首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of calcium on protein phosphorylation was investigated using intact synaptosomes isolated from rat cerebral cortex and prelabelled with 32Pi. For nondepolarised synaptosomes a group of calcium-sensitive phosphoproteins were maximally labelled in the presence of 0.1 mM calcium. The phosphorylation of these proteins was slightly decreased in the presence of strontium and absent in the presence of barium, consistent with the decreased ability of these cations to activate calcium-stimulated protein kinases. Addition of calcium alone to synaptosomes prelabelled in its absence increased phosphorylation of a number of proteins. On depolarisation in the presence of calcium certain of the calcium-sensitive phosphoproteins were further increased in labelling above nondepolarised levels. These increases were maximal and most sustained after prelabelling at 0.1 mM calcium. On prolonged depolarisation at this calcium concentration a slow decrease in labelling was observed for most phosphoproteins, whereas a greater rate and extent of decrease occurred at higher calcium concentrations. At 2.5 mM calcium a rapid and then a subsequent slow dephosphorylation was observed, indicating two distinct phases of dephosphorylation. Of all the phosphoproteins normally stimulated by depolarisation, only phosphoprotein 59 did not exhibit the rapid phase of dephosphorylation at high calcium concentrations. Replacing calcium with strontium markedly decreased the extent of change observed on depolarisation whereas barium decreased phosphorylation changes even further. Taken together these data suggest that an influx of calcium into synaptosomes initially activates protein phosphorylation, but as the levels of intrasynaptosomal calcium rise protein dephosphorylation predominates. Other phosphoproteins were dephosphorylated immediately on depolarisation in the presence of calcium. The fine control of protein phosphorylation levels exerted by calcium supports the idea that the synaptosomal phosphoproteins could play a role in modulating events such as neurotransmitter release in the nerve terminal.  相似文献   

3.
Human adenovirus E4orf4 protein is toxic in human tumor cells. Its interaction with the Bα subunit of protein phosphatase 2A (PP2A) is critical for cell killing; however, the effect of E4orf4 binding is not known. Bα is one of several mammalian B-type regulatory subunits that form PP2A holoenzymes with A and C subunits. Here we show that E4orf4 protein interacts uniquely with B55 family subunits and that cell killing increases with the level of E4orf4 expression. Evidence suggesting that Bα-specific PP2A activity, measured in vitro against phosphoprotein substrates, is reduced by E4orf4 binding was obtained, and two potential B55-specific PP2A substrates, 4E-BP1 and p70S6K, were seen to be hypophosphorylated in vivo following expression of E4orf4. Furthermore, treatment of cells with low levels of the phosphatase inhibitor okadaic acid or coexpression of the PP2A inhibitor I1PP2A enhanced E4orf4-induced cell killing and G2/M arrest significantly. These results suggested that E4orf4 toxicity results from the inhibition of B55-specific PP2A holoenzymes, an idea that was strengthened by an observed growth arrest resulting from treatment of H1299 cells with Bα-specific RNA interference. We believe that E4orf4 induces growth arrest resulting in cell death by reducing the global level of B55-specific PP2A activity, thus preventing the dephosphorylation of B55-specific PP2A substrates, including those involved in cell cycle progression.Our research group and others have shown that the 114-residue product of early region E4 of human adenoviruses, termed E4orf4, induces p53-independent cell death in human tumor cells (24, 25, 34-36, 55) and in Saccharomyces cerevisiae (23, 53). E4orf4 protein, which shares no obvious homology with other viral or cellular products, kills a wide range of human cancer cells but is believed to have reduced activity against normal human primary cells (6, 55, 56). Although in some cases E4orf4-expressing cells exhibit characteristics typical of apoptosis, including the presence of irregularly shaped and shrunken nuclei, cytoplasmic vacuolization, and membrane blebbing (24, 25, 50, 55), cell death may more typically be independent of caspase activation (24, 25, 30, 32, 50). With H1299 human non-small-cell lung carcinoma cells, death is characterized by rapid cell rounding, enlargement, release from the surface of culture plates, cell cycle arrest in G2/M and possibly G1, and eventually, after an extended period, loss of membrane integrity (30). Both cytoplasmic and nuclear pathways have been observed, the former involving interactions with c-Src family kinases, activation of calpain, and remodeling of the actin cytoskeleton (7, 24, 50, 51, 58). Little is known about the nuclear pathway, which may represent the predominant death-inducing process. Our current evidence suggests that H1299 cells die following prolonged irreversible cell cycle arrest leading to mitotic catastrophe and death by a necrosis-like process (30).E4orf4 is known to associate with the Bα regulatory subunit of protein phosphatase 2A (PP2A) (22, 34), and this interaction appears to be necessary for the majority of E4orf4 toxicity in both yeast (23, 53) and human tumor cells (34, 56). PP2A is an abundant serine-threonine phosphatase involved in regulation of metabolism, splicing, translation, morphogenesis, development, and cell cycle progression (15, 19, 27, 43, 59). PP2A holoenzymes exist as multiple heterotrimeric complexes composed of a catalytic C subunit, an A subunit that functions as a scaffold, and a B-type regulatory subunit. Two forms each of the A and C subunits exist in mammalian cells; however, more than 20 B-type subunits have been identified in three unique classes (B/B55, B′/B56, B″/PR72), plus striatin/SG2NA (sometimes called B‴) (10, 19, 26). Although one group has suggested that E4orf4 protein interacts with one or more members of the B′/B56 class (57), it is generally accepted that interaction with the Bα/B55 subunit (Cdc55 in yeast) is important for induction of cell death in both human tumor cells and yeast (53, 57). Interestingly, a recent report has also suggested that in yeast, growth suppression induced by E4orf4 is mediated only in part by the catalytic C subunit of PP2A (31).In the present report, we show that E4orf4 protein interacts uniquely with members of the B55 class of PP2A B-type subunits, and at sufficient concentrations, it appears to become toxic by reducing dephosphorylation of substrates of B55-containing PP2A holoenzymes. As cell death is preceded by cell cycle arrest, we believe that key substrates may include proteins required for cell cycle progression.  相似文献   

4.
This study was undertaken to characterise the protein phosphatases in bovine adrenal chromaffin cells acting on tyrosine hydroxylase. Cells were pre-labelled with 32Pi and permeabilized with digitonin. The extent of dephosphorylation of Ser-8, Ser-19, Ser-31 and Ser-40 on tyrosine hydroxylase was found to be 30%, 38%, 37% and 71% respectively over 5 min. For Ser-19, Ser-31 and Ser-40 the dephosphorylation was entirely due to protein phosphatase 2A, as the dephosphorylation could be completely blocked by microcystin, but not by the protein phosphatase 1 inhibitory peptide. Permeabilization did not change the distribution of protein phosphatase 2A or tyrosine hydroxylase, or the activity of PP2A, from that occurring in intact cells. The dephosphorylation of Ser-8 was not altered by any inhibitor, suggesting the involvement of other protein phosphatases. The method developed here can be used to determine the protein phosphatases acting on substrates in conditions closely approximating those in situ, including the endogenous state of substrate phosphorylation and phosphatase location.  相似文献   

5.
SR proteins are essential splicing factors whose function is controlled by multi-site phosphorylation of a C-terminal domain rich in arginine-serine repeats (RS domain). The protein kinase SRPK1 has been shown to polyphosphorylate the N-terminal portion of the RS domain (RS1) of the SR protein ASF/SF2, a modification that promotes nuclear entry of this splicing factor and engagement in splicing function. Later, dephosphorylation is required for maturation of the spliceosome and other RNA processing steps. While phosphates are attached to RS1 in a sequential manner by SRPK1, little is known about how they are removed. To investigate factors that control dephosphorylation, we monitored region-specific mapping of phosphorylation sites in ASF/SF2 as a function of the protein phosphatase PP1. We showed that 10 phosphates added to the RS1 segment by SRPK1 are removed in a preferred N-to-C manner, directly opposing the C-to-N phosphorylation by SRPK1. Two N-terminal RNA recognition motifs in ASF/SF2 control access to the RS domain and guide the directional mechanism. Binding of RNA to the RNA recognition motifs protects against dephosphorylation, suggesting that engagement of the SR protein with exonic splicing enhancers can regulate phosphoryl content in the RS domain. In addition to regulation by N-terminal domains, phosphorylation of the C-terminal portion of the RS domain (RS2) by the nuclear protein kinase Clk/Sty inhibits RS1 dephosphorylation and disrupts the directional mechanism. The data indicate that both RNA-protein interactions and phosphorylation in flanking sequences induce conformations of ASF/SF2 that increase the lifetime of phosphates in the RS domain.  相似文献   

6.
The function of the biologically essential protein phosphatase 2A (PP2A) relies on formation of diverse heterotrimeric holoenzymes, which involves stable association between PP2A scaffold (A) and catalytic (C or PP2Ac) subunits and binding of variable regulatory subunits. Holoenzyme assembly is highly regulated by carboxyl methylation of PP2Ac-tail; methylation of PP2Ac and association of the A and C subunits are coupled to activation of PP2Ac. Here we showed that PP2A-specific methyltransferase, LCMT-1, exhibits a higher activity toward the core enzyme (A–C heterodimer) than free PP2Ac, and the A-subunit facilitates PP2A methylation via three distinct mechanisms: 1) stabilization of a proper protein fold and an active conformation of PP2Ac; 2) limiting the space of PP2Ac-tail movement for enhanced entry into the LCMT-1 active site; and 3) weak electrostatic interactions between LCMT-1 and the N-terminal HEAT repeats of the A-subunit. Our results revealed a new function and novel mechanisms of the A-subunit in PP2A methylation, and coherent control of PP2A activity, methylation, and holoenzyme assembly.  相似文献   

7.
Deleted in breast cancer-1 (DBC1) contributes to the regulation of cell survival and apoptosis. Recent studies demonstrated that DBC is phosphorylated at Thr454 by ATM/ATR kinases in response to DNA damage, which is a critical event for p53 activation and apoptosis. However, how DBC1 phosphorylation is regulated has not been studied. Here we show that protein phosphatase 4 (PP4) dephosphorylates DBC1, regulating its role in DNA damage response. PP4R2, a regulatory subunit of PP4, mediates the interaction between DBC1 and PP4C, a catalytic subunit. PP4C efficiently dephosphorylates pThr454 on DBC1 in vitro, and the depletion of PP4C/PP4R2 in cells alters the kinetics of DBC1 phosphorylation and p53 activation, and increases apoptosis in response to DNA damage, which are compatible with the expression of the phosphomimetic DBC-1 mutant (T454E). These suggest that the PP4-mediated dephosphorylation of DBC1 is necessary for efficient damage responses in cells.  相似文献   

8.
9.
10.
When the synaptosomal cytosol fraction from rat brain was chromatographed on a DEAE-cellulose column and assayed for protein phosphatases for τ factor and histone H1, two peaks of activities, termed peak 1 (major) and peak 2 (minor), were separated. Each peak was in a single form on Sephacryl S-300 column chromatography. Both peaks 1 and 2 dephosphorylated τ factor phosphorylated by Ca2+/calmodulin-dependent protein kinase II and the catalytic subunit of cyclic AMP-dependent protein kinase. The Km values were in the range of 0.42–0.84 μM for τ factor. There were no differences in kinetic properties of dephosphorylation between the substrates phosphorylated by the two kinases. The phosphatase activities did not depend on Ca2+, Mn2+, and Mg2+. Immunoprecipitation and immunoblotting analysis using polyclonal antibodies to the catalytic subunit of brain protein phosphatase 2A revealed that both protein phosphatases are the holoenzymic forms of protein phosphatase 2A. Aluminum chloride inhibited the activities of both peaks 1 and 2 with IC50 values of 40–60 μM. These results suggest that dephosphorylation of r factor in presynaptic nerve terminals is controlled mainly by protein phosphatase 2A and that the neurotoxic effect of aluminum seems to be related mostly to inhibition of dephosphorylation of τ factor  相似文献   

11.
Primary rat hepatocytes exposed to the phosphoprotein phosphatase (PP) inhibitors microcystin-LR and okadaic acid showed extensive surface protrusions and release of cell fragments, like cells in apoptosis. Microinjected microcystin fully reproduced these effects; the calculated intracellular concentration required for 50% effect being about 1 μM. The effects were counteracted by antagonists of calmodulin or of the multifunctional calmodulin-activated protein kinase II. The DNA replication of the epidermal growth factor-stimulated hepatocytes was nearly completely inhibited by okadaic acid at concentrations below those giving overt morphological effects. However, microcystin did not inhibit the DNA replication. Calmodulin antagonists counteracted the effect of okadaic acid on DNA replication. Microinjection of inhibitor-1 and inhibitor-2 (both directed against PP1) had no effect on DNA replication. Based on the known selectivity of okadaic acid for PP type 2A versus that of type 1, and the lack of such selectivity for microcystin, it is concluded that DNA replication is abolished by moderate inhibition of PP2A. Inhibition of PP1 did not impede DNA replication, suggesting that the two major liver phosphatases may have opposite roles in the regulation of hepatocyte DNA replication.  相似文献   

12.
Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ.  相似文献   

13.
14.
15.
16.
A molecular basis for the inhibition of brain protein phosphatase 2A (PP2A) activity by oxidative stress was examined in a high-speed supernatant (HSS) fraction from rat cerebral cortex. PP2A activity was subject to substantial disulfide reducing agent-reversible inhibition in the HSS fraction. Results of gel electrophoresis support the conclusions that inhibition of PP2A activity was associated with the both the disulfide cross-linking of the catalytic subunit (PP2AC) of the enzyme to other brain proteins and with the formation of an apparent novel intramolecular disulfide bond in PP2AC. Additional findings that the vicinal dithiol cross-linking reagent phenylarsine oxide (PAO) produced a potent dithiothreitol-reversible inhibition of PP2A activity suggest that the cross-linking of PP2AC vicinal thiols to form an intramolecular disulfide bond may be sufficient to inhibit PP2A activity under oxidative stress. We propose that the dithiol–disulfide equilibrium of a vicinal thiol pair of PP2AC may confer redox sensitivity on cellular PP2A.  相似文献   

17.
18.
Mitotic progression is regulated largely through dynamic and reversible protein phosphorylation that is modulated by opposing actions of protein kinases and phosphatases. In this study, we show that phosphatase 1 nuclear targeting subunit (Pnuts) functions as a master regulator of mitosis by modulating protein phosphatase 1 (PP1). Overexpression of Pnuts in Xenopus egg extracts inhibited both mitotic and meiotic exit. Immunodepletion of Pnuts from egg extracts revealed its essential functions in mitotic entry and maintenance. The level of Pnuts oscillates during the cell cycle and peaks in mitosis. Pnuts destruction during M-phase exit is mediated by the anaphase-promoting complex/cyclosome (APC/C)-targeted ubiquitination and proteolysis, and conserved destruction motifs of Pnuts. Disruption of Pnuts degradation delayed M-phase exit, suggesting it as an important mechanism to permit M-phase exit.  相似文献   

19.
Protein phosphatase 2A (PP2A) is a ubiquitous phospho-serine/threonine phosphatase that controls many diverse cellular functions. The predominant form of PP2A is a heterotrimeric holoenzyme consisting of a scaffolding A subunit, a variable regulatory B subunit, and a catalytic C subunit. The C subunit also associates with other interacting partners, such as α4, to form non-canonical PP2A complexes. We report visualization of PP2A complexes in mammalian cells. Bimolecular fluorescence complementation (BiFC) analysis of PP2A subunit interactions demonstrates that the B subunit plays a key role in directing the subcellular localization of PP2A, and confirms that the A subunit functions as a scaffold in recruiting the B and C subunits to form a heterotrimeric holoenzyme. BiFC analysis also reveals that α4 promotes formation of the AC core dimer. Furthermore, we demonstrate visualization of specific ABC holoenzymes in cells by combining BiFC and fluorescence resonance energy transfer (BiFC-FRET). Our studies not only provide direct imaging data to support previous biochemical observations on PP2A complexes, but also offer a promising approach for studying the spatiotemporal distribution of individual PP2A complexes in cells.  相似文献   

20.
Barrier-to-autointegration factor (BAF or BANF1) is highly conserved in multicellular eukaryotes and was first identified for its role in retroviral DNA integration. Homozygous BAF mutants are lethal and depletion of BAF results in defects in chromatin segregation during mitosis and subsequent nuclear envelope assembly. BAF exists both in phosphorylated and unphosphorylated forms with phosphorylation sites Thr-2, Thr-3, and Ser-4, near the N terminus. Vaccinia-related kinase 1 is the major kinase responsible for phosphorylation of BAF. We have identified the major phosphatase responsible for dephosphorylation of Ser-4 to be protein phosphatase 4 catalytic subunit. By examining the cellular distribution of phosphorylated BAF (pBAF) and total BAF (tBAF) through the cell cycle, we found that pBAF is associated with the core region of telophase chromosomes. Depletion of BAF or perturbing its phosphorylation state results not only in nuclear envelope defects, including mislocalization of LEM domain proteins and extensive invaginations into the nuclear interior, but also impaired cell cycle progression. This phenotype is strikingly similar to that seen in cells from patients with progeroid syndrome resulting from a point mutation in BAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号