首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Small RNAs: Big Impact on Plant Development   总被引:1,自引:0,他引:1  
  相似文献   

2.
It is widely held that any given virus uses only one type of nucleic acid for genetic information storage. However, this consensus has been challenged slightly by several recent studies showing that many RNA species are present within a range of DNA viruses that include Kaposi''s sarcoma-associated herpesvirus (KSHV). RNAs extracted from purified DNA virus particles exhibit great diversity in terms of length, abundance, temporal expression, cellular localization, and coding capacity during viral infection. In addition to known RNA species, the current study showed that small regulatory RNAs were present in KSHV virions. A large number of viral and cellular microRNAs (miRNAs), as well as unusual small RNAs (usRNAs), were detected in KSHV virions by using deep sequencing. Both viral and host miRNAs detected in small RNAs extracted from KSHV virions were further shown to colocalize with KSHV virions directly by in situ hybridization (ISH)-electron microscopy (EM) (ISH-EM). Some of these miRNAs were differentially present in the host cells and KSHV virions, suggesting that they are not randomly present in KSHV virions. The virional miRNAs could be transported into host cells, and they are biologically functional during de novo viral infection. Our study revealed miRNAs and usRNAs as a novel group of components in KSHV virions.  相似文献   

3.
MicroRNAs (miRNAs) are a newly discovered, yet powerful mechanism for regulating protein expression via mRNA translational inhibition. Loss of all miRNA function within mice leads to embryonic lethality with a loss of the stem cell population in the epiblast and failure to form a primitive streak. These data suggest that miRNAs play a major role in embryonic development. As critical regulation of protein expression is also important for controlling the balance between self-renewal and differentiation in stem cells, the study of miRNAs within this model system is rapidly expanding. New data suggest that stem cells have discrete miRNA expression profiles, which may account for, or contribute to, the intrinsic stem cell properties of self-renewal and pluripotency. Specifically, miRNAs have been implicated in downregulation of cell cycle checkpoint proteins during germ stem cell division. Other data demonstrate that changes in miRNA expression can promote or inhibit stem or progenitor cell differentiation within different cell lineages, including hematopoietic cells, cardiomyocytes, myoblasts, and neural cells. In this review we detail the established functional roles of miRNAs in the embryonic and adult stem cell model systems. Finally, we explore new techniques that exploit endogenous miRNA processing and function for applications in basic and clinical research.  相似文献   

4.
小分子干扰RNA(small interfering RNA,siRNA)因能快速抑制哺乳动物特定基因的表达而用于各种疾病的治疗,然而选择合适的载体将siRNA安全有效地转运进入靶细胞仍是制约siRNA应用于临床治疗的重要因素.越来越多的转运载体被开发出来,其中包括针对细胞表面蛋白的适配子(aptamer).Aptamer是一种能与靶分子高特异性和高亲和结合的寡核苷酸,已经越来越多地用于疾病的诊断和治疗.Aptamer作为载体介导siRNA转运可提高治疗的靶向性并减少副作用,这将为siRNA应用于临床靶向治疗提供一种特异有效的途径.目前,已经发现几种aptamers可以介导siRNA的转运,如anti-PSMA aptamer,anti-HIV gp120 aptamer,anti-CD4 aptamer等.本文将综述aptamer介导siRNA转运的最新研究进展.  相似文献   

5.
6.
7.
8.
9.
10.
Rovira C  Güida MC  Cayota A 《IUBMB life》2010,62(12):859-868
Small noncoding RNAs are key controllers of cellular function, and their deregulation can lead to cancer development and metastatic evolution. This review summarizes the most important examples of small RNAs involved in human cancer and discusses their clinical use as biomarkers and drug targets for diagnosis, prognosis, and treatment of cancer. We also describe the possible mechanisms underlying small RNA-mediated transformation and outline the future describing new small RNA families with great potential in cancer biology.  相似文献   

11.
12.
MicroRNAs: small RNAs with a big role in gene regulation   总被引:12,自引:0,他引:12  
  相似文献   

13.
14.
小RNA(sRNA)或非编码RNA(ncRNA)在原核生物和真核生物中广泛分布。迄今,在各种细菌中共发现超过150种sRNA,在大肠杆菌中发现了约80种sRNA。sRNA通过与靶mRNA配对而发生作用,导致mRNA翻译和稳定性的变化;sRNA的功能涉及从结构调节到催化作用,影响生物体内各种各样的加工过程,一个单独的sRNA就能调控大量的基因并对细胞生理产生深远影响。目前,对sRNA的研究主要采用生物信息学预测结合分子生物学实验的方法。  相似文献   

15.
16.
In plants, each pollen mother cell undergoes two rounds of cell divisions to form a mature pollen grain, which contains a vegetative cell(VC) and two sperm cells(SC). As a companion cell, the VC carries the SCs to an ovule by germinating a pollen tube. In-depth sequencing analyses of mature pollen showed that micro RNAs(mi RNAs) and short interfering RNAs(si RNAs) are present in both the VC and SCs. Additionally, epigenetically-regulated transposable elements(TEs) are reactivated in the VC and these TE m RNAs are further processed into 21-nt epigenetically reactivated si RNA(easiR NA) in SCs, which prevent 24-nt si RNA accumulation and sequester mi RNA loading. Small RNAs are thought to move from the VC to SCs, where they regulate gene expression and reinforce TE silencing. Here, we summarize current knowledge of the biogenesis and function of mi RNAs, si RNAs, and easi RNAs in pollen, emphasizing how these different small RNAs coordinately contribute to sperm cell formation and TE silencing.  相似文献   

17.
18.
19.
MicroRNAs: Small regulators with a big impact   总被引:7,自引:0,他引:7  
MicroRNAs (miRNA) are non-coding small (approximately 22nt) RNAs that regulate diverse physiological and developmental processes. In animals, they regulate target genes by binding imperfectly to 3'UTR sequences in mRNAs and attenuate translation. There are hundreds of miRNA genes in animals, and current studies show they constitute a minimum of 1% of known genes. We are just beginning to understand the diverse roles they play in cellular processes, which include signaling pathways, developmental pathways, and possibly various types of cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号