首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last years, considerable attention has been given to different marine organisms, like algae, as potential sources of valuable materials. The continuous demand for novel materials and technologies is high and research on the underexploited marine green algae, including its polysaccharidic part—ulvan, has increased accordingly. In this research work, a novel method for extraction of ulvan from green algae is proposed and demonstrated successfully. Different characterization techniques were employed to characterize the isolated algal polysaccharide, namely, on what concerns its thermal trace and crystallinity. Upon heating, ulvan behaves as a non-meltable polysaccharide that is thermally stable before degradation at 220 °C. Ulvan is semi-crystalline in nature and possesses high hygroscopic features, as revealed in this research work. Due to its properties, ulvan can be considered, pure or modified, as a versatile biodegradable polymer for different applications, including tissue engineering and regenerative medicine.  相似文献   

2.
Brown algae are multicellular photosynthetic marine organisms, ubiquitous on rocky intertidal shores at cold and temperate latitudes. Nevertheless, little is known about many aspects of their biology, particularly their development. Given their phylogenetic distance (1.6 billion years) from other plant organisms (land plants, and green and red algae), brown algae harbor a high, as-yet undiscovered diversity of biological mechanisms governing their development. They also show great morphological plasticity, responding to specific environmental constraints, such as sea currents, reduced light availability, grazer attacks, desiccation and UV exposure. Here, we show that brown algal morphogenesis is rather simple and flexible, and review recent genomic data on the cellular and molecular mechanisms known to date that can possibly account for this developmental strategy.  相似文献   

3.
Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.  相似文献   

4.
Lahaye M  Robic A 《Biomacromolecules》2007,8(6):1765-1774
With today's interest in novel renewable chemicals and polymers, the underexploited marine green algae belonging to species of Ulva and Entermorpha stimulated interest as sources of polysaccharides with innovative structure and functional properties. These algae are common on all seashores and can produce in time an important amount of biomass in nutrient-enriched waters. The major water-soluble polysaccharide, ulvan, extracted from the cell wall represents about 8-29% of the algae dry weight. The original physicochemical, rheological, and biological properties recently unraveled for this complex sulfated aldobiouronan open the way for novel potential applications.  相似文献   

5.
6.
Actinomycetes are virtually unlimited sources of novel compounds with many therapeutic applications and hold a prominent position due to their diversity and proven ability to produce novel bioactive compounds. There are more than 22,000 known microbial secondary metabolites, 70% of which are produced by actinomycetes, 20% from fungi, 7% from Bacillus spp. and 1–2% by other bacteria. Among the actinomycetes, streptomycetes group are considered economically important because out of the approximately more than 10,000 known antibiotics, 50–55% are produced by this genus. The ecological role of actinomycetes in the marine ecosystem is largely neglected and various assumptions meant there was little incentive to isolate marine strains for search and discovery of new drugs. The search for and discovery of rare and new actinomycetes is of significant interest to drug discovery due to a growing need for the development of new and potent therapeutic agents. Modern molecular technologies are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes, and continued development of improved cultivation methods and molecular technologies for accessing the marine environment promises to provide access to this significant new source of chemical diversity with novel/rare actinomycetes including new species of previously reported actinomycetes.  相似文献   

7.
Jordan has witnessed a rapid industrial development in the last twenty years. This has lead to the release of waste materials or pollutants into the marine environment, particularly nearby Aqaba Port. The present study investigates the levels of zinc, cadmium and lead in four brown algae, three red algae and four green algal species collected from Aqaba. Three different levels of lead and zinc concentrations were found: the highest level of both metals is exhibited among brown algae; intermediate level is exhibited among red algae and the lowest level is seen among the green algae. Very low concentrations of cadmium were found in all examined algal species. The results indicate that the brown algal species Cystosira myrica, Sargassum asperifolium, Sargassum neglectum, and Sargassum subrepandum always contain the highest concentrations of lead and zinc, but these algae are less contaminated than brown algae from industrial European seas.  相似文献   

8.
Since early human history, plants have served as the most important source of medicinal natural products, and even in the “synthetic age” the majority of lead compounds for pharmaceutical development remain of plant origin. In the marine realm, algae and seagrasses were amongst the first organisms investigated by marine natural products scientists on their quest for novel pharmaceutical compounds. Forty years after the pioneering work in the field of marine drug discovery began, the biodiversity of marine organisms investigated as potential sources of anticancer, anti-inflammatory, and antibiotic compounds has increased tremendously. Nonetheless, marine plants are still an important source of novel secondary metabolites with interesting biomedical properties. The present review focuses on the antitumour properties of compounds isolated from marine algae, phytoplankton, mangroves, seagrasses, or cordgrasses. Compounds produced by marine epi- or endophytic fungi are also discussed.  相似文献   

9.
During a screening programme for new medical agents, many aqueous extracts from 59 species of seaweed were found to possess bioactivity against murine immunocytes. Thirty-eight extracts (8 green, 12 brown, 18 red algae) showed suppressive effects on the mitogenic response. Furthermore, 16 extracts (2 green, 6 brown, 8 red algae) suppressed the production of Interleukin 1 (1L-1) from murine macrophage. Using the murine mixed lymphocyte reaction assay, suppressive effects were observed in 4 red algae, but none in green or brown algae. Nine seaweed extracts suppressed the production of secondary antibody (IgG, IgM). Extracts of 3 red algae suppressed strongly the proliferation of bone marrow cells, but 2 other red algae caused stimulation above 200%. This is apparently the first report showing immunosuppressive activity from marine algae.  相似文献   

10.
Arctic marine fishes and their fisheries in light of global change   总被引:1,自引:0,他引:1  
In light of ocean warming and loss of Arctic sea ice, harvested marine fishes of boreal origin (and their fisheries) move poleward into yet unexploited parts of the Arctic seas. Industrial fisheries, already in place on many Arctic shelves, will radically affect the local fish species as they turn up as unprecedented bycatch. Arctic marine fishes are indispensable to ecosystem structuring and functioning, but they are still beyond credible assessment due to lack of basic biological data. The time for conservation actions is now, and precautionary management practices by the Arctic coastal states are needed to mitigate the impact of industrial fisheries in Arctic waters. We outline four possible conservation actions: scientific credibility, ‘green technology’, legitimate management and overarching coordination.  相似文献   

11.
Green autofluorescence (GAF) has been described in the short flagellum of golden and brown algae, the stigma of Euglenophyceae, and cytoplasm of different life stages of dinoflagellates and is considered by some researchers a valuable taxonomic feature for dinoflagellates. In addition, green fluorescence staining has been widely proposed or adopted to measure cell viability (or physiological state) in areas such as apoptosis of phytoplankton, pollutant stresses on algae, metabolic activity of algae, and testing treatment technologies for ships' ballast water. This paper reports our epifluorescence microscopic observations and quantitative spectrometric measurements of GAF in a broad phylogenetic range of microalgae. Our results demonstrate GAF is a common feature of dinoflagellates, diatoms, green algae, cyanobacteria, and raphidophytes, occurs in the cytoplasm and particularly in eyespots, accumulation bodies, spines, and aerotopes, and is caused by molecules other than chlorophyll. GAF intensity increased with time after cell death or fixation and with excitation by blue or UV light and was affected by pH. GAF of microalgae may be only of limited value in taxonomy. It can be strong enough to interfere with the results of green fluorescence staining, particularly when stained samples are observed microscopically. GAF is useful, however, for microscopic study of algal morphology, especially to visualize cellular components such as eyespots, nucleus, aerotopes, spines, and chloroplasts. Furthermore, GAF can be used to visualize and enumerate dinoflagellate cysts in marine and estuarine sediments in the context of anticipating and monitoring harmful algal blooms and in tracking potentially harmful dinoflagellates transported in ships' ballast tanks.  相似文献   

12.
Circadian clocks allow organisms to anticipate environmental changes associated with the diurnal light/dark cycle. Circadian oscillators have been described in plants and green algae, cyanobacteria, animals and fungi, however, little is known about the circadian clocks of photosynthetic eukaryotes outside the green lineage. Stramenopiles are a diverse group of secondary endosymbionts whose plastid originated from a red alga. Photosynthetic stramenopiles, which include diatoms and brown algae, play key roles in biogeochemical cycles and are important components of marine ecosystems. Genome annotation efforts indicated the presence of a novel type of oscillator in these organisms and the first circadian clock component in a stramenopile has been recently discovered. This review summarizes the phenotypic characterization of circadian rhythms in stramenopiles and current efforts to determine the mechanisms of this ‘brown clock’. The elucidation of this brown clock will enable a deeper understanding of the role of self-sustained oscillations in the adaptation to life in marine environments.  相似文献   

13.
Green autofluorescence (GAF) has been described in the short flagellum of golden and brown algae, the stigma of Euglenophyceae, and cytoplasm of different life stages of dinoflagellates and is considered by some researchers a valuable taxonomic feature for dinoflagellates. In addition, green fluorescence staining has been widely proposed or adopted to measure cell viability (or physiological state) in areas such as apoptosis of phytoplankton, pollutant stresses on algae, metabolic activity of algae, and testing treatment technologies for ships' ballast water. This paper reports our epifluorescence microscopic observations and quantitative spectrometric measurements of GAF in a broad phylogenetic range of microalgae. Our results demonstrate GAF is a common feature of dinoflagellates, diatoms, green algae, cyanobacteria, and raphidophytes, occurs in the cytoplasm and particularly in eyespots, accumulation bodies, spines, and aerotopes, and is caused by molecules other than chlorophyll. GAF intensity increased with time after cell death or fixation and with excitation by blue or UV light and was affected by pH. GAF of microalgae may be only of limited value in taxonomy. It can be strong enough to interfere with the results of green fluorescence staining, particularly when stained samples are observed microscopically. GAF is useful, however, for microscopic study of algal morphology, especially to visualize cellular components such as eyespots, nucleus, aerotopes, spines, and chloroplasts. Furthermore, GAF can be used to visualize and enumerate dinoflagellate cysts in marine and estuarine sediments in the context of anticipating and monitoring harmful algal blooms and in tracking potentially harmful dinoflagellates transported in ships' ballast tanks.  相似文献   

14.
Lu XL  Xu QZ  Liu XY  Cao X  Ni KY  Jiao BH 《化学与生物多样性》2008,5(9):1669-1674
The increasing demands for new lead compounds in pharmaceutical and agrochemical industries have driven scientists to search for new bioactive natural products. Marine microorganisms are rich sources of novel, bioactive secondary metabolites, and have attracted much attention of chemists, pharmacologists, and molecular biologists. This mini-review mainly focuses on macrolactins, a group of 24-membered lactone marine natural products, aiming at giving an overview on their sources, structures, biological activities, as well as their potential medical applications.  相似文献   

15.
海藻酸盐裂解酶研究进展   总被引:5,自引:0,他引:5  
海藻酸盐裂解酶是一类降解褐藻中海藻酸盐的酶。此酶已经在多种有机体中得到分离。对海藻酸盐裂解酶的生物特性、研究方法及其生物学功能进行了介绍。在酶学特性研究的基础上 ,通过酶解构建新型海藻酸盐多聚物 ,可增强和扩展海藻酸盐裂解酶在工业、农业、医药领域中的应用 ,使其在海藻多糖的高值化应用中发挥重要的作用。概述了海藻酸盐和海藻酸盐裂解酶过去和现在的研究状况 ,展望了海藻酸盐和海藻酸盐裂解酶将来的应用前景。  相似文献   

16.
Some hundred cells of Chlorella-like green algae are naturally enclosed within the cytoplasm of a single cell of green paramecia (Paramecium bursaria). Therefore, P. bursaria serves as an experimental model for studying the nature of endo-symbiosis made up through chemical communication between the symbiotic partners. For studying the mechanism of symbiotic regulations, the materials showing successful symbiosis are widely used. Apart from such successful model materials, some models for symbiotic distortion would be of great interest in order to understand the nature of successful symbiosis. Here, we describe a case of unsuccessful symbiosis causing unregulated growth of algae inside the hosting ciliates. Recently, we have screened some cell lines, from the mass of P. bursaria cells survived after paraquat treatment. The resultant cell lines (designated as KMZ series) show novel and unusual morphological features with heavily darker green colour distinguishable from the original pale green-coloured paramecia. In this type of isolates, endo-symbiotic algae are restricted within one or two dense spherical structures located at the center of the host cells' cytoplasm. Interestingly, this isolate maintains the host cells' circadian mating response which is known as an alga-dependent behaviour in the host cells. In contrast, we discuss that KMZ lacks the host-dependent regulation of algal growth, thus the algal complex often over-grows obviously exceeding the original size of the normal hosting ciliates. Additionally, possible use of this isolate as a novel model for symbiotic cell-to-cell communication is discussed.  相似文献   

17.
The shores of the Cap Blanc peninsula, along which runs the border between Mauritania and Western Sahara (former Spanish Sahara), were studied in November 1975. Littoral zonation is described and an annotated list is presented of the 188 species of algae now known from Mauritania and Western Sahara together with a further 23 species identified only to genus. In this present study 88 species of algae (excluding Cyanophyceae) were determined resulting in an increase of 67% and 37% respectively for the previously known marine floras of Western Sahara and Mauritania. Of 97 marine algae known from specific localities on the Cap Blanc peninsula, only 21 are common to both its eastern and western sides. Several tropical species reach their northern limit on the eastern side of the peninsula and many warm-temperate species reach their southernmost limit on the western side. Thus the Cap Blanc peninsula appears to represent a boundary between the warm temperate seaweed flora of North West Africa and the subtropical transition flora of Mauritania and Sénégal to the south.  相似文献   

18.
19.
浮游植物的化感作用   总被引:7,自引:0,他引:7  
生物化感作用研究是近年来兴起的交叉学科,是化学生态学研究的重要领域。研究水域浮游植物化感作用对了解浮游植物之间、浮游植物与其他生物之间的相互作用及作用机理具有重要意义,对了解赤潮和水华的发生机制及其生态控制等具有非常重要的作用。综述了海洋和湖泊浮游植物化感作用和化感物质的内涵,讨论了水体浮游植物化感作用的特点、研究化感作用的基本方法、化感物质的种类以及影响化感物质作用的生物和非生物因素,详细介绍了浮游植物化感物质的作用机理以及逃避和拈抗化感作用的方式,同时对目前研究的热点问题及未来研究的方向做了简要概述。  相似文献   

20.
Recent data have provided evidence for an unrecognised ancient lineage of green plants that persists in marine deep-water environments. The green plants are a major group of photosynthetic eukaryotes that have played a prominent role in the global ecosystem for millions of years. A schism early in their evolution gave rise to two major lineages, one of which diversified in the world's oceans and gave rise to a large diversity of marine and freshwater green algae (Chlorophyta) while the other gave rise to a diverse array of freshwater green algae and the land plants (Streptophyta). It is generally believed that the earliest-diverging Chlorophyta were motile planktonic unicellular organisms, but the discovery of an ancient group of deep-water seaweeds has challenged our understanding of the basal branches of the green plant phylogeny. In this review, we discuss current insights into the origin and diversification of the green plant lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号