首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nitrogenous resource used to promote algal growth has cost implications for mass culture processes. The present study therefore aimed to determine the effect of different nitrogenous resources (nitrate, ammonium and urea) on various performance parameters (growth, final cell yield, pigmentation, lipid yield and cellular and sub‐cellular characteristics) in Isochrysis galbana. Growth rate was unaffected by nitrogenous resource, but the final cellular yield in the nitrate and urea treatments far exceeded that evident in the ammonium treatments. The reduced cell yield in ammonium treatments and the earlier onset of the stationary phase was brought about by nitrogen‐starvation due to an increase in pH and resultant ammonia volatilization. This starvation initiated an early onset of lipid accumulation, chlorophyll depletion and an increase in the carotenoid to chlorophyll ratio relative to the other nitrogen (N) source treatments. Hence, in spite of being potentially the preferred source of N by algae (due to its reduced state), ammonium‐nitrogen is undesirable for mass culture. The performance parameters of Isochrysis grown in urea (an organic N source) and nitrate (an inorganic N source) were similar, but lipid accrued earlier in cells grown in medium supplemented with urea. This is advantageous for lipid acquisition for the production of biodiesel since it would reduce the duration of photobioreactor runs. Urea is easily available and considerably cheaper than all the other N sources tested and is thus recommended as the nitrogenous resource for large‐scale culture of I. galbana for biodiesel production.  相似文献   

2.
The marine microalga Isochrysisgalbana was cultivated and entrapped inalginate beads for long-term storage. Theentrapped cells were alive and maintainedtheir physiological activities after oneyear of storage in absolute darkness at4 °C without a liquid medium. Thenumber of cells in the beads increased morethan 32 times when they were subsequentlyre-cultured in an aqueous medium for fiveweeks, showing that they had remained aliveduring storage. TEM observations showedthat the entrapped cells reduced their cellcovering and pyrenoid size compared withthe normal free-living cells afterlong-term storage. The algal beads werealso applied to feed and water qualitycontrol in clam cultures' leading to amarked decrease in ammonium concentrations.Algal cells escaped from the beads provideda food source for the clams. This mightreduce the cost of clam culture compared totraditional culture methods. Therefore,immobilized I. galbana can be usedfor long-term preservation of algal stockin the laboratory and applied practicallyto clam cultures.  相似文献   

3.
4.
A G Bodnar  R A Rachubinski 《Gene》1990,91(2):193-199
3-Ketoacyl-coenzyme A thiolase (thiolase) catalyzes the final step of the fatty acid beta-oxidation pathway in peroxisomes. Thiolase is unique among rat liver peroxisomal enzymes in that it is synthesized as a precursor possessing a 26-amino acid (aa) N-terminal extension which is cleaved to generate the mature enzyme. To facilitate further examination of the synthesis, intracellular transport and processing of this enzyme, cDNA clones were selected from a lambda gt11 rat liver library using antiserum raised against peroxisomal thiolase. Upon sequencing several cDNA clones, it was revealed that there are at least two distinct thiolase enzymes localized to rat liver peroxisomes, one identical to the previously published rat liver peroxisomal thiolase (thiolase 1) [Hijikata et al., J. Biol. Chem. 262 (1987) 8151-8158] and a novel thiolase (thiolase 2). The THL2 cDNA possesses a single open reading frame of 1302 nucleotides (nt) encoding a protein of 434 aa (Mr 44790). The coding region of THL2 cDNA exhibits 94.6% nt sequence identity with THL1 and 95.4% identity at the level of aa sequence. Northern-blot analysis indicates that the mRNA encoding thiolase 2 is approx. 1.7 kb in size. The mRNA encoding thiolase 2 is induced approx. twofold upon treatment of rats with the peroxisome-proliferating drug, clofibrate. In contrast, the thiolase 1 mRNA is induced more than tenfold under similar conditions.  相似文献   

5.
A cDNA clone for 3-ketoacyl-CoA thiolase (EC 2.3.1.16) was isolated from a gt11 cDNA library constructed from the poly(A)+ RNA of etiolated pumpkin cotyledons. The cDNA insert contained 1682 nucleotides and encoded 461 amino acid residues. A study of the expression in vitro of the cDNA and analysis of the amino-terminal sequence of the protein indicated that pumpkin thiolase is synthesized as a precursor which has a cleavable amino-terminal presequence of 33 amino acids. The amino-terminal presequence was highly homologous to typical amino-terminal signals that target proteins to microbodies. Immunoblot analysis showed that the amount of thiolase increased markedly during germination but decreased dramatically during the light-inducible transition of microbodies from glyoxysomes to leaf peroxisomes. By contrast, the amount of mRNA increased temporarily during the early stage of germination. In senescing cotyledons, the levels of the thiolase mRNA and protein increased again with the reverse transition of microbodies from leaf peroxisomes to glyoxysomes, but the pattern of accumulation of the protein was slightly different from that of malate synthase. These results indicate that expression of the thiolase is regulated in a similar manner to that of other glyoxysomal enzymes, such as malate synthase and citrate synthase, during seed germination and post-germination growth. By contrast, during senescence, expression of the thiolase is regulated in a different manner from that of other glyoxysomal enzymes.  相似文献   

6.
An ester hydrolase gene from the microalga Isochrysis galbana was cloned and expressed in Escherichia coli BL21 Rosetta 2?. The full-length putative gene has 1,146 base pairs and codes for a 381-amino acid polypeptide. The predicted molecular mass of the deduced protein is approximately 42.31 kDa, with a theoretical pI of 9.37. Slight similarity and identity were observed between the microalga sequence and various α/β-fold hydrolases found in diverse phyla. The catalytic triad corresponds to residues Ser254, Asp309, and His341, with the nucleophilic catalytic residue Ser254 located in the pentapeptide consensus motif G-X-S254-X-G. The activity of the enzyme was established by fatty acid profile analysis of the membrane lipids. The expression of the protein in E. coli shifted the fatty acid composition predominantly towards C16:1 and C18:1 fatty acids. This enzyme is called I. galbana thioesterase/carboxylesterase (or IgTeCe). This novel gene is shown to have a potential for use in metabolic engineering to enhance the lipid yields of microalgae.  相似文献   

7.
Acetoacetyl-CoA thiolase (Thiolase I) and 3-ketoacyl-CoA thiolase (Thiolase III) found in peroxisomes of an n-alkane-utilizing yeast, Candida tropicalis pK 233, were each purified to homogeneity by successive column chromatographies. Thiolase I was composed of six identical subunits whose molecular masses were 41,000 Da, and Thiolase III was a homodimer composed of 43,000 Da subunits. The results of limited proteolysis of the respective thiolases indicated that they were quite different in peptide components. Furthermore, these enzymes were immunochemically distinguishable. The kinetic studies showed that the substrates with long chains were degraded exclusively by Thiolase III, while acetoacetyl-CoA was degraded preferentially by Thiolase I. Thus, in the yeast, the complete degradation of fatty acids is suggested to be carried out efficiently in peroxisomes.  相似文献   

8.
9.
T Kurihara  M Ueda  A Tanaka 《FEBS letters》1988,229(1):215-218
Two kinds of 3-ketoacyl-CoA thiolases were found in the peroxisomes of Candida tropicalis cells grown on n-alkanes (C10-C13). One was a typical acetoacetyl-CoA thiolase specific only to acetoacetyl-CoA, while another was 3-ketoacyl-CoA thiolase showing high activities on the longer chain substrates. A high level of the latter thiolase activity in alkane-grown cells was similar to that of other enzymes constituting the fatty acid beta-oxidation system in yeast peroxisomes. These facts suggest that the complete degradation of fatty acids to acetyl-CoA is carried out in yeast peroxisomes by the cooperative contribution of acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase.  相似文献   

10.
The onset of leaf senescence is regulated by a complex mechanism involving positive and negative regulators. Among positive regulators, jasmonic acid (JA) accumulates in senescing leaves and the JA-insensitive coi1-1 mutant displays delayed leaf senescence in Arabidopsis. A strong activated expression of the gene coding for the JA-biosynthetic beta-oxidation enzyme 3-ketoacyl-CoA thiolase 2 (KAT2) in natural and dark-induced senescing leaves of Arabidopsis thaliana is reported here. By using KAT2::GUS and KAT2::LUC transgenic plants, it was observed that dark-induced KAT2 activation occurred both in excised leaves as well as in whole darkened plants. The KAT2 activation associated with dark-induced senescence occurred soon after a move to darkness, and it preceded the detection of symptoms and the expression of senescence-associated gene (SAG) markers. Transgenic plants with reduced expression of the KAT2 gene showed a significant delayed senescence both in natural and dark-induced processes. The rapid induction of the KAT2 gene in senescence-promoting conditions as well as the delayed senescence phenotype and the reduced SAG expression in KAT2 antisense transgenic plants, point to KAT2 as an essential component for the timely onset of leaf senescence in Arabidopsis.  相似文献   

11.
Korstad  John  Vadstein  Olav  Olsen  Yngvar 《Hydrobiologia》1989,186(1):51-57
Clearance and ingestion rates of Brachionus plicatilis were measured using 14C-labeled Isochrysis galbana Tahiti. Experiments were conducted at 20–22 °C, 20 ppt salinity, and algal concentrations ranging from 0.13–64 mg C 1–1. Clearance rates were constant and maximal at concentrations <2 mg C 1–1, with maximum rates ranging from 3.4–6.9 µl ind.–1 hr–1. The ingestion rate varied with food concentration, and was described by a rectilinear model. The maximum ingestion rate varied considerably, and was dependent on the growth rate of the rotifers. Depending on the pre-conditions, B. plicatilis ingested about 0.5 to 2 times its body carbon per day at saturating food concentrations.  相似文献   

12.
NaNO3浓度对球等鞭金藻生长及所含脂肪酸的影响   总被引:2,自引:0,他引:2  
用NaNO3作氮源,分别作了氮浓度的5个水平对球等鞭金藻H29的相对生长速率、总脂含量及脂肪酸组成的影响实验。实验结果显示,H29的相对生长率和总脂含量随N浓度的增加而增加,在897.6 mg/L时总脂含量达到最大值(23.4%)。而DHA(22:6n-3)和PUFAs(polyunsaturated fatty acids)含量随氮浓度的改变有较大变化,DHA含量总体随N浓度增加而下降,在较低氮浓度(74.8mg/L)时含量达到最大值12.11%。  相似文献   

13.
Mitochondrial 3-ketoacyl-CoA thiolase is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patients has been previously reported. We cloned a cDNA of rat mitochondrial 3-ketoacyl-CoA thiolase into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' end of the gene. The cloned cDNA was overexpressed in Escherichia coli and the soluble protein was purified with a nickel Hi-Trap chelating metal affinity column in 92% yield to apparent homogeneity. The specific activity of the purified His-tagged rat mitochondrial 3-ketoacyl-CoA thiolase was 25U/mg. It has been proposed that His352 is a catalytic residue responsible for activation of coenzyme A by deprotonation of a sulfhydryl group. We constructed four mutant expression plasmids of the enzyme using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that His352 is a catalytic residue of rat mitochondrial 3-ketoacyl-CoA thiolase. Our overexpression in E. coli and one-step purification of the highly active rat mitochondrial 3-ketoacyl-CoA thiolase greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of the mechanism for the reaction catalyzed by 3-ketoacyl-CoA thiolase.  相似文献   

14.
用NANO3作氮源,分别作了氮浓度的5个水平对球等鞭金藻H29的相对生长速率、总脂含量及脂肪酸组成的影响实验.实验结果显示,H29的相对生长率和总脂含量随N浓度的增加而增加,在897.6mg/L时总脂含量达到最关值(23.4%):而DHA(22:6n-3)和PUFAs(polyunsaturated fatty acids)含量随氮浓度的改变有较大变化,DHA含量总体随N浓度增加而下降,在较低氮浓度(74.8mg/L)时含量达到最大值12.11%。  相似文献   

15.
Vibrio alginolyticus, Vibrio campbellii, and Vibrio harveyi were inhibited by Isochrysis galbana in batch cultures. I. galbana reduced the V. alginolyticus, V. campbellii, and V. harveyi counts to undetectable levels in 2, 4, and 7 days (<0.01 Vibrio spp. mL?1), respectively, remaining so until the end of the experiment on day 15. Other heterotrophic bacteria reached counts of 106 CFU mL?1 on ZoBell medium at the end of the experiment. Vibrio parahaemolyticus was not inhibited by I. galbana. In all mixed I. galbana and Vibrio spp. cultures, the algal density increased from 3.5 to 4.0?×?107 cells mL?1, higher than that in I. galbana cultures alone, indicating a lack of an inhibitory effect on microalgae in the mixed cultures. The predominant fatty acids (>82 %) of I. galbana during the stationary growth phase were estearidonic (24.3 %), oleic (15.7 %), myristic (13.8 %), docosahexaenoic (11.0 %), palmitic (10.3 %), and α-linolenic (7.2 %) acids. These results demonstrate that I. galbana synthesizes antibacterial fatty acids that inhibit the growth of pathogenic bacteria such as V. alginolyticus, V. campbellii, and V. harveyi.  相似文献   

16.
Agrobacterium tumefaciens-mediated random mutagenesis was used to generate insertional mutants of the fungus Leptosphaeria maculans. Of 91 transformants screened, only one (A3) produced lesions of reduced size on cotyledons of canola (Brassica napus). Genes flanking the T-DNA insertion had the best matches to an alcohol dehydrogenase class 4 (ADH4)-like gene (Adh4L) and a 3-ketoacyl-CoA thiolase gene (Thiol) and were expressed in mutant A3 in vitro and in planta at significantly higher levels than in the wild type. This is the first report of a T-DNA insertion in fungi causing increased gene expression. Transformants of the wild-type isolate expressing both Adh4L and Thiol under the control of a heterologous promoter had similar pathogenicity to mutant A3. Ectopic expression of only thiolase resulted in loss of pathogenicity, suggesting that thiolase overexpression was primarily responsible for the reduced pathogenicity of the A3 isolate. The thiolase gene encoded a functional protein, as shown by assays in which a nontoxic substrate (2, 4 dichlorophenoxybutyric acid) was converted to a toxic product. The use of a translational fusion with a reporter gene showed thiolase expressed in organelles that are most likely peroxisomes.  相似文献   

17.
In the yeast Candida tropicalis, two thiolase isozymes, peroxisomal acetoacetyl-CoA thiolase and peroxisomal 3-ketoacyl-CoA thiolase, participate in the peroxisomal fatty acid beta-oxidation system. Their individual contributions have been demonstrated in cells grown on butyrate, with C. tropicalis able to grow in the absence of either one. In the present study, a lack of peroxisomal 3-ketoacyl-CoA thiolase protein resulted in increased expression (up-regulation) of acetoacetyl-CoA thiolase and other peroxisomal proteins, whereas a lack of peroxisomal acetoacetyl-CoA thiolase produced no corresponding effect. Overexpression of the acetoacetyl-CoA thiolase gene did not suppress the up-regulation or the growth retardation on butyrate in cells without peroxisomal 3-ketoacyl-CoA thiolase, even though large amounts of the overexpressed acetoacetyl-CoA thiolase were detected in most of the peroxisomes of butyrate-grown cells. These results provide important evidence of the greater contribution of 3-ketoacyl-CoA thiolase to the peroxisomal beta-oxidation system than acetoacetyl-CoA thiolase in C. tropicalis and a novel insight into the regulation of the peroxisomal beta-oxidation system.  相似文献   

18.
Fatty acid content and the rate of lipid synthesis were measuredin the marine prymnesiophyte Isochrysis galbana grown undernitrogen starvation and in cultures recovering from nitrogendeprivation. Nitrogen starvation imposed a reduction in cellularsoluble protein content, variation in fatty acid compositionand reduction in the in vitro activity of the enzyme acetylCoA carboxylase. An increase in total fatty acid content isattributed to a differential reduction in cell division andthe rate of lipid synthesis. Recovery from nitrogen deprivationwas characterized by an increase in cellular soluble proteincontent and in the rate of lipid synthesis. Although the invitro activity of acetyl CoA carboxylase increased as the culturesrecovered from nitrogen starvation, the total cellular fattyacid content decreased, evidently due to an acceleration incell division. The relative cellular pool size of acetyl CoAcarboxylase determined by immunoblotting decreased under nitrogenstarvation conditions and increased as cells recovered fromit. Cellular accumulation of acetyl CoA carboxylase during recoveryfrom nitrogen starvation is ascribed to de novo synthesis ofthe enzyme that takes place in the cytoplasm. However, photosyntheticproteins such as ribulose bisphosphate carboxylase are synthesizedearlier than acetyl CoA carboxylase in the recovery process. (Received June 12, 1992; Accepted September 21, 1992)  相似文献   

19.
Acetate has been found as an endogenous metabolite of beta-oxidation of fatty acids in liver. In order to investigate the regulation of acetate generation in liver mitochondria, we attempted to purify a mitochondrial acetyl-CoA hydrolase in rat liver. This acetyl-CoA-hydrolyzing activity in isolated mitochondria was induced by the treatment of rats with di(2-ehtylhexyl)phthalate (DEHP), a peroxisome proliferator which induces expression of several peroxisomal and mitochondrial enzymes involved in beta-oxidation of fatty acids. The purified enzyme was 43-kDa in molecular mass by SDS/PAGE. Internal amino acid sequencing of this enzyme revealed that it was identical with mitochondrial 3-ketoacyl-CoA thiolase, suggesting that this enzyme has two kinds of activities, 3-ketoacyl-CoA thiolase and acetyl-CoA hydrolase activities. Kinetic studies clearly indicated that this enzyme had the both activities and each activity was inhibited by the substrates of the other activity, that is, 3-ketoacyl-CoA thiolase activity was inhibited by acetyl-CoA, on the other hand, acetyl-CoA hydrolase activity was inhibited by acetoacetyl-CoA in a competitive manner. These findings suggested that acetate generation in liver mitochondria is a side reaction of this known enzyme, 3-ketoacyl-CoA thiolase, and this enzyme may regulate its activities depending on each substrate level.  相似文献   

20.
三种絮凝剂对球等鞭金藻絮凝作用   总被引:1,自引:0,他引:1  
高伟  李倩  李林  贾兴军  崔志松  周文俊  郑立 《生态学杂志》2012,31(10):2631-2634
以3种絮凝剂对等鞭金藻的采收效果及其对藻体的影响为研究目标,以分光光度法、重量法以及显微镜观测为主要研究方法,测定了絮凝剂对藻细胞的絮凝效率、藻体总脂含量的影响以及藻细胞形态变化。结果表明:氯化铁和明矾的絮凝速率最快(<4h);氯化铁浓度≥20mg.L-1,明矾浓度≥80mg.L-1时,可以絮凝沉淀90%以上藻体;比较藻体的损伤程度和总脂产率发现,明矾浓度为80mg.L-1时,藻体总脂产率的最高,达29.9%,并且对细胞伤害最小;可采用80mg.L-1明矾作为絮凝剂对球等鞭金藻进行采收,为生物柴油制备生产提供基础原料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号