首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immature dendritic cells (DCs), unlike mature DCs, require the viral determinant nef to drive immunodeficiency virus (SIV and HIV) replication in coculture with CD4(+) T cells. Since immature DCs may capture and get infected by virus during mucosal transmission, we hypothesized that Nef associated with the virus or produced during early replication might modulate DCs to augment virus dissemination. Adenovirus vectors expressing nef were used to introduce nef into DCs in the absence of other immunodeficiency virus determinants to examine Nef-induced changes that might activate immature DCs to acquire properties of mature DCs and drive virus replication. Nef expression by immature human and macaque DCs triggered IL-6, IL-12, TNF-alpha, CXCL8, CCL3, and CCL4 release, but without up-regulating costimulatory and other molecules characteristic of mature DCs. Coincident with this, nef-expressing immature DCs stimulated stronger autologous CD4(+) T cell responses. Both SIV and HIV nef-expressing DCs complemented defective SIVmac239 delta nef, driving replication in autologous immature DC-T cell cultures. In contrast, if DCs were activated after capturing delta nef, virus growth was not exacerbated. This highlights one way in which nef-defective virus-bearing immature DCs that mature while migrating to draining lymph nodes could induce stronger immune responses in the absence of overwhelming productive infection (unlike nef-containing wild-type virus). Therefore, Nef expressed in immature DCs signals a distinct activation program that promotes virus replication and T cell recruitment but without complete DC maturation, thereby lessening the likelihood that wild-type virus-infected immature DCs would activate virus-specific immunity, but facilitating virus dissemination.  相似文献   

2.
Dendritic cells (DCs) matured with helminth-derived molecules that promote Th2 immune responses do not follow conventional definitions of DC maturation processes. While a number of models of DC maturation by Th2 stimuli are postulated, further studies are required if we are to clearly define DC maturation processes that lead to Th2 immune responses. In this study, we examine the interaction of Th2-inducing molecules from the parasitic helminth Ascaris lumbricoides with the maturation processes and function of DCs. Here we show that murine bone marrow-derived DCs are partially matured by A. lumbricoides pseudocoelomic body fluid (ABF) as characterised by the production of IL-6, IL-12p40 and macrophage inflammatory protein 2 (MIP-2) but no enhanced expression of cluster of differentiation (CD)-14, T-cell co-stimulatory markers CD80, CD86, CD40, OX40L and major histocompatibility complex class II was observed. Despite these phenotypic characteristics, ABF-stimulated DCs displayed the functional hallmarks of fully matured cells, enhancing DC phagocytosis and promoting Th2-type responses in skin-draining lymph node cells in vivo. ABF activated Th2-associated extracellular signal-regulated kinase-1 and nuclear factor-kB intracellular signalling pathways independently of toll-like receptor 4. Taken together, we believe this is the first paper to demonstrate A. lumbricoides murine DC-Th cell-driven responses shedding further light on DC maturation processes by helminth antigens.  相似文献   

3.
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1alpha, while it did not affect RANTES, MIP-1beta and MIP-3beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host.  相似文献   

4.
5.
Leptin is an adipocyte-derived hormone/cytokine that links nutrition, metabolism, and immune homeostasis. Leptin is capable of modulating several immune responses. However, the effect of leptin on dendritic cells (DCs) has not yet been recognized. Because DCs are instrumental in the development of immune responses, in this study, we evaluated the impact of leptin on DC activation. We demonstrated the presence of leptin receptor in human immature and mature DCs both at mRNA and protein level and its capacity to transduce leptin signaling leading to STAT-3 phosphorylation. We found no consistent modulation of DC surface molecules known to be critical for their APC function in response to leptin. In contrast, we found that leptin induces rearrangement of actin microfilaments, leading to uropod and ruffle formation. At a functional level, leptin up-regulates the IL-1beta, IL-6, IL-12, TNF-alpha, and MIP-1alpha production. Coincident with this, leptin-treated DCs stimulate stronger heterologous T cell responses. Furthermore, we found that leptin down-regulates IL-10 production by DCs and drives naive T cell polarization toward Th1 phenotype. Finally, we found that leptin partly protects DCs from spontaneous and UVB-induced apoptosis. Consistent with the antiapoptotic effect of leptin, we observed the activation of NF-kappaB and a parallel up-regulation of bcl-2 and bcl-x(L) gene expression. These results provide new insights on the immunoregulatory function of leptin demonstrating its ability to improve DC functions and to promote DC survival. This is of relevance considering a potential application of leptin in immunotherapeutic approaches and its possible use as adjuvant in vaccination protocols.  相似文献   

6.
1 Alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D3, is a potent immunomodulatory agent. Here we show that dendritic cells (DCs) are major targets of 1,25(OH)2D3-induced immunosuppressive activity. 1,25(OH)2D3 prevents the differentiation in immature DCs of human monocytes cultured with GM-CSF and IL-4. Addition of 1,25(OH)2D3 during LPS-induced maturation maintains the immature DC phenotype characterized by high mannose receptor and low CD83 expression and markedly inhibits up-regulation of the costimulatory molecules CD40, CD80, and CD86 and of class II MHC molecules. This is associated with a reduced capacity of DCs to activate alloreactive T cells, as determined by decreased proliferation and IFN-gamma secretion in mixed leukocyte cultures. 1, 25(OH)2D3 also affects maturing DCs, leading to inhibition of IL-12p75 and enhanced IL-10 secretion upon activation by CD40 ligation. In addition, 1,25(OH)2D3 promotes the spontaneous apoptosis of mature DCs. The modulation of phenotype and function of DCs matured in the presence of 1,25(OH)2D3 induces cocultured alloreactive CD4+ cells to secrete less IFN-gamma upon restimulation, up-regulate CD152, and down-regulate CD154 molecules. The inhibition of DC differentiation and maturation as well as modulation of their activation and survival leading to T cell hyporesponsiveness may explain the immunosuppressive activity of 1, 25(OH)2D3.  相似文献   

7.
The viral protein Nef is a virulence factor that plays multiple roles during the early and late phases of human immunodeficiency virus (HIV) replication. Nef regulates the cell surface expression of critical proteins (including down-regulation of CD4 and major histocompatibility complex class I), T-cell receptor signaling, and apoptosis, inducing proapoptotic effects in uninfected bystander cells and antiapoptotic effects in infected cells. It has been proposed that Nef intersects the CD40 ligand signaling pathway in macrophages, leading to modification in the pattern of secreted factors that appear able to recruit and activate T lymphocytes, rendering them susceptible to HIV infection. There is also increasing evidence that in vitro cell treatment with Nef induces signaling effects. Exogenous Nef treatment is able to induce apoptosis in uninfected T cells, maturation in dendritic cells, and suppression of CD40-dependent immunoglobulin class switching in B cells. Previously, we reported that Nef treatment of primary human monocyte-derived macrophages (MDMs) induces a cycloheximide-independent activation of NF-kappaB and the synthesis and secretion of a set of chemokines/cytokines that activate STAT1 and STAT3. Here, we show that Nef treatment is capable of hijacking cellular signaling pathways, inducing a very rapid regulatory response in MDMs that is characterized by the rapid and transient phosphorylation of the alpha and beta subunits of the IkappaB kinase complex and of JNK, ERK1/2, and p38 mitogen-activated protein kinase family members. In addition, we have observed the activation of interferon regulatory factor 3, leading to the synthesis of beta interferon mRNA and protein, which in turn induces STAT2 phosphorylation. All of these effects require Nef myristoylation.  相似文献   

8.
LIGHT is a recently identified member of the TNF superfamily that is up-regulated upon activation of T cells. Herpesvirus entry mediator, one of its receptors, is constitutively expressed on immature dendritic cells (DCs). In this report, we demonstrate that LIGHT induces partial DC maturation as demonstrated by Ag presentation and up-regulation of adhesion and costimulatory molecules. LIGHT-stimulated DCs show reduced macropinocytosis and enhanced allogeneic stimulatory capacity but fail to produce significant amounts of IL-12, IL-6, IL-1beta, or TNF-alpha compared with unstimulated DCs. However, LIGHT cooperates with CD154 (CD40 ligand) in DC maturation, with particular potentiation of allogeneic T cell proliferation and cytokine secretion of IL-12, IL-6, and TNF-alpha. Moreover, LIGHT costimulation allows DCs to prime in vitro-enhanced specific CTL responses. Our results suggest that LIGHT plays an important role in DC-mediated immune responses by regulating CD154 signals and represents a potential tool for DC-based cancer immunotherapy.  相似文献   

9.
Human herpesvirus 6 (HHV-6) has a tropism for T lymphocytes and monocytes/macrophages, suggesting that HHV-6 infection affects the immunosurveillance system. In the present study, we investigated the HHV-6-induced phenotypic and functional alterations of dendritic cells (DCs), which are professional antigen-presenting cells. HHV-6 infection of monocyte-derived immature DCs appeared to induce the up-regulation of CD80, CD83, CD86, and HLA class I and class II molecules, suggesting that HHV-6 infection induces the maturation of DCs. In addition, the antigen capture capacity of DCs was found to decrease following infection with HHV-6. In contrast to up-regulation of mature-DC-associated surface molecules on HHV-6-infected DCs, their capacity for presentation of alloantigens and exogenous virus antigens to T lymphocytes decreased significantly from that of uninfected DCs. In contrast, there appeared to be no reduction in the capacity for presentation of an HLA class II-binding peptide to the peptide-specific CD4(+) T lymphocytes. These data indicate that HHV-6 infection induces phenotypic alterations and impairs the antigen presentation capacity of DCs. The present data also suggest that the dysfunction of HHV-6-infected DCs is attributable mainly to impairment of the antigen capture and intracellular antigen-processing pathways.  相似文献   

10.
It has previously been reported that cholera toxin (CT) is a potent mucosal adjuvant that enhances Th2 or mixed Th1/Th2 type responses to coadministered foreign Ag. Here we demonstrate that CT also promotes the generation of regulatory T (Tr) cells against bystander Ag. Parenteral immunization of mice with Ag in the presence of CT induced T cells that secreted high levels of IL-4 and IL-10 and lower levels of IL-5 and IFN-gamma. Ag-specific CD4(+) T cell lines and clones generated from these mice had cytokine profiles characteristic of Th2 or type 1 Tr cells, and these T cells suppressed IFN-gamma production by Th1 cells. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (DC) incubated with Ag and CT induced T cells that secreted IL-4 and IL-10 and low concentrations of IL-5. It has previously been shown that IL-10 promotes the differentiation or expansion of type 1 Tr cells. Here we found that CT synergized with low doses of LPS to induce IL-10 production by immature DC. CT also enhanced the expression of CD80, CD86, and OX40 (CD134) on DC and induced the secretion of the chemokine, macrophage inflammatory protein-2 (MIP-2), but inhibited LPS-driven induction of CD40 and ICAM-I expression and production of the inflammatory cytokines/chemokines IL-12, TNF-alpha, MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein-1. Our findings suggest that CT induces maturation of DC, but, by inducing IL-10, inhibiting IL-12, and selectively affecting surface marker expression, suppresses the generation of Th1 cells and promotes the induction of T cells with regulatory activity.  相似文献   

11.
A growing body of literature suggests that the HIV accessory proteins Nef and Vpr could be involved in depletion of CD4(+) and non-CD4(+) cells and tissue atrophy, and in delaying the death of HIV-infected cells. Cell depletion is likely to be predominantly a bystander effect because the number of cells dying far outnumbers HIV-infected cells and is not confined to CD4(+) cells. The myristylated N-terminal region of Nef has severe membrane disordering properties, and when present in the extracellular medium causes rapid lysis in vitro of a wide range of CD4(+) and non-CD4(+) cells, suggesting a role for extracellular Nef in the depletion of bystander cells. A direct role for HIV-1 Nef in cytopathicity is supported by studies in HIV-infected Hu Liv/Thy SCID mice, in transgenic mice expressing nef gene alone, and in rhesus macaques infected with SIV/HIV chimeric virus containing HIV-1 nef. The N-terminal region of Nef has been directly implicated in development of simian AIDS. Extracellular Vpr and C-terminal fragments of Vpr cause membrane permeabilization and apoptosis of a wide range of CD4(+) and non-CD4(+) cells, and could also contribute to depletion of bystander cells. A direct in vivo role for Vpr in thymocyte depletion, thymic atrophy, and nephropathy is suggested in studies with vpr transgenic mice. Intracellular Nef and Vpr could help HIV-infected cells evade cell death by inhibiting apoptosis of infected cells and by avoiding virus-specific CTL response. Nef and Vpr are potential targets for therapeutic intervention and vaccine development, and strategies that prevent the death of bystander cells while promoting the early death of HIV-infected cells could arrest or retard progression to AIDS.  相似文献   

12.
LIGHT is a recently cloned novel cytokine belonging to the TNF family that is selectively expressed on immature dendritic cells (iDCs) generated from monocytes isolated from human PBMCs. In these studies, we demonstrate that exogenous soluble LIGHT or soluble CD40 ligand (CD40L) can promote monocyte-derived dendritic cell maturation in vitro by the up-regulation of CD86, CD80, CD83, and HLA-DR antigen expression. Immature dendritic cells differentiated from monocytes of MDS patients displayed lower levels of costimulatory and HLA-DR molecules compared with iDCs differentiated from monocytes of normal subjects. However, upon induction of maturation by LIGHT or CD40L, the expression of costimulatory and HLA-DR molecules is comparable between DCs from MDS and normal subjects. Exogenous LIGHT- and CD40L-stimulated mature DCs (mDCs) also displayed increased antigen presentation to autologous T lymphocytes (tetanus toxin) or allogeneic T lymphocytes in mixed lymphocyte reactions. DCs matured by LIGHT showed increased secretion of IL-6, IL-12p75, and TNF-, but not IL-1. We conclude that both LIGHT and CD40L are immunoregulating factors that induce monocyte-derived iDCs from MDS patients to undergo maturation resulting in increased antigen presentation and T-cell activation. Monocyte-derived DCs can be stimulated to undergo phenotypic and functional changes with LIGHT that might be applied in the development of a DC-based vaccine for MDS treatment.  相似文献   

13.
We investigated the hypothesis that the enhanced Ag-presenting function of IL-10-deficient dendritic cells (DCs) is related to specific immunoregulatory cytoskeletal molecules expressed when exposed to Ags. We analyzed the role of a prominent cytoskeletal protein, LEK1, in the immunoregulation of DC functions; specifically cytokine secretion, costimulatory molecule expression, and T cell activation against Chlamydia. Targeted knockdown of LEK1 expression using specific antisense oligonucleotides resulted in the rapid maturation of Chlamydia-exposed DCs as measured by FACS analysis of key activation markers (i.e., CD14, CD40, CD54, CD80, CD86, CD197, CD205, and MHC class II). The secretion of mostly Th1 cytokines and chemokines (IL-1a, IL-9, IL-12, MIP-1a, and GM-CSF but not IL-4 and IL-10) was also enhanced by blocking of LEK1. The function of LEK1 in DC regulation involves cytoskeletal changes, since the dynamics of expression of vimentin and actin, key proteins of the cellular cytoskeleton, were altered after exposure of LEK1 knockdown DCs to Chlamydia. Furthermore, targeted inhibition of LEK1 expression resulted in the enhancement of the immunostimulatory capacity of DCs for T cell activation against Chlamydia. Thus, LEK1 knockdown DCs activated immune T cells at least 10-fold over untreated DCs. These results suggest that the effect of IL-10 deficiency is mediated through LEK1-related events that lead to rapid maturation of DCs and acquisition of the capacity to activate an elevated T cell response. Targeted modulation of LEK1 expression provides a novel strategy for augmenting the immunostimulatory function of DCs for inducing an effective immunity against pathogens.  相似文献   

14.
Dendritic cells (DCs) play a key role in immune function through antigen presentation by MHC and CD1, as well as cytokine production that shapes the immune response. Here we report that butyrate, a histone deacetylase inhibitor, inhibits the functional differentiation of human monocyte-derived DCs. Mature DCs were generated from monocytes in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), followed by 2 day LPS stimulation. Butyrate treatment throughout the culture period inhibited the expression of CD1 molecules, but not on CD83, CD86, and MHC molecules. The suppression was exerted at protein and mRNA levels. Butyrate-treated immature DCs also showed decreased expression of CD1 molecules. Moreover the butyrate-treated immature DCs showed lower production of IL-12 p40 and IL-6 in response to lipopolysaccharides and induced less Th1 cells in allogenic mixed lymphocyte reactions. Our results imply that histone acetylation is involved in regulating immune responses through regulating functional differentiation of DC. Thus HDAC may be one of the targets for controlling the immune response.  相似文献   

15.
We systematically investigated the impact of the relative maturation levels of dendritic cells (DCs) on their cell surface phenotype, expression of cytokines and chemokines/chemokine receptors (by DNA array and RNase protection analyses), biological activities, and abilities to induce tumor immunity. Mature DCs expressed significantly heightened levels of their antigen-presenting machinery (e.g., CD54, CD80, CD86) and numerous cytokines and chemokines/chemokine receptors (i.e., Flt-3L, G-CSF, IL-1alpha and -1beta, IL-6, IL-12, CCL-2, -3, -4, -5, -17, and -22, MIP-2, and CCR7) and were significantly better at inducing effector T cell responses in vitro. Furthermore, mice vaccinated with tumor peptide-pulsed mature DCs better survived challenge with a weakly immunogenic tumor (8 of 8 survivors) than did mice vaccinated with less mature (3 of 8 survived) or immature (0 of 8 survivors) DCs. Nevertheless, intermediate-maturity DCs expressed substantial levels of Flt-3L, IGF-1, IL-1alpha and -1beta, IL-6, CCL-2, -3, -4, -9/10, -17, and -22, MIP-2, osteopontin, CCR-1, -2, -5, and -7, and CXCR-4. Taken together, our data clearly underscore the critical nature of employing DCs of full maturity for DC-based antitumor vaccination strategies.  相似文献   

16.
It is generally accepted that after stimulation immature DCs turn into mature DCs, which present exogenous antigens together with their MHC class I molecules and then activate the antigen-specific CTLs. Although both TLR and CD40 stimulation appeared to provide the same effects on DC maturation, CD40-dependent CTL activation is much more potent than CTL activation through LPS stimulation. Despite their different outcomes, the factors that lead mature DCs to different functions remain largely undefined. In this study, we defined the transient maturation and subsequent deactivation of DCs by TLR stimuli, including those by LPS and CpG-ODN. In contrast, CD40 stimulation induced stable mature DCs that elicited sufficient CTL proliferation. The deactivated DCs, which we defined as "expired DCs," were phenotypically similar to immature DCs, except for their phenotype stability, MHC class I expression level and IL-10 production. Moreover, the functions of expired DCs were comparable to those of immature DCs in terms of CTL induction and tolerogenicity. These results may provide an explanation for the role of CD40 stimulation in antigen-specific CTL induction.  相似文献   

17.
Oncostatin M (OSM) is a pleiotropic cytokine and a member of the gp130/IL-6 cytokine family that has been found to be involved in both pro- and anti-inflammatory responses in cell-mediated immunity. Maturation of dendritic cells (DCs) is crucial for initiation of primary immune responses and is regulated by several stimuli. In this study, the role of OSM in the phenotypic and functional maturation of DCs was evaluated in vitro. Stimulation with OSM upregulated the expression of CD80, CD86, MHC class I and MHC class II and reduced the endocytic capacity of immature DCs. Moreover, OSM induced the allogeneic immunostimulatory capacity of DCs by stimulating the production of the Th1-promoting cytokine IL-12. OSM also increased the production of IFN-γ by T cells in mixed-lymphocyte reactions, which would be expected to contribute to the Th1 polarization of the immune response. The expression of surface markers and cytokine production in DCs was mediated by both the MAPK and NF-κB pathways. Taken together, these results indicate that OSM may play a role in innate immunity and in acquired immunity by enhancing DCs maturation and promoting Th1 immune responses.  相似文献   

18.
Mortality from measles virus (MV) infection is caused mostly by secondary infections associated with a pronounced immunosuppression. Dendritic cells (DCs) represent a major target of MV and could be involved in immunosuppression. In this study, human monocyte-derived DCs were used to demonstrate that DC apoptosis in MV-infected DC-T-cell cocultures is Fas mediated, whereas apoptotic T cells could not be rescued by blocking the Fas pathway. Two novel consequences of DC apoptosis after MV infection were demonstrated. (i) Fas-mediated apoptosis of DCs facilitates MV release, while CD40 activation enhances MV replication in DCs. Indeed, detailed studies of infectious MV release and intracellular MV nucleoprotein (NP) showed that inhibition of CD40-CD40L ligand interaction blocks NP synthesis. We conclude that the CD40 ligand expressed by activated T cells first enhances MV replication in DCs, and then Fas ligand produced by activated T cells induces Fas-mediated apoptosis of DCs, thus facilitating MV release. (ii) Not only MV-infected DCs but also bystander uninfected DCs undergo a maturation process confirmed by CD1a, CD40, CD80, CD86, CD83, and major histocompatibility complex type II labeling. The bystander maturation effect results from contact and/or engulfment of MV-induced apoptotic DCs by uninfected DCs. A model is proposed to explain how both a specific immune response and immunosuppression can simultaneously occur after MV infection through Fas-mediated apoptosis and CD40 activation of DCs.  相似文献   

19.
The nef gene product of human immunodeficiency virus type 1 has been shown to induce CD4 downregulation from the surface of human cells. To determine if this effect is species specific, we used a retroviral vector to transduce the human immunodeficiency virus type 1 nef gene into murine cells expressing human, chimpanzee, or murine CD4. Our results indicate that Nef induces cell surface downregulation of all three molecules. We also determined that Nef is functional in murine T cells and induces downregulation of both murine CD4 and CD8 (Ly-2) from the cell surface. In contrast, Nef does not downregulate cell surface expression of human CD8 in either murine or human cells. By using a mutant of human CD4 lacking its cytoplasmic domain and a human CD4/CD8 chimera, we determined that the cytoplasmic domain of CD4 is required for its downregulation by Nef. Transduction with a control vector had no effect on CD4 cell surface levels, indicating that retroviral transduction by itself has no significant effect on the cell surface levels of CD4. These results show that the observed downregulation of CD4 by Nef is independent of human-specific factors, is not species specific, and requires the cytoplasmic domain of CD4.  相似文献   

20.
In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-alpha/beta) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-alpha and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate na?ve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号