首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
It is generally assumed that the production of a large crop of seeds depletes stores of resources and that these take more than 1 year to replenish; this is accepted, theoretically, as the proximate mechanism of mast seeding (resource budget model). However, direct evidence of resource depletion in masting trees is very rare. Here, we trace seasonal and inter-annual variations in nitrogen (N) concentration and estimate the N storage pool of individuals after full masting of Fagus crenata in two stands. In 2005, a full masting year, the amount of N in fruit litter represented half of the N present in mature leaves in an old stand (age 190–260 years), and was about equivalent to the amount of N in mature leaves in a younger stand (age 83–84 years). Due to this additional burden, both tissue N concentration and individual N storage decreased in 2006; this was followed by significant replenishment in 2007, although a substantial N store remained even after full masting. These results indicate that internal storage may be important and that N may be the limiting factor for fruiting. In the 4 years following full masting, the old stand experienced two moderate masting events separated by 2 years, whilst trees in the younger stand did not fruit. This different fruiting behavior may be related to different “costs of reproduction” in the full masting year 2005, thus providing more evidence that N may limit fruiting. Compared to the non-fruiting stand, individuals in the fruiting stand exhibited an additional increase in N concentrations in roots early in the 2007 growing season, suggesting additional N uptake from the soil to supply resource demand. The enhanced uptake may alleviate the N storage depletion observed in the full masting year. This study suggests that masting affects N cycle dynamics in mature Fagus crenata and N may be one factor limiting fruiting.  相似文献   

2.
Synchronised and fluctuating reproduction by plant populations, called masting, is widespread in diverse taxonomic groups. Here, we propose a new method to explore the proximate mechanism of masting by combining spatiotemporal flowering data, biochemical analysis of resource allocation and mathematical modelling. Flowering data of 170 trees over 13 years showed the emergence of clustering with trees in a given cluster mutually synchronised in reproduction, which was successfully explained by resource budget models. Analysis of resources invested in the development of reproductive organs showed that parametric values used in the model are significantly different between nitrogen and carbon. Using a fully parameterised model, we showed that the observed flowering pattern is explained only when the interplay between nitrogen dynamics and climatic cues was considered. This result indicates that our approach successfully identified resource type‐specific roles on masting and that the method is suitable for a wide range of plant species.  相似文献   

3.
In many perennial wind‐pollinated plants, the dynamics of seed production is commonly known to be highly fluctuating from year to year and synchronised among individuals within populations. The proximate causes of such seeding dynamics, called masting, are still poorly understood in oak species that are widespread in the northern hemisphere, and whose fruiting dynamics dramatically impacts forest regeneration and biodiversity. Combining long‐term surveys of oak airborne pollen amount and acorn production over large‐scale field networks in temperate areas, and a mechanistic modelling approach, we found that the pollen dynamics is the key driver of oak masting. Mechanisms at play involved both internal resource allocation to pollen production synchronised among trees and spring weather conditions affecting the amount of airborne pollen available for reproduction. The sensitivity of airborne pollen to weather conditions might make oak masting and its ecological consequences highly sensitive to climate change.  相似文献   

4.
Evolutionary selective forces, like predator satiation and pollination efficiency, are acknowledged to be major causes of masting (the variable, periodic and synchronic production of seeds in a population). However, a number of recent studies indicate that resources might also play an important role on shaping masting patterns. Dioecious masting species offer a privileged framework to study the role of resources on masting variation, since male and female plants often experience different reproductive costs and selective pressures. We followed masting and reproductive investment (RI) of the dioecious tree Juniperus thurifera in two populations along 10 years and studied the different response of males and females to experimentally increased water and nutrient availability in a third population. Juniperus thurifera females invested in reproduction three times more resources than males. Such disparity generated different resource‐use strategies in male and female trees. Tree‐ring growth and water use efficiency (WUE) confirmed that sexes differed in their resource investment temporal pattern, with males using current resources for reproduction and females using resources accumulated during longer periods. Watered and fertilized female trees presented significantly higher flowering reproductive investments than males and experienced an extraordinary mast‐flowering event. However, seeding RI and mast seeding were not affected by the treatment. This suggests that although resource availability affects the reproductive output of this species, there are other major forces regulating masting on J. thurifera. During 10 years, J. thurifera male and female trees presented high and low flowering years more or less synchronously. However, not all mast flowering episodes resulted in mast seeding, leading to masting uncoupling between flowering and seeding. Since flowering costs represent only 1% of females’ total reproductive investments, masting uncoupling could be a beneficial bet‐hedging strategy to maximize reproductive output in spite of unpredictable catastrophic events.  相似文献   

5.
Fruiting is typically considered to massively burden the seasonal carbon budget of trees. The cost of reproduction has therefore been suggested as a proximate factor explaining observed mast-fruiting patterns. Here, we used a large-scale, continuous 13C labeling of mature, deciduous trees in a temperate Swiss forest to investigate to what extent fruit formation in three species with masting reproduction behavior (Carpinus betulus, Fagus sylvatica, Quercus petraea) relies on the import of stored carbon reserves. Using a free-air CO2 enrichment system, we exposed trees to 13C-depleted CO2 during 8 consecutive years. By the end of this experiment, carbon reserve pools had significantly lower δ13C values compared to control trees. δ13C analysis of new biomass during the first season after termination of the CO2 enrichment allowed us to distinguish the sources of built-in carbon (old carbon reserves vs. current assimilates). Flowers and expanding leaves carried a significant 13C label from old carbon stores. In contrast, fruits and vegetative infructescence tissues were exclusively produced from current, unlabeled photoassimilates in all three species, including F. sylvatica, which had a strong masting season. Analyses of δ13C in purified starch from xylem of fruit-bearing shoots revealed a complete turn-over of starch during the season, likely due to its usage for bud break. This study is the first to directly demonstrate that fruiting is independent from old carbon reserves in masting trees, with significant implications for mechanistic models that explain mast seeding.  相似文献   

6.
Han Q  Kabeya D  Hoch G 《Annals of botany》2011,107(8):1405-1411

Background and Aims

Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO2 concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO2 concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO2 concentrations.

Methods

Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO2 concentrations (530 µmol mol−1) for eight consecutive years, between 2000 and 2008.

Key Results

The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO2 concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO2 concentrations, but this decline was not observed in trees exposed to elevated CO2 concentrations. In both the CO2 treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009.

Conclusions

Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO2 concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO2 concentrations.  相似文献   

7.
Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.  相似文献   

8.
The resource allocation for vegetative growth and female reproduction in three tree species of subgenus Cyclobalanopsis (Quercus, Fagaceae), i.e., Q. salicina, Q. sessilifolia, and Q. acuta, were examined on a per-individual basis in two consecutive reproductive seasons, in order to test whether these trees fit the predictions of the masting hypotheses about resource matching versus resource switching. Since the three Quercus species have a biennial fruiting habit, it takes 3 years for the observation of two reproductive events. Female flower and acorn production per tree were investigated by using a seed-trap method and a numerical analysis of seed dispersal. The net production of each individual was estimated as the sum of the annual increase in the dry mass of vegetative organs and reproductive investment per tree. In the data analyses, the three species were pooled, since all 12 sample trees of the subgenus apparently showed masting in the same year, with no exceptions. Female flower and acorn production per individual tree changed considerably between years. The net production per tree increased with tree size, but did not differ between years. Therefore, the reproductive allocation (proportion of a plant’s annual assimilated resources which are used for reproduction) differed dramatically between years. On the other hand, within a year, the reproductive allocation increased with increasing net production per tree. These results suggest that the switching of resource allocation between years within an individual are occurring in subgenus Cyclobalanopsis species, and the intensity of the switching increases with increasing tree size.  相似文献   

9.
1.  The carbon source for reproduction in plants may differ between flowering and fruiting stages. To clarify how spring ephemerals use current photosynthetic products for reproduction, the allocation patterns of photosynthate at flowering and fruiting and the effects of resource limitation on reproductive performance in Corydalis ambigua were assessed.
2.  A 13C tracing experiment revealed that about 20% of the current photosynthetic carbon was used for reproduction at both flowering and fruiting. The proportion of 13C allocated to fruits was constant irrespective of the light level. In contrast, 13C translocation to tubers increased at fruiting, and this trend was accelerated when plants were shaded.
3.  Defoliation treatment significantly reduced nectar production and tuber mass, while seed production was not affected. Therefore, when carbon assimilation was limited, carbon was preferentially allocated to current reproduction (seeds) rather than to pollinator attraction (nectar) or storage (tuber).
4.  If seed production is partly supported by carbohydrate reserved in the old tissue of tubers, nectar and seed production may not compete strongly for carbon sources. In contrast to the ability of high seed production, the susceptibility of nectar production to current photosynthesis indicates that seed production of this species is basically limited by pollen capture.
5.  Therefore, temporal separation of resource pool for reproduction may mitigate the joint limitation of seed production between pollinator attraction and resource availability. Temporal variation of the sink–source balance of storage organ is crucial to understand the cost of reproduction in perennial plants.  相似文献   

10.
Many long-lived plants such as trees show masting or intermittent and synchronized reproduction. In a coupled chaos system describing the dynamics of individual-plant resource budgets, masting occurs when the resource depletion coefficient k (ratio of the reproductive expenditure to the excess resource reserve) is large. Here, we mathematically studied the condition for masting evolution. In an infinitely large population, we obtained a deterministic dynamical system, to which we applied the pairwise invasibility plot and convergence stability of evolutionary singularity analyses. We prove that plants reproducing at the same rate every year are not evolutionarily stable. The resource depletion coefficient k increases, and the system oscillates with a period of 2 years (high and low reproduction) if k<1. Alternatively, k may evolve further and jump to a value >1, resulting in the sudden start of intermittent reproduction. We confirm that a high survivorship of young plants (seedlings) in the light-limited understory favors masting evolution, as previously suggested by computer simulations and field observations. The stochasticity caused by the finiteness of population size also promotes masting evolution.  相似文献   

11.
Many plant species show masting, intermittent and synchronized reproduction at population level. In the present paper, we review the resource-based model providing a theoretically plausible physiological mechanism underlying masting. In the model, a non-linear allocation of energy reserves is considered: plants accumulate photosynthate every year, produce flowers when the energy reserve level exceeds a threshold, and set seeds at a rate limited by pollen availability. The model predicted that individual plants alter their reproductive dynamics from annual to intermittent depending on how heavily the plant invests resource in reproduction. When fruit production is limited by the availability of outcross pollen, a plant population showed diverse reproductive behavior such as completely synchronized or desynchronized reproduction. Spatial scale of reproductive synchrony tended to be a few times larger than the range of direct pollen exchange. Impact of climatic fluctuation correlated at a large spatial scale was also investigated as an alternative synchronizing factor. The variation in annual productivity and the reproductive threshold induced from climatic fluctuation was accounted for by incorporating an additional term in the model. When plants show a 2 year reproductive cycle, highly synchronized reproduction at a regional scale was induced due to correlated environmental forcing, but reproductive synchrony with long intermast periods was realized only when pollen coupling and environmental forcing were at work. These results suggest that distance-dependent processes, such as pollen exchange between nearby trees, induce synchrony at a local scale and external environmental forcing correlated at geographically large scales works to strengthen and maintain such a synchrony.  相似文献   

12.
Many of the tree species in mature forests show masting; their reproductive activity has a large variance between years and is often synchronized between different individuals. In this paper, we analyse a globally coupled map model in which trees accumulate photosynthate every year, produce flowers when the energy reserve level exceeds a threshold, and set seeds and fruits at a rate limited by pollen availability. Without pollen limitation, the trees in the forest show independent chaotic fluctuation. Coupling of trees via pollen exchange results in reproduction being synchronized partially or completely over the forest. The whole forest shows diverse dynamical behaviors determined by the values of two essential parameters; the depletion coefficient k and the coupling strength beta. We find perfectly synchronized periodic reproduction, synchronized reproduction with a chaotic time series, clustering phenomena, and chaotic reproduction of trees without synchronization over individuals. There are many parameter windows in which synchronized reproduction of trees shows a stable periodic fluctuation. For perfectly synchronized forests, we can calculate all the Lyapunov exponents analytically. They show that synchronized reproduction of all the trees in the forest can only occur when trees flower at low (but positive) levels in a significant fraction of years, resulting in small fruit sets due to outcrossed pollen limitation. This is consistent with the observation that the distinction between mast years and non-mast years is often not clear cut.  相似文献   

13.
The past seven years have seen a revolution in understanding the causes of mast seeding In perennial plants. Before 1987, the two main theories were resource matching (i.e. plants vary their reproductive output to match variable resources) and predator satiation (i.e. losses to predators are reduced by varying the seed crop). Today, resource matching is restricted to a proximate role, and predator satiation is only one of many theories for the ultimate advantage of masting. Wind pollination, prediction of favourable years for seedling establishment, animal pollination, animal dispersal of fruits, high accessory costs of reproduction and large seed size have all been advanced as possible causes of masting. Of these, wind pollination, predator satiation and environmental prediction are important in a number of species, but the other theories have less support. In future, Important advances seem likely from quantifying synchrony within a population, and examining species with very constant reproduction between years.  相似文献   

14.
Sork  V. L. 《Plant Ecology》1993,107(1):133-147
Mast-seeding is the synchronous production of large seed crops within a population or community of species every two or more years. This paper addresses three non-mutually exclusive hypotheses explaining the evolution of mast-seeding in temperate tree species, especially the genus Quercus: (1) mast-seeding is a consequence of mast-flowering which evolves to increased pollination efficiency in mast-flowering years; (2) mast-seeding has evolved as an anti-predator adaptation by which large seed crops during mast years satiate the seed predators and allow survival of some of the seeds; (3) selection on seed size by habitat can indirectly affect the evolution of masting if trees with large seeds require more time to accumulate reserves to mature those seeds. I find support for the pollination hypothesis in several wind-pollinated temperate tree species but not oaks. However, oaks show evidence favoring the predation and seed size hypotheses. I then develop a model to illustrate the relationships among the three hypotheses in their effects on the evolution of masting. Finally, using data from herbaria and Floras, the influence of selection via flowering, fruiting, and seed size in the evolution of masting in tropical oaks is discussed. I conclude that the need for a supra-annual cue to synchronize flowering and fruiting as well as the larger seed size found in many tropical oak species should contribute to the evolution of masting to a greater extent than seen among temperate oaks.  相似文献   

15.
We tested whether annual seed production (masting or mast fruiting) in Northern Hemisphere trees is an evolved strategy or a consequence of resource tracking by comparing masting patterns with those of annual rainfall and mean summer temperatures, two environmental variables likely to correlate with available resources. There were generally significant negative autocorrelations between the seed crop in year x and year x+1 (year x+2 in species of Quercus requiring 2 yr to mature acorns), as expected if resources are depleted in mast years in part by switching resources from growth to reproduction. Spatial autocorrelation in annual seed production generally declined with distance but was statistically significant over large geographic areas. Variability in annual seed production was relatively high and inversely correlated with latitude and generally not bimodally distributed. Patterns of spatial autocorrelation in annual rainfall and summer temperatures are generally similar to those exhibited by annual seed production, and relative variability in annual rainfall is also inversely correlated with latitude. However, these environmental variables exhibit distinctly different patterns of temporal autocorrelation, are much less variable, and are more normally distributed than annual seed production. Combined with the inverse relationship between growth and reproduction previously documented, these results support the hypothesis that variability in annual seed production is an evolved strategy and that annual seed production is more or less normally distributed rather than an all-or-none phenomenon.  相似文献   

16.
Masting is defined as the intermittent highly variable production of seed in a plant population. According to reproductive modes, that is, sexual and asexual reproduction, masting species can be separated into three groups, that is, (1) species, for example, bamboo, flower only once before they die; (2) species, for example, Fagus, reproduce sexually; and (3) species, for example, Stipa tenacissima, reproduce both sexually and asexually. Several theories have been proposed to explore the underlying mechanisms of masting. However, to our knowledge, no theory has been found to explain the mechanism of masting species that reproduce both sexually and asexually. Here we refine the Resource Budget Model by considering a trade‐off between sexual and asexual reproduction. Besides the depletion efficient (i.e., the ratio of the cost of seed setting and the cost of flowering), other factors, such as the annual remaining resource (i.e., the rest of the resource from the photosynthetic activity after allocating to growth and maintenance), the trade‐off between sexual and asexual reproduction, and the reproductive thresholds, also affect masting. Moreover, two potential reproductive strategies are found to explain the mechanisms: (1) When the annual remaining resource is relatively low, plants reproduce asexually and a part of the resource is accumulated as the cost of asexual reproduction is less than the annual remaining resource. Plants flower and set fruits once the accumulated resource exceeds the threshold of sexual reproduction; (2) when the annual remaining resource is relatively high, and the accumulated resource surpasses the threshold of sexual reproduction, masting occurs. Remarkably, under certain depletion efficient, more investigation in sexual reproduction will lead plants to reproduce periodically. Additionally, plants investigate less resource to reproduce periodically when depletion efficient keeps increasing as plants can reproduce efficiently. Overall, our study provides new insights into the interpretation of masting, especially for species that reproduce both sexually and asexually.  相似文献   

17.
? In masting trees, synchronized, heavy reproductive events are thought to deplete stored resources and to impose a replenishment period before subsequent masting. However, direct evidence of resource depletion in wild, masting trees is very rare. Here, we examined the timing and magnitude (local vs individual-level) of stored nutrient depletion after a heavy mast event in Pinus albicaulis. ? In 2005, the mast year, we compared seasonal changes in leaf and sapwood nitrogen (N) and phosphorus (P) concentrations and leaf photosynthetic rates in cone-bearing branches, branches that never produced cones, and branches with experimentally removed cones. We also compared nutrient concentrations in cone branches and branches that had never had cones between 2005 and 2006, and measured tree ring width and new shoot growth during 2005. ? During the mast year, N or P depletion occurred only in tissue fractions of reproductive branches, where photosynthetic rates were reduced. However, by the end of the following year, nutrients were depleted in all branches, indicating individual-level resource depletion. New shoot and radial growth were not affected by masting. ? We provide direct evidence that mast events in wild trees deplete stored nutrients. Our results highlight the importance of evaluating reproductive costs over time and at the individual level.  相似文献   

18.
Many masting species switch resources between vegetative growth and reproduction in mast and non-mast years. Although masting of oak species is well known, there have been few investigations of the relationship between vegetative growth and reproduction based on long-term monitoring data, especially in evergreen oaks of subgenus Cyclobalanopsis. We investigated annual variations over 13?years in acorn and leaf production of three evergreen oak species in subgenus Cyclobalanopsis, genus Quercus (Fagaceae)??Q. acuta, Q. salicina and Q. sessilifolia??in western Japan. In these species, the maturation of acorns occurs in the second autumn after flowering, which is known as a biennial-fruiting habit. We found a pattern of acorn production and masting in alternate years that was synchronized in all three species. Masting was not correlated with temperature and precipitation. Annual leaf-fall also showed 2-year cycle in the three oak species; peak years were synchronized between species and peak leaf-fall alternated with acorn production in all three species. Furthermore, there was a significant negative correlation between acorn and leaf production in all three species. Data showing 2-year cycles of acorn and leaf production and the negative correlation between them supports the hypothesis of resource switching between vegetative growth and reproduction. The 2-year cycle might be the basic, intrinsic rhythm of resource allocation in biennial-fruiting Cyclobalanopsis species.  相似文献   

19.
Ida TY  Harder LD  Kudo G 《Annals of botany》2012,109(1):237-246

Background

The production of flowers, fruits and seeds demands considerable energy and nutrients, which can limit the allocation of these resources to other plant functions and, thereby, influence survival and future reproduction. The magnitude of the physiological costs of reproduction depends on both the factors limiting seed production (pollen, ovules or resources) and the capacity of plants to compensate for high resource demand.

Methods

To assess the magnitude and consequences of reproductive costs, we used shading and defoliation to reduce photosynthate production by fully pollinated plants of a perennial legume, Oxytropis sericea (Fabaceae), and examined the resulting impact on photosynthate allocation, and nectar, fruit and seed production.

Key Results

Although these leaf manipulations reduced photosynthesis and nectar production, they did not alter photosynthate allocation, as revealed by 13C tracing, or fruit or seed production. That photosynthate allocation to reproductive organs increased >190 % and taproot mass declined by 29 % between flowering and fruiting indicates that reproduction was physiologically costly.

Conclusions

The insensitivity of fruit and seed production to leaf manipulation is consistent with either compensatory mobilization of stored resources or ovule limitation. Seed production differed considerably between the two years of the study in association with contrasting precipitation prior to flowering, perhaps reflecting contrasting limits on reproductive performance.  相似文献   

20.
Evidence is mounting that flowering by the mast-fruiting Dipterocarpaceae in Southeast Asia is triggered by ENSO events such that seeds are dispersed at the end of ENSO droughts. These droughts induce substantial defoliation and mortality of canopy trees, producing a favorable environment for seedling recruitment in the forest understory. Therefore, seedling release following droughts may have selected for synchronized, supra-annual fruiting in these rain forests. Currently, mast fruiting in Southeast Asia is generally regarded as an evolutionary response to seed predation by nomadic vertebrates. Separating the two causes for mast fruiting, seedling release and predator satiation, may be difficult if they are coupled in nature by ENSO droughts. Nevertheless, if the cue for masting is environmental, then the post-ENSO seedling environment should be considered a potential cause for masting, and if it operates in conjunction with predator satiation, then it may have provided the initial stimulus for supra-annual synchrony in fruiting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号