首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibrillar inclusions of intraneuronal α-synuclein can be detected in certain brain areas from patients with Parkinson’s disease (PD) and other disorders with Lewy body pathology. These insoluble protein aggregates do not themselves appear to have a prominent neurotoxic effect, whereas various α-synuclein oligomers appear harmful. Although it is incompletely known how the prefibrillar species may be pathogenic, they have been detected both within and on the outside of exosomes and other extracellular vesicles (EVs), suggesting that such structures may mediate toxic α-synuclein propagation between neurons. Vesicular transfer of α-synuclein may thereby contribute to the hierarchical spreading of pathology seen in the PD brain. Although the regulation of α-synuclein release via EVs is not understood, data suggest that it may involve other PD-related molecules, such as LRRK2 and ATP13A2. Moreover, new evidence indicates that CNS-derived EVs in plasma have the potential to serve as biomarkers for diagnostic purposes. In a recent study, levels of α-synuclein were found to be increased in L1CAM-positive vesicles isolated from plasma of PD patients compared to healthy controls, and follow-up studies will reveal whether α-synuclein in EVs could be developed as a future disease biomarker. Preferentially, toxic prefibrillar α-synuclein oligomers should then be targeted as a biomarker—as evidence suggests that they reflect the disease process more closely than total α-synuclein content. In such studies, it will be essential to adopt stringent EV isolation protocols in order to avoid contamination from the abundant pool of free plasma α-synuclein in different aggregational states.  相似文献   

2.
α-Synuclein (α-Syn) has been extensively studied for its structural and biophysical properties owing to its pathophysiological role in Parkinson’s disease (PD). Lewy bodies and Lewy neurites are the pathological hallmarks of PD and contain α-Syn aggregates as their major component. It was therefore hypothesized that α-Syn aggregation is actively associated with PD pathogenesis. The central role of α-Syn aggregation in PD is further supported by the identification of point mutations in α-Syn protein associated with rare familial forms of PD. However, the correlation between aggregation propensities of α-Syn mutants and their association with PD phenotype is not straightforward. Recent evidence suggested that oligomers, formed during the initial stages of aggregation, are the potent neurotoxic species causing cell death in PD. However, the heterogeneous and unstable nature of these oligomers limit their detailed characterization. α-Syn fibrils, on the contrary, are shown to be the infectious agents and propagate in a prion-like manner. Although α-Syn is an intrinsically disordered protein, it exhibits remarkable conformational plasticity by adopting a range of structural conformations under different environmental conditions. In this review, we focus on the structural and functional aspects of α-Syn and role of potential factors that may contribute to the underlying mechanism of synucleinopathies. This information will help to identify novel targets and develop specific therapeutic strategies to combat Parkinson’s and other protein aggregation related neurodegenerative diseases.  相似文献   

3.
4.
Glioblastoma multiforme (GBM) overexpresses interleukin 13 receptor α2 (IL-13Rα2), a tumor-restricted receptor that is not present in normal brain. We and others have created targeted therapies that specifically eradicate tumors expressing this promising tumor-restricted biomarker. As these therapies head toward clinical implementation, it is critical to explore mechanisms of potential resistance. We therefore used a potent IL-13Rα2-targeted bacterial cytotoxin to select for naturally occurring "escapee" cells from three different IL-13Rα2-expressing GBM cell lines. We found that these side populations of escapee cells had significantly decreased IL-13Rα2 expression. We examined clinically relevant biologic characteristics of escapee cell lines compared to their parental cell lines and found that they had similar proliferation rates and equal sensitivity to temozolomide and radiation, the standard therapies given to GBM patients. In contrast, our escapee cell lines were less likely to form colonies in culture and migrated more slowly in wound healing assays. Furthermore, we found that escapee cells formed significantly less neurospheres in vitro, suggesting that IL-13Rα2-targeted therapy preferentially targeted the "stem-like" cell population and possibly indicating decreased tumorigenicity in vivo. We therefore tested escapee cells for in vivo tumorigenicity and found that they were significantly less tumorigenic in both subcutaneous and intracranial mouse models compared to matching parental cells. These data, for the first time, establish and characterize the clinically relevant biologic properties of IL-13Rα2-targeted therapy escapees and suggest that these cells may have less malignant characteristics than parental tumors.  相似文献   

5.
Neurochemical Research - Although the etiology of Parkinson's disease (PD) is multifactorial, it has been linked to abnormal accumulation of α-synuclein (α-syn) in dopaminergic...  相似文献   

6.
The toxicity of α-synuclein in the neuropathology of Parkinson’s disease which includes its hallmark aggregation has been studied scrupulously in the last decade. Although little is known regarding the normal functions of α-synuclein, its association with membrane phospholipids suggests its potential role in signaling pathways. Following extensive evidences for its nuclear localization, we and others recently demonstrated DNA binding activity of α-synuclein that modulates its conformation as well as aggregation properties. Furthermore, we also underscored the similarities among various amyloidogenic proteins involved in neurodegenerative diseases including amyloid beta peptides and tau. Our more recent studies show that α-synuclein is glycated and glycosylated both in vitro and in neurons, significantly affecting its folding, oligomeric, and DNA binding properties. Glycated α-synuclein causes increased genome damage both via its direct interaction with DNA and by increased generation of reactive oxygen species as glycation byproduct. In this review, we discuss the mechanisms of glycation and other posttranslational modifications of α-synuclein, including phosphorylation and nitration, and their role in neuronal death in Parkinson’s disease.  相似文献   

7.
8.
Neurochemical Research - Lipoic acid (α-LA) (1,2-dithiolane3-pentanoic acid (C8H14O2S2) is also called thioctic acid with an oxidized (disulfide, LA) and a reduced (di-thiol: dihydro-lipoic...  相似文献   

9.
ABSTRACT

The global population of older persons is projected in 2050 to reach approximately 2.1 billion. As people age, feelings of loneliness, depression, and physical inactivity often occur due to a multitude of reasons. These feelings may manifest and cause adverse health outcomes. With the predicted increase of older adults worldwide, the prevalence of loneliness, depression, and physical inactivity may also worsen over time if unattended. Since older adults are subject to psychological and physical changes as they age, it is important to find creative ways to address the health needs of this growing population. Therefore, interventions are needed to prevent or decrease the psychological and physical challenges that older adults face. This paper examines existing literature on human–animal interactions (HAIs) in the lives of older adults in relation to concepts such as loneliness, depression, and physical activity. The psychological and physical health benefits of animals for older adults include decreased loneliness and depression, improved cardiovascular health, and increased physical activity. There is mounting evidence supporting the therapeutic psychological and physical health benefits of animals in the lives of older adults. However, there are practical and financial implications that must be considered. Methodological considerations and future directions for human–animal interaction research with older adults are also discussed.  相似文献   

10.
Aimβ-catenin signaling is a major oncogenic pathway in hepatocellular carcinoma (HCC). Since β-catenin phosphorylation by glycogen synthase kinase 3β (GSK3β) and casein kinase 1ε (CK1ε) results in its degradation, mutations affecting these phosphorylation sites cause β-catenin stabilization. However, the relevance of missense mutations in non-phosphorylation sites in exon 3 remains unclear. The current study explores significance of such mutations in addition to addressing the clinical and biological implications of β-catenin activation in human HCC.MethodsGene alteration in exon3 of CTNNB1, gene expression of β-catenin targets such as glutamate synthetase (GS), axin2, lect2 and regucalcin (RGN), and protein expression of β-catenin were examined in 125 human HCC tissues.ResultsSixteen patients (12.8%) showed conventional missense mutations affecting codons 33, 37, 41, and 45. Fifteen additional patients (12.0%) had other missense mutations in codon 32, 34, and 35. Induction of exon3 mutation caused described β-catenin target gene upregulation in HCC cell line. Interestingly, conventional and non-phosphorylation site mutations were equally associated with upregulation of β-catenin target genes. Nuclear localization of β-catenin was associated with poor overall survival (p = 0.0461). Of these patients with nuclear β-catenin localization, loss of described β-catenin target gene upregulation showed significant poorer overall survival than others (p = 0.0001).ConclusionThis study suggests that both conventional and other missense mutations in exon 3 of CTNNB1 lead to β-catenin activation in human HCC. Additionally, the mechanism of nuclear β-catenin localization without upregulation of described β-catenin target genes might be of clinical importance depending on distinct mechanism.  相似文献   

11.
12.
Choline is an essential nutrient for cell survival and proliferation, however, the expression and function of choline transporters have not been well identified in cancer. In this study, we detected the mRNA and protein expression of organic cation transporter OCT3, carnitine/cation transporters OCTN 1 and OCTN2, and choline transporter-like protein CTL1 in human lung adenocarcinoma cell lines A549, H 1299 and SPC-A-1. Their expression pattern was further confirmed in 25 human primary adenocarcinoma tissues. The choline uptake in these cell lines was significantly blocked by CTL1 inhibitor, but only partially inhibited by OCT or OCTN inhibitors. The efficacy of these inhibitors on cell proliferation is closely correlated with their abilities to block choline transport. Under the native expression of these transporters, the total choline uptake was notably blocked by specific PI3K/AKT inhibitors. These results describe the expression of choline transporters and their relevant function in cell proliferation of human lung adenocarcinoma, thus providing a potential "choline-starvation" strategy of cancer interference through targeting choline transporters, especially CTL1.  相似文献   

13.
14.

Background

The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKβ in carcinogenesis has been reported.

Methodology/Principal Findings

Here we compare the in vitro and in vivo properties of ChoKα1 and ChoKβ in lipid metabolism, and their potential role in carcinogenesis. Both ChoKα1 and ChoKβ showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKβ display an ethanolamine kinase role, ChoKα1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKα1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKβ overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKα1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKβ mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKα1 than ChoKβ.

Conclusion/Significance

This study represents the first evidence of the distinct metabolic role of ChoKα and ChoKβ isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.  相似文献   

15.
-Synuclein, a presynaptic protein of the central nervous system, has been implicated in the synaptic events such as neuronal plasticity during development and learning, and neuronal degeneration under pathological conditions. As an effort to understand the biological function of -synuclein, we examined the expression patterns of -synuclein in various human hematopoietic cells, and in Drosophila at different developmental stages. The -synuclein was ubiquitously expressed in all the tested hematopoietic cells including T cells, B cells, NK cells, and monocytes, as well as in the lymphoma cell lines, Jurkat and K562. A potential -synuclein homologue was also expressed in Drosophila, and its expression appeared to be temporally and spatially regulated during development. Our data suggest that -synuclein may function in invertebrates as well as in vertebrates and its function may not be restricted to the neuron.  相似文献   

16.
This review analyzes data on the biological role of 3-hydroxysteroid dehydrogenase (3-HSD) in animal and human tissues and describes its main characteristics, mechanism of action, and regulation of activity. Based on published data, a scheme for the actions of androgen, progestin, and glucocorticoids involving the participation of 3-HSD is proposed. According to this scheme, in the mechanism of steroid action 3-HSD not only regulates the concentration of the main effector androgen, 5-dihydrotestosterone, in target cells, but also switches androgen, progestin, and glucocorticosteroid genomic activity to non-genomic activity.  相似文献   

17.

In this review, we summarize the available published information on the neuroprotective effects of increasing nicotinamide adenine dinucleotide (NAD+) levels in Huntington’s disease models. We discuss the rationale of potential therapeutic benefit of administering nicotinamide riboside (NR), a safe and effective NAD+ precursor. We discuss the agonistic effect on the Sirtuin1-PGC-1α-PPAR pathway as well as Sirtuin 3, which converge in improving mitochondrial function, decreasing ROS production and ameliorating bioenergetics deficits. Also, we discuss the potential synergistic effect of increasing NAD+ combined with PARPs inhibitors, as a clinical therapeutic option not only in HD, but other neurodegenerative conditions.

  相似文献   

18.
Science China Life Sciences - The presence of intraneuronal Lewy bodies (LBs) and Lewy neurites (LNs) in the substantia nigra (SN) composed of aggregated α-synuclein (α-syn) has been...  相似文献   

19.
Cardiovascular diseases (CVDs) are still a major cause of people deaths worldwide, and mesenchymal stem cells (MSCs) transplantation holds great promise due to its capacity to differentiate into cardiovascular cells and secrete protective cytokines, which presents an important mechanism of MSCs therapy for CVDs. Although the capability of MSCs to differentiate into cardiomyocytes (CMCs), endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) has been well recognized in massive previous experiments both in vitro and in vivo, low survival rate of transplanted MSCs in recipient hearts suggests that therapeutic effects of MSCs transplantation might be also correlated with other underlying mechanisms. Notably, recent studies uncovered that MSCs were able to secret cholesterol-rich, phospholipid exosomes which were enriched with microRNAs (miRNAs). The released exosomes from MSCs acted on hearts and vessels, and then exerted anti-apoptosis, cardiac regeneration, anti-cardiac remodeling, anti-inflammatory effects, neovascularization and anti-vascular remodeling, which are considered as novel molecular mechanisms of therapeutic potential of MSCs transplantation. Here we summarized recent advances about the role of exosomes in MSCs therapy for CVDs, and discussed exosomes as a novel approach in the treatment of CVDs in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号