首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The type I iodothyronine deiodinase (ID-I) of liver is an important enzyme for the conversion of the prohormone thyroxine (T4) to the active thyroid hormone 3,3',5-triiodothyronine (T3). Because it is an integral membrane protein of low abundance, purification of ID-I from rat liver has proven to be difficult. We have analyzed ID-I in liver microsomal fractions from various animals to reveal possible species differences and to explore alternative sources for the isolation of the enzyme. ID-I was characterized by enzyme assay with 3,3',5'-triiodothyronine (rT3) as the preferred substrate and by affinity-labeling with N-bromoacetyl-[125I]T3 (BrAc[125I]T3). Labeled ID-I subunit was identified and quantified by SDS-PAGE and autoradiography. The Mr of ID-I in the species investigated varied between 25.7 and 29.1 kDa. Rat and dog liver microsomes had a markedly higher enzyme content than microsomes of human, mouse, rabbit, cow, pig, sheep, goat, chicken or duck liver. Rat liver microsomes showed the highest ID-I activity of all species examined. Turnover numbers for ID-I varied between 264 and 1059 min-1, with rabbit and goat showing the highest values. However, dog liver ID-I displayed an exceptionally low turnover number of 78 min-1. In conclusion, ID-I has similar properties in all species examined with the notable exception of dog.  相似文献   

2.
Deiodination is required for conversion of thyroxine, the inactive prohormone secreted by the thyroid gland, to 3,5,3'-triiodothyronine, the biologically active thyroid hormone. The principal enzyme catalyzing this reaction, Type I iodothyronine 5' deiodinase, was shown recently to contain the amino acid, selenocysteine, and site-directed mutagenesis showed that this amino acid confers the biochemical properties characteristic of this enzyme. Previous studies suggest that a histidine residue may also be critical for activity. To further our understanding of the biochemical mechanism of this reaction, we have used in vitro mutagenesis to examine the contribution of each of the 4 histidines in this enzyme to the deiodination process. Two of the histidines (185 and 253) are not involved in deiodination, as their removal had no effect on activity. Mutagenesis of histidine 158 resulted in complete loss of activity, suggesting a role in either protein conformation or catalysis. The most informative results were obtained from the studies of histidine 174. Mutagenesis of this histidine to asparagine or glutamine altered reactivity with substrate and reduced inhibition by diethylpyrocarbonate and rose bengal. These results demonstrate that histidine 174 is critical to function and appears to be involved in binding of hormone.  相似文献   

3.
4.
The conversion of thyroxine to 3,5,3'-triiodothyronine (T3) is the first step in thyroid hormone action, and the Type I iodothyronine deiodinase supplies most of this extrathyroidal T3 in the rat. We found that the cDNA coding for this enzyme contains an in-frame UGA encoding the rare amino acid selenocysteine. Using site-directed mutagenesis, we have converted selenocysteine to cysteine and expressed the wild-type and cysteine mutant enzymes in JEG-3 cells by transient transfection. The kinetic properties of the transiently expressed wild-type enzyme are nearly identical to those reported for rat liver Type I deiodinase. Substitution of sulfur for selenium causes a 10-fold increase in the Km of the enzyme for the favored substrate 3,3',5'-triiodothyronine (rT3), a 100-fold decrease in the sensitivity of rT3 deiodination to competitive inhibition by gold and a 300-fold increase in the apparent Ki for uncompetitive inhibition by 6-n-propylthiouracil. These results demonstrate that selenium is responsible for the biochemical properties which characterize Type I iodothyronine monodeiodination.  相似文献   

5.
Type I iodothyronine deiodinase is a approximately 50-kDa, integral membrane protein that catalyzes the outer ring deiodination of thyroxine. Despite the identification and cloning of a 27-kDa selenoprotein with the catalytic properties of the type I enzyme, the composition and the physical nature of the active deiodinase are unknown. In this report, we use a molecular approach to determine holoenzyme composition, the role of the membrane anchor on enzyme assembly, and the contribution of individual 27-kDa subunits to catalysis. Overexpression of an immunologically unique rat 27-kDa protein in LLC-PK1 cells that contain abundant catalytically active 27-kDa selenoprotein decreased deiodination by approximately 50%, and > 95% of the LLC-PK1 derived 27-kDa selenoprotein was specifically immune precipitated by the anti-rat enzyme antibody. The hybrid enzyme had a molecular mass of 54 kDa and an s(20,w) of approximately 3.5 S indicating that every native 27-kDa selenoprotein partnered with an inert rat 27-kDa subunit in a homodimer. Enzyme assembly did not depend on the presence of the N-terminal membrane anchor of the 27-kDa subunit. Direct visualization of the deiodinase dimer showed that the holoenzyme was sorted to the basolateral plasma membrane of the renal epithelial cell.  相似文献   

6.
Type I iodothyronine deiodinase (ID-I) is a selenoenzyme, which is important for the conversion of the prohormone thyroxine (T4) to the bioactive thyroid hormone 3,3',5-triiodothyronine (T3). 2-Thiouracil derivatives inhibit ID-I by interaction with an enzyme form generated during catalysis. We have now tested the potential inhibitory effects of the selenocompounds 6-methyl- (MSU) and 6-propyl-2-selenouracil (PSU) in comparison with their thioanalogs 6-methyl- (MTU) and 6-propyl-2-thiouracil (PTU) on rat liver ID-I activity using 3,3',5-triiodothyronine (reverse T3, rT3) as substrate and dithiothreitol (DTT) as cofactor. All compounds showed dose-dependent inhibition of ID-I with IC50 values of 1, 0.5, 0.4 and 0.2 microM for MTU, MSU, PTU and PSU, respectively. Our results further suggest that these inhibitions are uncompetitive with substrate and competitive with cofactor. The high potency of selenouracils may be due to reaction with a substrate-induced enzyme selenenyl iodide intermediate under formation of a stable enzyme-selenouracil diselenide.  相似文献   

7.
Selenium deficiency for periods of 5 or 6 weeks in rats produced an inhibition of tri-iodothyronine (T3) production from added thyroxine (T4) in brain, liver and kidney homogenate. This inhibition was reflected in plasma T4 and T3 concentrations, which were respectively increased and decreased in selenium-deficient animals. Although plasma T4 levels increased in selenium-deficient animals, this did not produce the normal feedback inhibition on thyrotropin release from the pituitary. Selenium deficiency was confirmed in the animals by decreased selenium-dependent glutathione peroxidase (Se-GSH-Px) activity in all of these tissues. Administration of selenium, as a single intraperitoneal injection of 200 micrograms of selenium (as Na2SeO3)/kg body weight completely reversed the effects of selenium deficiency on thyroid-hormone metabolism and partly restored the activity of Se-GSH-Px. Selenium administration at 10 micrograms/kg body weight had no significant effect on thyroid-hormone metabolism or on Se-GSH-Px activity in any of the tissues studied. The characteristic changes in plasma thyroid-hormone levels that occurred in selenium deficiency appeared not to be due to non-specific stress factors, since food restriction to 75% of normal intake or vitamin E deficiency produced no significant changes in plasma T4 or T3 concentration. These data are consistent with the view that the Type I and Type II iodothyronine deiodinase enzymes are seleno-enzymes or require selenium-containing cofactors for activity.  相似文献   

8.
We report here the isolation and sequence of a near full length cDNA clone for the 5'MD. Screening of gt11 cDNA library with a 32P-labeled partial 5'MD clone (#23) yielded two further clones (#2301 and 2302). Clone 2301 was contained entirely within clone 23 while clone 2302 contained 0.5 kb upstream of 5' end and 1.0 kb downstream 3' end of clone 23. Clone 2302 has an open reading frame of 1,447 nucleotides followed by a stop codon and 584 nucleotides of the untranslated 3' end region. The predicted amino acid sequence showed a 99% and a 95% identity with protein disulfide isomerase (PDI) and the membrane associated thyroid hormone binding protein (MTHBP), respectively. Monoclonal antibodies against human placental PDI (HP13) neutralized the 5'MD and showed only one band in western blot analysis of rat liver solubilized microsomal proteins. The results suggest that clone 2302, MTHBP and PDI may be the same protein and that it represents 5' MD.  相似文献   

9.
Protein disulfide isomerase (PDI) is an essential protein folding assistant of the eukaryotic endoplasmic reticulum that catalyzes both the formation of disulfides during protein folding (oxidase activity) and the isomerization of disulfides that may form incorrectly (isomerase activity). Catalysis of thiol-disulfide exchange by PDI is required for cell viability in Saccharomyces cerevisiae, but there has been some uncertainty as to whether the essential role of PDI in the cell is oxidase or isomerase. We have studied the ability of PDI constructs with high oxidase activity and very low isomerase activity to complement the chromosomal deletion of PDI1 in S. cerevisiae. A single catalytic domain of yeast PDI (PDIa') has 50% of the oxidase activity but only 5% of the isomerase activity of wild-type PDI in vitro. Titrating the expression of PDI using the inducible/repressible GAL1-10 promoter shows that the amount of wild-type PDI protein needed to sustain a normal growth rate is 60% or more of the amount normally expressed from the PDI1 chromosomal location. A single catalytic domain (PDIa') is needed in molar amounts that are approximately twice as high as those required for wild-type PDI, which contains two catalytic domains. This comparison suggests that high (>60%) PDI oxidase activity is critical to yeast growth and viability, whereas less than 6% of its isomerase activity is needed.  相似文献   

10.
We report that aurone derivatives of plant extracts produce potent, dose-dependent, and ultimately complete inhibition of three different metabolic monodeiodination pathways catalyzed by rat liver microsomal type I iodothyronine deiodinase. These data show that (3'),4',4,6-(tetra)trihydroxyaurones are the most potent naturally occurring plant-derived inhibitors of this deiodinase enzyme (IC50 V 0.5 microM). Lineweaver-Burk analysis using both L-thyroxine (T4) and 3',5',3-triiodothyronine as substrates suggests a cofactor competitive mechanism of inhibition for 4',4,6-trihydroxyaurone which also can displace 125I-L-T4 from binding to thyroxine-binding prealbumin with a potency comparable to its inhibition of T4-5'-deiodinase. Among type I deiodinase inhibitors, cofactor competition has been observed only for propylthiourea. Computer graphic modeling studies were also carried out to explore aurone conformations and to compare them with those of the thyroid hormones. This analysis shows that the aurones can adopt either a planar or an antiskewed conformation, such as observed for 3',5',3-triiodothyronine, the most potent natural deiodinase substrate inhibitor. The thyroxine-binding prealbumin complex was used to model the deiodinase ligand binding site because of the similarity observed between inhibitor binding affinity and enzyme inhibition characteristics. These studies show that the aurones which adopt an antiskewed conformation can interact favorably in the prealbumin binding site. This model of the deiodinase active site can be used to design other deiodinase inhibitors.  相似文献   

11.
Protein disulfide isomerase (PDI) and its degradation products were found in HepG2, COS-1, and CHO-K1 cells. Whether or not the products were formed through autodegradation of PDI was examined, since PDI contains the CGHC motif, which is the active center of proteolytic activity in ER-60 protease. Commercial bovine PDI was autodegraded to produce a trimmed PDI. In addition, human recombinant PDI also had autodegradation activity. Mutant recombinant PDIs with CGHC motifs of which cysteine residues were replaced with serine or alanine residues were prepared. However, they were not autodegraded, suggesting the cysteine residues of motifs are necessary for autodegradation.  相似文献   

12.
Ligand binding characteristics of rat liver microsomal type I iodothyronine deiodinase were evaluated by measuring dose-response inhibition and apparent Michaelis-Menten or inhibitor constants of iodothyronine analogues to compete as substrates or inhibitors for the natural substrate L-thyroxine. These data show strong correlations with the binding requirements of hormone analogues to serum thyroxine-binding prealbumin since iodothyronine analogues with a negatively charged side chain, a negative charge or hydrogen bonding function in the 4'-position, tetraiodo ring substitution, and a skewed hormone conformation are structural features shared in common which markedly affect enzyme activity and protein binding affinity. 3,3',5'-Triiodo-L-thyronine is the most potent natural substrate (IC50 = 0.3 microM) and tetraiodothyroacetic acid is the most potent inhibitor (IC50 = 0.2 microM). Both thyroxine (T4)-5'- and T4-5-deiodination pathways are inhibited by these potent analogues, providing further evidence for a single enzyme catalyzing the rat liver microsomal deiodination reactions. These data also show that L-hormone analogues are preferentially deiodinated via the T4-5'-deiodination pathway, whereas D-analogues produce products via the T4-5-deiodination pathway. The thyroxine-binding prealbumin complex was used to model the interaction of thyroid hormones with the deiodinase active site. Computer graphic modeling of the prealbumin complex showed that only those analogues which are potent deiodinase inhibitors or substrates can be accommodated in the hormone binding site. This model suggests the design of functionally specific ligands which can modulate peripheral thyroid hormone metabolism and act as antithyroidal drugs.  相似文献   

13.
Carbonic anhydrase (CA) isozymes CAII and CAIII are known to exhibit sexual dimorphism in rat liver, and the levels o f these isozymes are affected by sex hormones. In this paper we show that the isozyme CAI is present at low levels in rat liver, with no difference in concentration between male and female rats. Estrogen and diethylstilbestrol reduce CAI levels in both sexes.  相似文献   

14.
In vivo cross-linking of protein disulfide isomerase to immunoglobulins   总被引:12,自引:0,他引:12  
R A Roth  S B Pierce 《Biochemistry》1987,26(14):4179-4182
To test the proposed role of protein disulfide isomerase in the synthesis of immunoglobulins (Ig), intact lymphocytes were treated with a thiol-cleavable, bifunctional cross-linking agent and lysed, and the lysates were immunoprecipitated with antibodies to either Ig or enzyme. When the immunoprecipitates were analyzed on polyacrylamide-sodium dodecyl sulfate gels, protein disulfide isomerase was found to be cross-linked to immunoglobulins. The extent of cross-linking was dependent upon the concentration of cross-linker added and the class of Ig. For IgMs and high concentrations of cross-linker, approximately one molecule of Ig was coupled per two molecules of enzyme. For IgGs, the extent of cross-linking was less. Finally, depletion of the intracellularly reduced glutathione by diamide was found to also result in the linkage of protein disulfide isomerase to IgM. These results therefore support the hypothesis that protein disulfide isomerase functions in the in vivo synthesis of immunoglobulins.  相似文献   

15.
We have previously shown that treatment of Neospora caninum tachyzoites with the aspartyl protease inhibitor pepstatin A reduces host cell invasion [Naguleswaran, A., Muller, N., Hemphill, A., 2003. Neospora caninum and Toxoplasma gondii: a novel adhesion/invasion assay reveals distinct differences in tachyzoite-host cell interactions. Exp. Parasitol. 104, 149-158]. Pepstatin A-affinity-chromatography led to the isolation of a major band of approximately 52 kDa which was identified as a homologue of a previously described Toxoplasma gondii putative protein disulfide isomerase (TgPDI) through tandem mass spectrometry. A BLAST search against N. caninum expressed sequence tags (ESTs) on the ApiDots server using TgPDI cDNA as query sequence revealed a 2251 bp PDI-like consensus (NcPDI), which shows 94% identity to the T. gondii homologue. In N. caninum tachyzoites, NcPDI was found mainly in the soluble hydrophilic fraction. Immunofluorescence showed that expression of NcPDI was dramatically down-regulated in the bradyzoite stage, and immunogold-EM on tachyzoites localised the protein to the cytoplasm, mostly in close vicinity to the nuclear membrane, to the micronemes, and to the parasite cell surface. However, NcPDI was absent in rhoptries and dense granules. Preincubation of tachyzoites with the sulfhydryl blocker 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), p-chloromercuribenzoic acid (pCMBA), and with the PDI inhibitor bacitracin reduced adhesion of parasites to host cells. In addition, incubation of N. caninum tachyzoites with affinity-purified anti-NcPDI antibodies reduced host cell adhesion. PDIs catalyse the formation, reduction or isomerisation of disulfide bonds. Many major components of the adhesion and invasion machinery of apicomplexan parasites are cysteine-rich and dependent on correct folding via disulfide bond formation. Thus, our data points towards an important role for surface-associated NcPDI in Neospora-host cell interaction.  相似文献   

16.
In this study, we investigated the sex hormone regulation of 5'-iodothyronine deiodinase activity, which is responsible for enzymatic conversion of thyroxine into the bioactive form, triiodothyronine. Pituitary homogenates and liver microsomes from: 1) ovariectomized rats injected with 17-beta-estradiol benzoate and/or progesterone (0.7 and 250 microg/100 g body weight, respectively, subcutaneously, over 10 days); 2) male castrated rats treated or not with 0.4 mg/100 g body weight testosterone propionate, intramuscular, over 7 days, were assayed for type 1 and type 2 deiodinase activity in the pituitary. Enzyme activities were measured by release of (125)I from deiodination of (125)I reverse triiodothyronine under varying assay conditions. Estrogen stimulated anterior pituitary and liver type 1 deiodinase activity in ovariectomized rats (45 and 30 %, p < 0.05). Progesterone inhibited the liver enzyme (40 %, p < 0.05), and had no effect on the pituitary, but in both tissues, blocked estrogen stimulatory effect on type 1 deiodinase. In males, testosterone normalized the reduced liver type 1 deiodinase of castrated rats. However, in the pituitary, castration increased (50 %) type 1 deiodinase independent of testosterone treatment, suggesting the existence of a inhibitory testicular regulator of pituitary type 1 enzyme. Treatments did not alter pituitary type 2 deiodinase activity. In conclusion, gonads and sex steroids differentially modulate type 1 deiodinase activity in rat pituitary and liver.  相似文献   

17.
Types 1 and 3 iodothyronine deiodinases are known to be selenocysteine-containing enzymes. Although a putative human type 2 iodothyronine deiodinase (D2) gene (hDio2) encoding a similar selenoprotein has been identified, basal D2 activity is not selenium (Se)-dependent nor has D2 been labeled with (75)Se. A human mesothelioma cell line (MSTO-211H) has recently been shown to have approximately 40-fold higher levels of hDio2 mRNA than mesothelial cells. Mesothelioma cell lysates activate thyroxine (T(4)) to 3,5,3'-triiodothyronine with typical characteristics of D2 such as low K(m) (T(4)), 1.3 nm, resistance to propylthiouracil, and a short half-life ( approximately 30 min). D2 activity is approximately 30-fold higher in Se-supplemented than in Se-depleted medium. An antiserum prepared against a peptide deduced from the Dio2 mRNA sequence precipitates a (75)Se protein of the predicted 31-kDa size from (75)Se-labeled mesothelioma cells. Bromoadenosine 3'5' cyclic monophosphate increases D2 activity and (75)Se-p31 approximately 2.5-fold whereas substrate (T(4)) reduces both D2 activity and (75)Se-p31 approximately 2-3-fold. MG132 or lactacystin (10 microm), inhibitors of the proteasome pathway by which D2 is degraded, increase both D2 activity and (75)Se-p31 3-4-fold and prevent the loss of D2 activity during cycloheximide or substrate (T(4)) exposure. Immunocytochemical studies with affinity-purified anti-hD2 antibody show a Se-dependent increase in immunofluorescence. Thus, human D2 is encoded by hDio2 and is a member of the selenodeiodinase family accounting for its highly catalytic efficiency in T(4) activation.  相似文献   

18.
Dystroglycan (DG) is an extracellular receptor composed of two subunits, α-DG and β-DG, connected through the α-DG C-terminal domain and the β-DG N-terminal domain. We report an alanine scanning of all DG cysteine residues performed on DG-GFP constructs overexpressed in 293-Ebna cells, demonstrating that Cys-669 and Cys-713, both located within the β-DG N-terminal domain, are key residues for the DG precursor cleavage and trafficking, but not for the interaction between the two DG subunits. In addition, we have used immunprecipitation and confocal microscopy showing that ERp57, a member of the disulfide isomerase family involved in glycoprotein folding, is associated and colocalizes immunohistochemically with β-DG in the ER and at the plasma membrane of 293-Ebna cells. The β-DG-ERp57 complex also included α-DG. DG mutants, unable to undergo the precursor cleavage, were still associated to ERp57. β-DG and ERp57 were also co-immunoprecipitated in rat heart and kidney tissues. In vitro, a mutant ERp57, mimicking the reduced form of the wild-type protein, interacts directly with the recombinant N-terminal domain of both α-DG and β-DG with apparent dissociation constant values in the micromolar range. ERp57 is likely to be involved in the DG processing/maturation pathway, but its association to the mature DG complex might also suggest some further functional role that needs to be investigated.  相似文献   

19.
20.
For Chlamydia, an intracellular pathogen of humans, host cell invasion is obligatory for survival, growth and pathogenesis. At the molecular level, little is known about the binding and entry of Chlamydia into the mammalian host cell. Chlamydia are genetically intractable therefore experimental approaches targeting the host are often necessary. CHO6 is a mutagenized cell line resistant to attachment and infection by Chlamydia. In this study, CHO6 was shown using proteomic methods to have a defect in processing of the leader sequence for protein disulfide isomerase (PDI). Complementation by expression of full-length PDI restored C. trachomatis binding and infectivity in the CHO6 mutant cell line. The cell line was also resistant to diphtheria toxin and required complemented cell-surface PDI for toxin entry. These data demonstrate that native PDI at the cell surface is required for effective chlamydial attachment and infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号