首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

2.
3.
The inducible SOS response for DNA repair and mutagenesis in the bacterium Bacillus subtilis resembles the extensively characterized SOS system of Escherichia coli. In this report, we demonstrate that the cellular repressor of the E. coli SOS system, the LexA protein, is specifically cleaved in B. subtilis following exposure of the cells to DNA-damaging treatments that induce the SOS response. The in vivo cleavage of LexA is dependent upon the functions of the E. coli RecA protein homolog in B. subtilis (B. subtilis RecA) and results in the same two cleavage fragments as produced in E. coli cells following the induction of the SOS response. We also show that a mutant form of the E. coli RecA protein (RecA430) can partially substitute for the nonfunctional cellular RecA protein in the B. subtilis recA4 mutant, in a manner consistent with its known activities and deficiencies in E. coli. RecA430 protein, which has impaired repressor cleaving (LexA, UmuD, and bacteriophage lambda cI) functions in E.coli, partially restores genetic exchange to B. subtilis recA4 strains but, unlike wild-type E. coli RecA protein, is not capable of inducing SOS functions (expression of DNA damage-inducible [din::Tn917-lacZ] operons or RecA synthesis) in B. subtilis in response to DNA-damaging agents or those functions that normally accompany the development of physiological competence. Our results provide support for the existence of a cellular repressor in B. subtilis that is functionally homologous to the E. coli LexA repressor and suggest that the mechanism by which B. subtilis RecA protein (like RecA of E. coli) becomes activated to promote the induction of the SOS response is also conserved.  相似文献   

4.
Summary Induction of the SOS genes is required for efficient repair of damaged DNA in Escherichia coli. SOS induction by nalidixic acid or oxolinic acid, two inhibitors of DNA gyrase, requires the RecBC enzyme of E. coli. We report here that the nuclease activity of RecBC enzyme is not needed for SOS induction by these agents. We suggest that the unwinding activity of RecBC enzyme produces single-stranded DNA which activates the RecA protein to stimulate LexA repressor cleavage and SOS induction.  相似文献   

5.
The SOS regulatory system: control of its state by the level of RecA protease   总被引:38,自引:0,他引:38  
Our current understanding of the SOS regulatory system suggests that it can exist in two extreme states: in the repressed state, LexA protein is active, and it represses a particular set of genes called SOS genes. In the induced state, which results from various impairments to DNA replication, LexA repressor is cleaved by the specific protease activity of the RecA protein; in consequence, the SOS genes are derepressed and they express various functions that are believed to aid cell survival in induced cells. Since high levels of RecA protease activity turn on this system, it seems plausible that the level of protease activity will also control the transitions between the two states of the system. In order to assess the in vivo level of protease activity, antibody techniques were used to study the stability of LexA repressor during various phases of the SOS regulatory cycle. Repressor was reasonably stable in the repressed state, but it was degraded within a few minutes after an inducing treatment. Cleavage depended upon the RecA protease activity and resulted in the same products as seen in vitro. Cleavage preceded, and did not depend upon, derepression of any SOS gene. During the transition to the repressed state, LexA repressor became increasingly stable with time, suggesting that as DNA damage was repaired the level of protease declined. This decline depended upon derepression of the regulatory system, consistent with the belief that an inducing signal, resulting from DNA damage, reversibly activates the RecA protease and is removed by the action of one or more SOS functions. At low levels of DNA damage, a subinduced state was observed in which repressor level was reduced by a low level of cleavage. These data indicate that the level of RecA protease activity controls the state of the system and the transitions between its two states.  相似文献   

6.
7.
Escherichia coli responds to impairment of DNA synthesis by inducing a system of DNA repair known as the SOS response. Specific genes are derepressed through proteolytic cleavage of their repressor, the lexA gene product. Cleavage in vivo requires functional RecA protein in a role not yet understood. We used mRNA hybridization techniques to follow the rapid changes that occur with induction in cells with mutations in the recA operator or in the repressor cleavage site. These mutations allowed us to uncouple the induction of RecA protein synthesis from its role in inducing the other SOS functions. Following induction with ultraviolet light, we observed increased rates of mRNA synthesis from five SOS genes within five minutes, maximum expression ten to 20 minutes later and then a later decline to near the initial rates. The presence of a recA operator mutation did not significantly influence these kinetics, whereas induction was fully blocked by an additional mutation in the repressor cleavage site. These experiments are consistent with activation of RecA protein preceding repressor cleavage and derepression of SOS genes. The results also suggest that the timing and extent of induction of individual SOS genes may be different.  相似文献   

8.
The SOS system   总被引:2,自引:0,他引:2  
R d'Ari 《Biochimie》1985,67(3-4):343-347
In the bacterium Escherichia coli DNA damaging treatments such as ultraviolet or ionizing radiation induce a set of functions called collectively the SOS response, reviewed here. The regulation of the SOS response involves a repressor, the LexA protein, and an inducer, the RecA protein. After DNA damage an effector molecule is produced--possibly single stranded DNA--which activates the RecA protein to a form capable of catalysing proteolytic cleavage of LexA. The repressors of certain temperate prophages are cleaved under the same conditions, resulting in lysogenic induction. SOS functions are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after the DNA damage is repaired, and possibly in cell death when DNA damage is too extensive. The SOS response also includes several chromosomal genes of unknown function, a number of plasmid encoded genes (bacteriocins, mutagenesis), and lysogenic induction of certain prophages. DNA damaging treatments seem to induce DNA repair and mutagenic activities and proviral development in many species, including mammalian cells. In general, substances which are genotoxic to higher eukaryotes induce the SOS response in bacteria. This correlation is the basis of the numerous bacterial tests for genotoxicity and carcinogenicity.  相似文献   

9.
The recF143 mutant of Escherichia coli is deficient in certain functions that also require the RecA protein: cell survival after DNA damage, some pathways of genetic recombination, and induction of SOS genes and temperate bacteriophage through cleavage of the LexA and phage repressors. To characterize the role of RecF in SOS induction and RecA activation, we determined the effects of the recF143 mutation on the rate of RecA-promoted cleavage of LexA, the repressor of the SOS genes. We show that RecA activation following UV irradiation is delayed by recF143 and that RecF is specifically involved in the SOS induction pathway that requires DNA replication. At 32 degrees C, the recA441 mutation partially suppresses the defect of recF mutants in inducing the SOS system in response to UV irradiation (A. Thomas and R. G. Lloyd, J. Gen. Microbiol. 129:681-686, 1983; M. R. Volkert, L. J. Margossian, and A. J. Clark, J. Bacteriol. 160:702-705, 1984); we find that this suppression occurs at the earliest detectable phase of LexA cleavage and does not require protein synthesis. Our results support the idea that following UV irradiation, RecF enhances the activation of RecA into a form that promotes LexA cleavage (A. Thomas and R. G. Lloyd, J. Gen. Microbiol. 129:681-686, 1983; M. V. V. S. Madiraju, A. Templin, and A. J. Clark, Proc. Natl. Acad. Sci. USA 85:6592-6596, 1988). In contrast to the constitutive activation phenotype of the recA441 mutant, the recA441-mediated suppression of recF is not affected by adenine and nucleosides. We also find that wild-type RecA protein is somewhat activated by adenine in the absence of DNA damage.  相似文献   

10.
Damage to cellular DNA or interruption of chromosomal DNA synthesis leads to induction of the SOS functions in E. coli. The immediate agent of induction is the RecA protein, which proteolytically cleaves and inactivates repressors, leading to induction of genes they control. RecA protein modified by tif mutations allows expression of SOS functions in the absence of inducing treatments. We show here that tif-mutant RecA protein is more efficient than wild-type RecA protein in interacting with DNA and nucleoside triphosphate. This result suggests that formation of a complex with DNA and nucleoside triphosphate is the critical event that activates RecA protein to destroy repressors after SOS-inducing treatments, and that damage to cellular DNA promotes this reaction by providing single-stranded DNA or an active nucleoside triphosphate or both. Since dATP is the most effective nucleoside triphosphate in promoting repressor cleavage, we suggest that it is the natural cofactor of RecA protein in vivo.  相似文献   

11.
P L Moreau 《Biochimie》1985,67(3-4):353-356
The RecA protein of Escherichia coli plays a central role in DNA repair mechanisms. When it is incubated with single-stranded DNA and a nucleoside triphosphate, the purified RecA protein acts both by promoting cleavage of the LexA protein, the repressor of the SOS genes, and by catalyzing strand exchange between a variety of DNA molecules. A model for the regulation of the activity of the RecA protein in a cell exposed to a DNA damaging treatment is proposed.  相似文献   

12.
Inhibition of Escherichia coli RecA coprotease activities by DinI.   总被引:2,自引:0,他引:2       下载免费PDF全文
T Yasuda  K Morimatsu  T Horii  T Nagata    H Ohmori 《The EMBO journal》1998,17(11):3207-3216
In Escherichia coli, the SOS response is induced upon DNA damage and results in the enhanced expression of a set of genes involved in DNA repair and other functions. The initial step, self-cleavage of the LexA repressor, is promoted by the RecA protein which is activated upon binding to single-stranded DNA. In this work, induction of the SOS response by the addition of mitomycin C was found to be prevented by overexpression of the dinI gene. dinI is an SOS gene which maps at 24.6 min of the E.coli chromosome and encodes a small protein of 81 amino acids. Immunoblotting analysis with anti-LexA antibodies revealed that LexA did not undergo cleavage in dinI-overexpressed cells after UV irradiation. In addition, the RecA-dependent conversion of UmuD to UmuD' (the active form for mutagenesis) was also inhibited in dinI-overexpressed cells. Conversely, a dinI-deficient mutant showed a slightly faster and more extensive processing of UmuD and hence higher mutability than the wild-type. Finally, we demonstrated, by using an in vitro reaction with purified proteins, that DinI directly inhibits the ability of RecA to mediate self-cleavage of UmuD.  相似文献   

13.
Streptococcus pneumoniae is a naturally transformable bacterium that is able to take up single-stranded DNA from its environment and incorporate the exogenous DNA into its genome. This process, known as transformational recombination, is dependent upon the presence of the recA gene, which encodes an ATP-dependent DNA recombinase whose sequence is 60% identical to that of the RecA protein from Escherichia coli. We have developed an overexpression system for the S. pneumoniae RecA protein and have purified the protein to greater than 99% homogeneity. The S. pneumoniae RecA protein has ssDNA-dependent NTP hydrolysis and NTP-dependent DNA strand exchange activities that are generally similar to those of the E. coli RecA protein. In addition to its role as a DNA recombinase, the E. coli RecA protein also acts as a coprotease, which facilitates the cleavage and inactivation of the E. coli LexA repressor during the SOS response to DNA damage. Interestingly, the S. pneumoniae RecA protein is also able to promote the cleavage of the E. coli LexA protein, even though a protein analogous to the LexA protein does not appear to be present in S. pneumoniae.  相似文献   

14.
The SOS response in Escherichia coli is induced after DNA-damaging treatments including ultraviolet light. Regulation of the SOS response is accomplished through specific interaction of the two SOS regulator proteins, LexA and RecA. In ultraviolet light-treated cells, nucleotide excision repair is the major system that removes the induced lesions from the DNA. Here, induction of the SOS response in Escherichia coli with normal and impaired excision repair function is studied by simulation of intracellular levels of regulatory LexA and RecA proteins, and SulA protein. SulA protein is responsible for SOS-inducible cell division inhibition. Results of the simulations show that nucleotide excision repair influences time-courses of LexA, RecA and SulA induction by modulating the dynamics of RecA protein distribution between its normal and SOS-activated forms.  相似文献   

15.
Treatments that damage DNA or inhibit DNA synthesis in E. coli induce the expression of a set of functions called SOS functions that are involved in DNA repair, mutagenesis, arrest of cell division and prophage induction. Induction of SOS functions is triggered by inactivation of the LexA repressor or a phage repressor. Inactivation of these repressors results from their cleavage by the E. coli RecA protein in the presence of single-stranded DNA and a nucleoside triphosphate.We found that these cleavage reactions are controlled by two mechanisms in vitro: one is through the structural change of the RecA protein in the ternary complex, RecA-ssDNA-ATP-γ-S. The active ternary complex is formed by binding of ATP-γ-S to a complex of RecA protein and ssDNA. On the other hand, when the RecA protein binds to ATP-γ-S prior to its binding to ssDNA, the resulting complex has no or only very weak cleavage activity toward the repressor. This structural change is negatively controlled by its C-terminal part. The loss of the 25 amino acid residues from the C-terminal leads the RecA protein to stable binding to dsDNA as well as ssDNA, and the protein takes the activated form for the repressor cleavage constitutively. The other mechanism is through the structural change of the repressor. The cleavage reaction of a ∅80cI repressor is greatly stimulated by the presence of d(G-G), and d(G-G) stimulates the cleavage by binding to the C-terminal half of the ∅80cI repressor. Moreover, the C-terminal fragment of the cleaved products of the 80cI repressor was able to cleave a ∅80cI-λ chimeric repressor. These results strongly suggested that th active site of the repressor cleavage was located in the C-terminal domain of the repressor and that the C-terminal fragment produced by the cleavage could cleave the repressor.  相似文献   

16.
In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.  相似文献   

17.
C Lesca  C Petit  M Defais 《Biochimie》1991,73(4):407-409
The SOS response is induced in E coli following treatments that interfere with DNA replication. The response is under the control of the recA and the lexA genes. Strains defective in LexA repressor constitutively express SOS proteins. However, SOS repair does not reach its maximum level in these strains. Instead, an activation of RecA protein and de novo protein synthesis are required for full repair. We have analyzed by 2-dimensional gel electrophoresis the induction of proteins after UV irradiation of lexA(Def) bacteria. Proteins which might participate in SOS repair are induced under these conditions.  相似文献   

18.
Overproduction of single-stranded DNA-binding protein (SSB) in Escherichia coli led to a decrease in the basal level of repressor LexA. Expression of the LexA-controlled genes was increased differentially, depending on the affinity of the LexA repressor for each promoter: expression of the recA and sfiA genes was increased 5-fold and 1.5-fold, respectively. Despite only a slight effect on expression of sfiA, which codes for an inhibitor of cell division, bacteria overproducing SSB produced elongated cells. In fact, the effect on cell shape appeared to be essentially independent of the expression of the sfiA and recA genes. Bacteria overproducing SSB were therefore phenotypically similar to bacteria partially starved of thymine, in which filamentation results from both sfiA-dependent and sfiA-recA-independent pathways. These data indicate that excess SSB acts primarily by perturbing DNA replication, thereby favoring gratuitous activation of RecA protein to promote cleavage of LexA protein. When bacteria overproducing SSB were exposed to a DNA-damaging agent such as ultraviolet light or mitomycin C, the recA and sfiA genes were fully induced. Induction of the sfiA gene occurred, however, at higher doses in bacteria overproducing SSB protein than in bacteria with normal levels of SSB. Whereas the efficiency of excision repair was apparently increased by excess SSB, the efficiency of post-replication recombinational repair was reduced as judged by a decrease in the recombination proficiency between a prophage and ultraviolet-irradiated heteroimmune infecting phage. Following induction of ssb+ bacteria with mitomycin C, the cellular content of SSB was slightly increased. These results provide evidence that SSB modulates RecA protein-dependent activities in vivo. It is proposed that SSB favors the formation of short complexes of RecA protein and single-stranded DNA that mediate cleavage of the LexA and lambda repressors, while it delays the formation of long nucleoprotein filaments, thereby slowing down RecA-promoted recombinational events in uninduced as well as in induced bacteria.  相似文献   

19.
20.
The RecA protein of Escherichia coli is required for SOS-induced mutagenesis in addition to its recombinational and regulatory roles. We have suggested that RecA might participate directly in targeted mutagenesis by binding preferentially to the site of the DNA damage (e.g. pyrimidine dimer) because of its partially unwound nature; DNA polymerase III will then encounter RecA-coated DNA at the lesion and might replicate across the damaged site more often but with reduced fidelity. In support of this proposal, we have found that the phenotype of wild-type and mutant RecA for mutagenesis correlates with capacity to bind to double-stranded DNA. Wild-type RecA binds more efficiently to ultraviolet (u.v.)-irradiated, duplex DNA than to non-irradiated DNA. The RecA441 (Tif) protein that is constitutive for mutagenesis binds extremely well to double-stranded DNA with no lesions, whereas the RecA430 protein that is defective in mutagenesis binds poorly even to u.v.-irradiated DNA. The RecA phenotype also correlates with capacity to use duplex DNA as a cofactor for cleavage of the LexA repressor protein for SOS-controlled operons. Wild-type RecA provides efficient cleavage of LexA only with u.v.-irradiated duplex DNA; RecA441 cleaves well with non-irradiated DNA; RecA430 gives very poor cleavage even with u.v.-irradiated DNA. We conclude that the interaction of RecA with damaged double-stranded DNA is likely to be a critical component of SOS mutagenesis and to define a pathway for the LexA cleavage reaction as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号