance liquid chromatography. The influences of Actinomucor elegans on GlcN production in a flask culture were investigated to achieve an optimum yield of GlcN. The experimental result showed that cultivation in condition of pH 6.0, 100 mL working volume (500 mL flask), 10 % (v/v) inoculum concentration, at 28 °C and 200 rpm for 6 days yielded highest dry cell weight (DCW) which was 23.43 g L−1, with a GlcN concentration of 5.12 g L−1. Methanol as stimulating factor was found to exert the best effect in concentration of 1.5 % (v/v). With addition of methanol into medium, the DCW increased from 23.69 to 32.42 g L−1, leading to maximum GlcN concentration of 6.85 g L−1 obtained. Here, the methanol addition may be useful for industrial production of GlcN, and may also be meaningful for the production of other fine chemicals by filamentous fungi.  相似文献   

14.
The present study reports an efficient in vitro micropropagation protocol for a medicinally important tree, Terminalia bellerica Roxb. from nodal segments of a 30 years old tree. Nodal segments taken from the mature tree in March-April and cultured on half strength MS medium gave the best shoot bud proliferation response. Combinations of serial transfer technique (ST) and incorporation of antioxidants (AO) [polyvinylpyrrolidone, PVP (50 mg l−1) + ascorbic acid (100 mg l−1) + citric acid (10 mg l−1)] in the culture medium aided to minimize browning and improve explant survival during shoot bud induction. Highest multiplication of shoots was achieved on medium supplemented with 6-benzyladenine (BA, 8.8 μM) and α-naphthalene acetic acid (NAA, 2.6 μM) in addition to antioxidants. Shoot elongation was obtained on MS medium containing BA (4.4 μM) + phloroglucinol (PG, 3.9 μM). Elongated shoots were transferred to half strength MS medium containing indole-3-butyric acid (IBA, 2.5 μM) for root development. The acclimatization of plantlets was carried out under greenhouse conditions. The genetic fidelity of the regenerated plants was checked using inter simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD) analysis. Comparison of the bands among the regenerants and mother plant confirmed true-to-type clonal plants.  相似文献   

15.

Background and Aims

Secondary somatic embryogenesis has been postulated to occur during induction of peach palm somatic embryogenesis. In the present study this morphogenetic pathway is described and a protocol for the establishment of cycling cultures using a temporary immersion system (TIS) is presented.

Methods

Zygotic embryos were used as explants, and induction of somatic embryogenesis and plantlet growth were compared in TIS and solid culture medium. Light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to describe in vitro morphogenesis and accompany morpho-histological alterations during culture.

Key Results

The development of secondary somatic embryos occurs early during the induction of primary somatic embryos. Secondary somatic embryos were observed to develop continually in culture, resulting in non-synchronized development of these somatic embryos. Using these somatic embryos as explants allowed development of cycling cultures. Somatic embryos had high embryogenic potential (65·8 ± 3·0 to 86·2 ± 5·0 %) over the period tested. The use of a TIS greatly improved the number of somatic embryos obtained, as well as subsequent plantlet growth. Histological analyses showed that starch accumulation precedes the development of somatic embryos, and that these cells presented high nucleus/cytoplasm ratios and high mitotic indices, as evidenced by DAPI staining. Morphological and SEM observations revealed clusters of somatic embryos on one part of the explants, while other parts grew further, resulting in callus tissue. A multicellular origin of the secondary somatic embryos is hypothesized. Cells in the vicinity of callus accumulated large amounts of phenolic substances in their vacuoles. TEM revealed that these cells are metabolically very active, with the presence of numerous mitochondria and Golgi apparatuses. Light microscopy and TEM of the embryogenic sector revealed cells with numerous amyloplasts, large nuclei and nucleoli, and numerous plasmodesmata. Plantlets were obtained and after 3 months in culture their growth was significantly better in TIS than on solid culture medium. However, during acclimatization the survival rate of TIS-grown plantlets was lower.

Conclusions

The present study confirms the occurrence of secondary somatic embryos in peach palm and describes a feasible protocol for regeneration of peach palm in vitro. Further optimizations include the use of explants obtained from adult palms and improvement of somatic embryo conversion rates.  相似文献   

16.
Normal rat and mouse lymphoid cells were incubated at 0°–4°C for 1 h with purified rabbit or sheep antirat (mouse) immunoglobulin (Ig)-horseradish peroxidase (PO) conjugates or with Fab fragments of antibody coupled with peroxidase. Cells were subsequently washed and incubated in fresh medium, without labeled antibody or Fab fragments for 5–30 min at 20° or 37°C. With the use of the diaminobenzidine (DAB) method, distribution of peroxidase was studied in the light and electron microscopes. Fab fragments of antirat Ig antibody were iodinated with 125I and subsequently coupled with horseradish PO. Plasma membrane and internalized immunoglobulins were detected by electron microscope autoradiography and peroxidase cytochemistry. Single- (Fab-PO), and double- ([125I]Fab-PO) labeled lymphoid cells showed identical patterns of surface or internal distribution of immunoglobulins. In the electron microscope, Fab-PO conjugates at 0°–4°C resulted in a diffuse specific staining of the plasmalemma of lymphocytes and plasma cells. Most of the small dark lymphocytes (T cells?) did not show plasma membrane Ig. Macrophages did not show plasmalemma staining, but displayed nonspecific cytoplasmic staining after incubation at 20° or 37°C with antibody or Fab-PO conjugates. Lymphocytes and plasma cells, after incubation with antibody-PO conjugates at 0°–4°C, had patchy deposits of oxidized DAB on their plasma membranes. Macrophages, similarly treated, had no plasmalemmal staining. Patch and cap formation on the plasma membrane of lymphocytes and plasma cells was seen regularly after antibody-PO incubation at 37°C. Internalization patterns were different in lymphocytes and plasma cells. In lymphocytes, peroxidase staining was observed in small round or oval vesicles clustered at one pole of the cell (30 min at 37°C). In plasma cells, peroxidase staining was seen in clusters of tubules resembling the Golgi apparatus. Internalization of plasma membrane IgG was less pronounced after antibody-PO labeling as compared to Fab-PO labeling.  相似文献   

17.
Brys R  Jacquemyn H 《Annals of botany》2011,107(6):917-925

Background and Aims

Reproductive assurance through autonomous selfing is thought to be one of the main advantages of self-fertilization in plants. Floral mechanisms that ensure autonomous seed set are therefore more likely to occur in species that grow in habitats where pollination is scarce and/or unpredictable.

Methods

Emasculation and pollen supplementation experiments were conducted under laboratory conditions to investigate the capacity for, and timing of autonomous selfing in three closely related Centaurium species (Centaurium erythraea, C. littorale and C. pulchellum). In addition, observations of flower visitors were combined with emasculation and pollen addition experiments in natural populations to investigate the degree of pollinator limitation and pollination failure and to assess the extent to which autonomous selfing conferred reproductive assurance.

Results

All three species were capable of autonomous selfing, although this capacity differed significantly between species (index of autonomous selfing 0·55 ± 0·06, 0·68 ± 0·09 and 0·92 ± 0·03 for C. erythraea, C. littorale and C. pulchellum, respectively). The efficiency and timing of autogamous selfing was primarily associated with differences in the degree of herkogamy and dichogamy. The number of floral visitors showed significant interspecific differences, with 1·6 ± 0·6, 5·4 ± 0·6 and 14·5 ± 2·1 floral visitors within a 2 × 2 m2 plot per 20-min observation period, for C. pulchellum, C. littorale and C. erythraea, respectively. Concomitantly, pollinator failure was highest in C. pulchellum and lowest in C. erythraea. Nonetheless, all three study species showed very low levels of pollen limitation (index of pollen limitation 0·14 ± 0·03, 0·11 ± 0·03 and 0·09 ± 0·02 for C. erythraea, C. littorale and C. pulchellum, respectively), indicating that autonomous selfing may guarantee reproductive assurance.

Conclusions

These findings show that limited availability of pollinators may select for floral traits and plant mating strategies that lead to a system of reproductive assurance via autonomous selfing.  相似文献   

18.

Background and Aims

Despite their importance for plant production, estimations of below-ground biomass and its distribution in the soil are still difficult and time consuming, and no single reliable methodology is available for different root types. To identify the best method for root biomass estimations, four different methods, with labour requirements, were tested at the same location.

Methods

The four methods, applied in a 6-year-old Eucalyptus plantation in Congo, were based on different soil sampling volumes: auger (8 cm in diameter), monolith (25 × 25 cm quadrate), half Voronoi trench (1·5 m3) and a full Voronoi trench (3 m3), chosen as the reference method.

Key Results

With the reference method (0–1m deep), fine-root biomass (FRB, diameter <2 mm) was estimated at 1·8 t ha−1, medium-root biomass (MRB diameter 2–10 mm) at 2·0 t ha−1, coarse-root biomass (CRB, diameter >10 mm) at 5·6 t ha−1 and stump biomass at 6·8 t ha−1. Total below-ground biomass was estimated at 16·2 t ha−1 (root : shoot ratio equal to 0·23) for this 800 tree ha−1 eucalypt plantation density. The density of FRB was very high (0·56 t ha−1) in the top soil horizon (0–3 cm layer) and decreased greatly (0·3 t ha−1) with depth (50–100 cm). Without labour requirement considerations, no significant differences were found between the four methods for FRB and MRB; however, CRB was better estimated by the half and full Voronoi trenches. When labour requirements were considered, the most effective method was auger coring for FRB, whereas the half and full Voronoi trenches were the most appropriate methods for MRB and CRB, respectively.

Conclusions

As CRB combined with stumps amounted to 78 % of total below-ground biomass, a full Voronoi trench is strongly recommended when estimating total standing root biomass. Conversely, for FRB estimation, auger coring is recommended with a design pattern accounting for the spatial variability of fine-root distribution.  相似文献   

19.
Withania ashwagandha, belonging to the family Solanaceae, is an important medicinal herb of India with restricted geographic distribution. It is a rich source of withaferin A (WA) and other bioactive withanolides. In the present study a rapid in vitro mass propagation protocol of W. ashwagandha was developed from nodal explants. Nodal explants were cultured on MS medium supplemented with various concentrations and combinations of plant growth regulators (PGRs). The highest number of regenerated shoots per ex-plant (33 ± 2.7) and highest WA (13.4 ± 1.15 mg/g of DW) production was obtained on MS medium supplemented with 5.0 μM 6-benzyladenine (BA) and 1.0 μM Kinetin (Kn). In vitro raised shoots were further rooted on half-strength MS medium containing 2.0 μM Indole-3-butyric acid (IBA) and analyzed for WA production. The rooted plantlets when transferred to poly bags in the greenhouse showed 90 % survival frequency. Levels of WA were higher in the in vitro and ex vitro derived shoot and root tissues as compared to field grown mother plants. In an attempt to further maximize WA production, shoot cultures were further grown in liquid MS medium supplemented with 5.0 μM 6-benzyladenine (BA) and 1.0 μM Kinetin (Kn). Root cultures were grown on half strength MS liquid medium fortified with 2.0 μM of IBA. WA production in the liquid cultures was significantly higher compared to the static composition of the same media. This protocol, first of its kind in this plant, can be successfully employed for conservation, proliferation and large-scale production of WA. The regenerated plants can also be used in traditional medicine as an alternative to naturally collected plants.  相似文献   

20.
Ronggai Li 《Cytotechnology》2015,67(6):987-993
A practical method was developed for the transient transfection of Chinese hamster ovary (CHO) cells with 25 kDa linear polyethylenimine (PEI) then optimal culture conditions determined for the production of rainbow trout (Oncorhynchus mykiss) IFN-γ recombinant protein. We found that culture temperature had a significant impact upon recombinant protein yield, with best results being obtained at 32 °C. However the amount of serum added to the culture medium had no effect upon recombinant IFN-γ (rIFN-γ) production. In this study maximal rIFN-γ yields and minimal PEI toxicity were achieved using a DNA/PEI ratio of 1:8, where the amount of PEI did not exceed 10 µg per 5 ml of RPMI1640 culture medium, with cells subsequently cultured at 32 °C for 7 days. Thus, linear PEI is a technically simple and cost-efficient method for the transient transfection of CHO cells and is compatible with serum-free operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号