首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently we showed that the glycine-rich loop in the N-terminal portion of protein kinases and the client-binding site of Cdc37 are both necessary for interaction between Cdc37 and protein kinases. We demonstrate here that the N-terminal portion of Cdc37, distinct from its client-binding site, interacts with the C-terminal portion of Raf-1. This interaction might expose the client-binding site of Cdc37. In addition, we provide evidence indicating that Cdc37 is monomeric in its physiological state, and that it becomes a dimer only when it is complexed with both Hsp90 and protein kinases.  相似文献   

2.
Activation of protein kinase clients by the Hsp90 system is mediated by the cochaperone protein Cdc37. Cdc37 requires phosphorylation at Ser13, but little is known about the regulation of this essential posttranslational modification. We show that Ser13 of uncomplexed Cdc37 is phosphorylated in vivo, as well as in binary complex with a kinase (C-K), or in ternary complex with Hsp90 and kinase (H-C-K). Whereas pSer13-Cdc37 in the H-C-K complex is resistant to nonspecific phosphatases, it is efficiently dephosphorylated by the chaperone-targeted protein phosphatase 5 (PP5/Ppt1), which does not affect isolated Cdc37. We show that Cdc37 and PP5/Ppt1 associate in Hsp90 complexes in yeast and in human tumor cells, and that PP5/Ppt1 regulates phosphorylation of Ser13-Cdc37 in vivo, directly affecting activation of protein kinase clients by Hsp90-Cdc37. These data reveal a cyclic regulatory mechanism for Cdc37, in which its constitutive phosphorylation is reversed by targeted dephosphorylation in Hsp90 complexes.  相似文献   

3.
In susceptible tumor cells, DNA-damaging antineoplastic agents induce an increase in intracellular pH during the premitochondrial stage of apoptosis. The rate of nonenzymatic deamidation of two asparagines in the anti-apoptotic protein Bcl-xL is accelerated by this increase in pH. Deamidation of these asparagines is a signal for the degradation of Bcl-xL, which is a component of the apoptotic response to DNA damage. It has previously been shown that the increase in pH is mediated by the ion transporter Na+/H+ exchanger 1 in some cells. Here we demonstrate that one or more additional ion transporters also have a role in the regulation of Bcl-xL deamidation in at least some tumor cell lines and fibroblasts. As a second, independent finding, we report that there are histidines in close proximity to the Bcl-xL deamidation sites that are highly conserved in land-dwelling species and we present evidence that deamidation of human Bcl-xL is intramolecularly catalyzed in a manner that is dependent upon these histidines. Further, we present evidence that these histidines act as a pH-sensitive switch that enhances the effect of the increase in pH on the rate of Bcl-xL deamidation. The conservation of such histidines implies that human Bcl-xL is in essence “designed” to be deamidated, which provides further evidence that deamidation serves as a bona fide regulatory post-translational modification of Bcl-xL.  相似文献   

4.
The initiator protein Cdc6 (Cdc18 in fission yeast) plays an essential role in the initiation of eukaryotic DNA replication. In yeast the protein is expressed before initiation of DNA replication and is thought to be essential for loading of the helicase onto origin DNA. The biochemical properties of the protein, however, are largely unknown. Using three archaeal homologues of Cdc6, it was found that the proteins are autophosphorylated on Ser residues. The winged-helix domain at the C terminus of Cdc6 interacts with DNA, which apparently regulates the autophosphorylation reaction. Yeast Cdc18 was also found to autophosphorylate, suggesting that this function of Cdc6 may play a widely conserved and essential role in replication initiation.  相似文献   

5.
Hsp90 and its co-chaperone Cdc37 are required for the activity of numerous eukaryotic protein kinases. c-Jun N-terminal kinases (JNKs) appear to be Hsp90-independent kinases, as their activity is unaffected by Hsp90 inhibition. It is currently unknown why some protein kinases are Hsp90- and Cdc37-dependent for their function, while others are not. Therefore, we investigated what structural motifs within JNKs confer or defer Hsp90 and Cdc37 interaction. Both Hsp90 and Cdc37 recognized structural features that were exposed or destabilized upon deletion of JNK1alpha1's N-terminal non-catalytic structural motif, while only Hsp90 bound JNK when its C-terminal non-catalytic structural motif was deleted. Mutations in JNK's activation loop that are known to constitutively activate or inactivate its kinase activity had no effect on JNK's lack of interaction with Hsp90 and Cdc37. Our findings suggest a model in which Hsp90 and Cdc37 each recognize distinct features within the catalytic domains of kinases.  相似文献   

6.
PTP mu is expressed in the developing nervous system and promotes growth and guidance of chick retinal ganglion cells. Using a newly developed growth cone rearrangement assay, we examined whether the small G-proteins were involved in PTP mu-dependent signaling. The stimulation of retinal cultures with purified PTP mu resulted in a striking morphological change in the growth cone, which becomes dominated by filopodia within 5 min of addition. This rearrangement in response to PTP mu stimulation was mediated by homophilic binding. We perturbed GTPase signaling using Toxin B, which inhibits Cdc42, Rac, and Rho, as well as the toxin Exoenzyme C3 that inhibits Rho. The PTP mu-induced growth cone rearrangement was blocked by Toxin B, but not by Exoenzyme C3. This result suggests that either Cdc42 or Rac are required but not Rho. To determine which GTPase was involved in PTP mu signaling, we utilized dominant-negative mutants of Cdc42 and Rac. Dominant-negative Cdc42 blocked PTP mu-induced rearrangement, while wild-type Cdc42 and dominant-negative Rac did not. Together, these results suggest a molecular signaling cascade beginning with PTP mu homophilic binding at the plasma membrane and the activation of Cdc42, which acts on the actin cytoskeleton to result in rearrangement of the growth cone.  相似文献   

7.
Cdc37 has been shown to be required for the activity and stability of protein kinases that regulate different stages of cell cycle progression. However, little is known so far regarding interactions of Cdc37 with kinases that play a role in cell division. Here we show that the loss of function of Cdc37 in Drosophila leads to defects in mitosis and male meiosis, and that these phenotypes closely resemble those brought about by the inactivation of Aurora B. We provide evidence that Aurora B interacts with and requires the Cdc37/Hsp90 complex for its stability. We conclude that the Cdc37/Hsp90 complex modulates the function of Aurora B and that most of the phenotypes brought about by the loss of Cdc37 function can be explained by the inactivation of this kinase. These observations substantiate the role of Cdc37 as an upstream regulatory element of key cell cycle kinases.  相似文献   

8.
Fission yeast Cdc37 is required for multiple cell cycle functions   总被引:1,自引:0,他引:1  
The identification of a Schizosaccharomyces pombe homologue of the cdc37 gene is described. The gene product is most similar to the budding yeast homologue, but shows similarity to metazoan Cdc37 proteins, with a region of high similarity at the extreme N-terminus. Gene transplacement experiments in diploid cells followed by tetrad dissection show that the gene is essential. Depletion of the gene product after switching off expression of cdc37 from the regulatable nmt81 promoter results in cessation of growth and division. The cells arrest heterogeneously, with a significant proportion showing mitotic defects; paradoxically, a proportion of the cells show a short-cell phenotype consistent with an advanced cell cycle.Communicated by D. Y. Thomas  相似文献   

9.
Terasawa K  Minami Y 《The FEBS journal》2005,272(18):4684-4690
The molecular chaperone Hsp90 is distinct from Hsp70 and chaperonin in that client proteins are apparently restricted to a subset of proteins categorized as cellular signaling molecules. Among these, many specific protein kinases require the assistance of Hsp90 and its co-chaperone Cdc37/p50 for their biogenesis. A series of Cdc37 deletion mutants revealed that all mutants capable of binding Raf-1 possess amino acid residues between 181 and 200. The 20-residue region is sufficient and, in particular, a five-residue segment (residue 191-195) is essential for binding to Raf-1. These five residues are present in one alpha helix (residues 184-199) in the middle of Cdc37, which is unexpectedly nested within the Hsp90-interacting domain of Cdc37, which was recently determined by crystallography, but does not seem to contribute to direct contact with Hsp90. Furthermore, an N-terminally truncated mutant of Cdc37 composed of residues 181-378 was shown to bind the N-terminal portion of Raf-1 (subdomains I-IV). This mutant can bind not only other Hsp90 client protein kinases, Akt1, Aurora B and Cdk4, but also Cdc2 and Cdk2, which to date have not been shown to physically interact with Cdc37. These results suggest that a region of Cdc37 other than the client-binding site may be responsible for discriminating client protein kinases from others.  相似文献   

10.
Liang J  Fantes P 《Eukaryotic cell》2007,6(7):1089-1096
Cdc37 is an essential molecular chaperone found in fungi and metazoa whose main specificity is for certain protein kinases. Cdc37 can act as an Hsp90 cochaperone or alone; in yeasts, the interaction with Hsp90 is weak and appears not to be essential for Cdc37 function. Numerous genetic interactions between Cdc37 and likely client proteins have been observed in yeasts, but biochemical confirmation has been reported in only a few cases. We and others have generated and characterized temperature-sensitive cdc37 alleles in S. pombe and have used them to investigate the cellular roles of Cdc37: previous work has shown that mitotic Cdc2 is a major client. In this paper, we describe a screen for mutations synthetically lethal with a cdc37ts mutant with the aim of identifying genes encoding further client proteins of Cdc37. Ten such strains were isolated, and genomic libraries were screened for rescuing plasmids. In one case, a truncated cdc7 gene was identified. Further experiments showed that the mutation in this strain was indeed in cdc7. Cdc7 is a protein kinase required for septum initiation, and we show that its kinase activity is greatly reduced when Cdc37 function is impaired. Cdc7 normally locates to the spindle pole body during mitosis, and this appears to be unaffected in the cdc37ts mutant. Other evidence suggests that, in addition to mitosis and septum initiation, Cdc37 may also be required for septum cleavage.  相似文献   

11.
The Cdc37 protein in Saccharomyces cerevisiae is thought to be a kinase-targeting subunit of the chaperone Hsp90. In a genetic screen, four protein kinases were identified as interacting with Cdc37 - Cdc5, Cdc7, Cdc15 and Cak1. This result underlines the importance of Cdc37 for the folding of protein kinases. In addition, we showed that Ydj1, a yeast DnaJ homolog belonging to the Hsp40 family of chaperones, genetically interacts with Cdc37. No physical interaction has so far been detected between Cdc37 and Cdc28, although genetic interactions (synthetic lethality and mutation suppression), and biochemical studies have suggested that these two proteins functionally interact. We found that, when separately expressed, the N-terminal lobe of Cdc28 interacted strongly with the C-terminal moiety of Cdc37 in a two-hybrid system. This was not the case for the full-length Cdc28 protein. We present models to explain these results.  相似文献   

12.
Hsp90 is an ATP-dependent molecular chaperone, which facilitates the activation and stabilization of hundreds of client proteins in cooperation with a defined set of cofactors. Many client proteins are protein kinases, which are activated and stabilized by Hsp90 in cooperation with the kinase-specific co-chaperone Cdc37. Other Hsp90 co-chaperones, like the ATPase activator Aha1, also are implicated in kinase activation, and it is not yet clear how Cdc37 is integrated into Hsp90 co-chaperone complexes. Here, we studied the interaction between Cdc37, Hsp90, and other Hsp90 co-chaperones from the nematode Caenorhabditis elegans. Nematode Cdc37 binds with high affinity to Hsp90 and strongly inhibits the ATPase activity. In contrast to the human Hsp90 system, we observed binding of Cdc37 to open and closed Hsp90 conformations, potentially reflecting two different binding modes. Using a novel ultracentrifugation setup, which allows accurate analysis of multifactorial protein complexes, we show that cooperative and competitive interactions exist between other co-chaperones and Cdc37-Hsp90 complexes in the C. elegans system. We observed strong competitive interactions between Cdc37 and the co-chaperones p23 and Sti1, whereas the binding of the phosphatase Pph5 and the ATPase activator Aha1 to Cdc37-Hsp90 complexes is possible. The ternary Aha1-Cdc37-Hsp90 complex is disrupted by the nucleotide-induced closing reaction at the N terminus of Hsp90. This implies a carefully regulated exchange process of cofactors during the chaperoning of kinase clients by Hsp90.  相似文献   

13.
14.
In the budding yeast Saccharomyces cerevisiae, Cdc37 is required for the productive formation of Cdc28-cyclin complexes. The cdc37-1 mutant arrests at Start with low levels of Cdc28 protein, which is predominantly unphosphorylated at Thr169, fails to bind cyclin, and has little protein kinase activity. We show here that Cdc28 and not cyclin is specifically defective in the cdc37-1 mutant and that Cdc37 likely does not act as an assembly factor for Cdc28-cyclin complex formation. We have also found that the levels and activity of the protein kinase Cak1 are significantly reduced in the cdc37-1 mutant. Pulse-chase analysis indicates that Cdc28 and Cak1 proteins are both destabilized when Cdc37 function is absent during but not after translation. In addition, Cdc37 promotes the production of Cak1, but not that of Cdc28, when coexpressed in insect cells. We conclude that budding yeast Cdc37, like its higher eukaryotic homologs, promotes the physical integrity of multiple protein kinases, perhaps by virtue of a cotranslational role in protein folding.  相似文献   

15.
The DNA damage-responsive protein kinases ATM and ATR phosphorylate SQ/TQ motifs that lie in clusters in most of their in vivo targets. Budding yeast Cdc13p contains two clusters of SQ/TQ motifs, suggesting that it might be a target of Mec1p/Tel1p (yeast ATR/ATM). Here we demonstrated that the telomerase recruitment domain of Cdc13p is phosphorylated by Mec1p and Tel1p. Gel analysis showed that Cdc13p contains a Mec1/Tel1-dependent post-translational modification. Using an immunoprecipitate (IP)-kinase assay, we showed that Mec1p phosphorylates Cdc13p on serine 225, 249, 255 and 306, and Tel1p phosphorylates Cdc13p on serine 225, 249 and 255 in vitro. Phenotypic analysis in vivo revealed that the mutations in the Cdc13p SQ motifs phosphorylated by Mec1p and Tel1p caused multiple telomere and growth defects. In addition, normal telomere length and growth could be restored by expressing a Cdc13–Est1p hybrid protein. These results demonstrate the telomerase recruitment domain of Cdc13p as an important new telomere-specific target of Mec1p/Tel1p.  相似文献   

16.
Drosophila calpains, Calpain A and Calpain B, show typical calpain domain structures similar to mammalian calpains. However, the small subunit of mammalian calpains, shown to be essential in both genetic and biochemical aspects, is absent in Drosophila calpains and is not required for enzymatic activity. How they compensate for the lack of small subunit is mostly unknown. Here we conducted experiments using recombinant Drosophila Calpain B for further characterization of the enzyme with particular focuses on two issues: possibility of homodimerization and mode of autolysis. The native molecular weight of Calpain B indicates that the active enzyme is primarily monomeric. Co-expression of two recombinant Calpain B proteins each with a unique affinity tag and a subsequent single round of affinity tag purification resulted in isolation of only one recombinant calpain type, suggesting there is no homodimeric interaction. Also the C-termini of Drosophila calpains lack many of the key hydrophobic residues considered to be important in the dimerization of mammalian calpains. Further, initial autolysis of Calpain B seems to occur intramolecularly, which supports the monomeric nature of Drosophila calpains. These results strongly suggest that dimerization is not an essential requirement for Drosophila calpains.  相似文献   

17.
Cdc37 is a relatively poorly conserved and yet essential molecular chaperone. It has long been thought to function primarily as an accessory factor for Hsp90, notably directing Hsp90 to kinases as substrates. More recent discoveries challenge this simplistic view. Cdc37 client proteins other than kinases have now been found, and Cdc37 displays a variety of Hsp90-independent activities both in vitro and in vivo. It can function as a molecular chaperone by itself, interact with other Hsp90 cochaperones in the absence of Hsp90, and even support yeast growth and protein folding without its Hsp90-binding domain. Thus, for many substrates, there may be many alternative chaperone pathways involving Cdc37, Hsp90, or both.  相似文献   

18.
Hsp90 cooperates with its co-chaperone Cdc37 to provide obligatory support to numerous protein kinases involved in the regulation of cellular signal transduction pathways. In this report, the crystal structure of the Src family tyrosine kinase Lck was used to guide the creation of kinase constructs to determine features recognized by Hsp90 and its "kinase-specific" co-chaperone Cdc37. Two parameters were assayed: the ability and extent to which the constructs bound to Hsp90 and Cdc37, and the ability of the constructs to trigger salt-resistant high affinity complexes with Hsp90 and Cdc37 independent of the presence of molybdate. Although Hsp90 interacted with both the N-terminal and C-terminal lobes (NL and CL, respectively) of the catalytic domains of the kinases, the lobes themselves were not sufficient to trigger the high affinity binding of Hsp90. Only constructs containing a complete N- or C-terminal lobe and part of the adjacent lobe bound to Hsp90 and Cdc37 in salt-stable complexes independent of molybdate. The two minimum constructs that bound Hsp90 and Cdc37 contained the alpha-C-helix and the beta4- and beta5-strands of the NL through to end of the CL and the NL through to the alpha-E-helix and the amino acids that cap the helix. Cdc37 interacted with only the NL and minimally required the alpha-C-helix and beta4- and beta5-strands of this lobe of Lck. The results indicate that the high affinity binding activity of Hsp90 is triggered through its interaction with adjacent subdomain structures of kinase catalytic domains. Furthermore, the alpha-C-helix and part of its adjoining loop connection to the beta4-strand appear to be the primary determinants recognized by Cdc37.  相似文献   

19.
Host defense peptides are ancient weapons of the innate immunity. The human cathelicidin LL-37 protects the epithelial barrier against infection and is constitutively secreted in the bloodstream by immune cells. Current knowledge claims that LL-37 is up regulated upon infection. LL-37 can protect against bacterial infections and possesses many immunomodulatory properties. Here, we show that the human host defense peptide LL-37 is down regulated during septic shock. Furthermore, we show that these effects are not related to vitamin D serum levels, a potent inducer of LL-37 gene expression, pointing out the complex regulation of cathelicidins during septic shock.  相似文献   

20.
Cdc37 is a molecular chaperone required for folding of protein kinases. It functions in association with Hsp90, although little is known of its mechanism of action or where it fits into a folding pathway involving other Hsp90 cochaperones. Using a genetic approach with Saccharomyces cerevisiae, we show that CDC37 overexpression suppressed a defect in v-Src folding in yeast deleted for STI1, which recruits Hsp90 to misfolded clients. Expression of CDC37 truncation mutants that were deleted for the Hsp90-binding site stabilized v-Src and led to some folding in both sti1Delta and hsc82Delta strains. The protein kinase-binding domain of Cdc37 was sufficient for yeast cell viability and permitted efficient signaling through the yeast MAP kinase-signaling pathway. We propose a model in which Cdc37 can function independently of Hsp90, although its ability to do so is restricted by its normally low expression levels. This may be a form of regulation by which cells restrict access to Cdc37 until it has passed through a triage involving other chaperones such as Hsp70 and Hsp90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号