首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of protein phosphatases in maintaining the integrity of intermediate filaments is supported by the fact that intermediate filaments would undergo a massive reorganization in cells treated with inhibitors of protein phosphatases 1 and 2A. Herein we used okadaic acid to investigate the differential roles of protein phosphatases 1 and 2A in the maintenance of intermediate filament integrity in 9L rat brain tumor cells. Protein phosphatase 2A activity was substantially inhibited after treatment with 400 nM okadaic acid for 2 h, whereas the activity of protein phosphatase 1 was only slightly affected. Furthermore, protein phosphatase 2A shows selective specificity toward phosphovimentin, which was immunologically precipitated from isotopically labeled and okadaic acid-treated cells. Further biochemical fractionation and microscopic studies revealed that vimentin intermediate filaments were colocalized with protein phosphatase 2A, but not protein phosphatase 1, in control cells. On okadaic acid treatment, vimentin filament disassembled and protein phosphatase 2A redistributed throughout the cytoplasm, suggesting that these two proteins separate from each other, whereas protein phosphatase 2A was inhibited. This working hypothesis was further supported by treatment with a low concentration (40 nM) of okadaic acid, which causes the same phenomenon. Taken together, our results showed that protein phosphatase 2A could be assigned to the intermediate filaments to serve the physiological role in maintaining the proper phosphorylation level of intermediate filaments in normal cells. This finding should pave the way for the elucidation of the regulatory mechanism of intermediate filament organization governed by protein phosphorylation.  相似文献   

2.
Plectin is a typical cytolinker protein that connects intermediate filaments to the other cytoskeletal filament systems and anchors them at membrane-associated junctional sites. One of the most important binding partners of plectin in fibroblasts is the intermediate filament subunit protein vimentin. Previous studies have demonstrated that vimentin networks are highly dynamic structures whose assembly and disassembly is accomplished stepwise via several intermediates. The precursor forms as well as polymerized (filamentous) vimentin are found in the cells in a dynamic equilibrium characterized by the turnover of the subunits within the polymer and the movement of the smaller precursors. To examine whether plectin plays a role in intermediate filament dynamics, we studied vimentin filament formation in plectin-deficient compared to wild-type fibroblasts using GFP-tagged vimentin. Monitoring vimentin and plectin in spreading and dividing cells, we demonstrate that plectin is associated with vimentin from the early stages of assembly and is required for vimentin motility as well as for the stepwise formation of stable filaments. Furthermore, plectin prevents vimentin networks from complete disassembly during mitosis, facilitating the rebuilding of the intermediate filament network in daughter cells.  相似文献   

3.
Two commercially available monoclonal antibodies raised against the intermediate filament protein vimentin were characterized concerning their species-specific reaction pattern on vertebrate cells. The antibody V9 exhibited extensive reactivity with vimentin of all mammalian species tested, but specifically did not detect vimentin in mouse cells and chicken fibroblasts. The antibody VIM 3B4 recognized vimentin in cells of chicken and most mammalian species, except for rodent species. Characterization of the binding site of VIM 3B4 on human vimentin by limited proteolysis and immunoblotting as well as by sequence comparison strongly suggested that the epitope is located in the coil 2 part of the vimentin rod domain. Site-directed mutagenesis of a mouse vimentin cDNA clone followed by in vivo expression showed that VIM 3B4 could detect rodent vimentin containing a single amino acid substitution (valine for leucine) at position 353 of the mouse vimentin sequence. Practical application for this finding was demonstrated by the unequivocal identification of a modified murine vimentin protein, distinct from the endogenous vimentin, in a cytoplasmic intermediate filament network in mouse skin fibroblasts transfected with a recombinant plasmid expression vector.  相似文献   

4.
R M Evans 《FEBS letters》1988,234(1):73-78
The intermediate filament protein vimentin was phosphorylated with cAMP-dependent protein kinase under conditions that induce filament disassembly. Digestion of phosphorylated vimentin with lysine-specific endoprotease and subsequent tryptic peptide mapping indicated that a 12 kDa N-terminal fragment contained all the phosphorylation sites found in the intact molecule. Analysis of cyanogen bromide digests indicated that two phosphorylated peptides were produced, with the major 32P-labeled species representing amino acid position 14-72, and a minor 32P-labeled peptide representing amino acid positions 1-13. These results demonstrate that phosphorylation of sites within the N-terminal head domain of vimentin are associated with phosphorylation induced filament disassembly.  相似文献   

5.
The disassembly of vimentin-containing intermediate filament (IF) networks during mitosis in BHK-21 cells is accompanied by increased phosphorylation of vimentin (Chou, Y.-H., Rosevear, E., and Goldman, R. D. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 1885-1889). We have recently identified p34cdc2 as the catalytic subunit of one of the two endogenous vimentin kinases in mitotic baby hamster kidney cells (Chou, Y.-H., Bischoff, J. R., Beach, D., and Goldman, R. D. (1990) Cell 62, 1063-1071). To begin to characterize the biochemical basis of the p34cdc2-mediated IF disassembly process, we have purified and sequenced the 32P-labeled tryptic peptides derived from in vitro-phosphorylated vimentin. The results demonstrate that Ser-55, in the N-terminal non-alpha-helical domain of vimentin, is the most favored phosphorylation site. This finding supports the idea that the N-terminal domain of type III IF protein plays a crucial role in regulating IF structure and supramolecular organization.  相似文献   

6.
Podocytes possess major processes containing microtubules (MTs) and intermediate filaments and foot processes containing actin filaments (AFs) as core cytoskeletal elements. Although the importance of these cytoskeletal elements for maintaining podocyte processes was previously shown, so far no data are available concerning the developmental regulation of podocyte process formation. A conditionally immortalized mouse podocyte cell line, which can be induced to develop processes similar to those found in vivo, was treated with various reagents to disrupt cytoskeletal elements or to inhibit protein phosphatases. MTs colocalized with vimentin intermediate filaments but not with AFs. After AF disassembly, major processes were maintained, whereas after depolymerization of MTs, podocytes lost their processes, rounded up, and maintained only actin-based peripheral projections. Suppression of MT elongation by nanomolar vinblastine or inhibition of serine/threonine phosphatase PP2A with okadaic acid abolished process formation. PP2A was expressed in undifferentiated but not in differentiated podocytes. One- and two-dimensional western blot analyses revealed a dose-dependent increase in serine/threonine phosphorylation after okadaic acid treatment. Hence, morphogenetic activity of MTs induces podocyte process formation via serine/threonine protein dephosphorylation by PP2A. These results may open new avenues for understanding the signaling mechanism underlying podocyte cytoskeleton alterations during development and in glomerular diseases.  相似文献   

7.
Abstract: Ser55 within the head domain of neurofilament light chain (NF-L) is transiently phosphorylated by protein kinase A, and phosphorylation of this residue is thought to regulate assembly of neurofilaments. To understand how Ser55 phosphorylation influences NF-L assembly, wild-type and mutant NF-L genes in which Ser55 was mutated to alanine, so as to prevent phosphorylation, or to aspartate, so as to mimic permanent phosphorylation, were transfected into mammalian cells that contain or do not contain an endogenous intermediate filament network. Wild-type and mutant NF-Ls localised to the Triton X-100-insoluble fraction, which suggests that phosphorylation of Ser55 does not inhibit assembly of NF-L and NF-L/vimentin polymers at or below the tetrameric stage. Immunofluorescence microscopy of transfected cells demonstrated that the wild-type and mutant NF-Ls all colocalised with vimentin to produce similar filamentous arrays. However, in cells lacking an endogenous intermediate filament network, the aspartate mutant produced a pattern of staining different from that of the wild-type or alanine mutant. These results suggest that phosphorylation of NF-L Ser55 is not a mechanism that precludes assembly of neurofilaments from monomers into intermediate filament structures but that phosphorylation/dephosphorylation of this residue might confer more subtle characteristics on neurofilament assembly properties and architecture.  相似文献   

8.
Intermediate filament (IF) networks can be regulated by phosphorylation of unit proteins, such as vimentin, by specific kinases leading to reorganization of the IF filamentous structure. Recently, we identified mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP kinase-2) as a vimentin kinase (Cheng and Lai [1998] J. Cell. Biochem. 71:169-181). Herein we describe the results of further in vitro studies investigating the effects of MAPKAP kinase-2 phosphorylation on vimentin and the effects of the phosphorylation on the filamentous structure. We show that MAPKAP kinase-2 mainly phosphorylates vimentin at Ser-38, Ser-50, Ser-55, and Ser-82, residues all located in the head domain of the protein. Surprisingly, and in stark contrast to phosphorylation by most other kinases, phosphorylation of vimentin by MAPKAP kinase-2 has no discernable effect on its assembly. It suggested that structure disassembly is not the only obligated consequence of phosphorylated vimentin as regulated by other kinases. Finally, a mutational analysis of each of the phosphorylated serine residues in vimentin suggested that no single serine site was primarily responsible for structure maintenance, implying that the retention of filamentous structure may be the result of the coordinated action of several phosphorylated serine sites. This also shed new lights on the functional task(s) of vimentin that is intermediate filament proteins might provide a phosphate reservoir to accommodate the phosphate surge without any structural changes.  相似文献   

9.
Dynamic reorganization of the actin microfilament networks is dependent on the reversible phosphorylation of myosin light chain. To assess the potential role of protein phosphatases in this process in living nonmuscle cells, we have microinjected the purified type-1 and type-2A phosphatases into the cytoplasm of mammalian fibroblasts. Our studies reveal that elevating type-1 phosphatase levels led to the rapid (within 30 min) and fully reversible disassembly of the actin microfilament network as determined by immunofluorescence analysis. In contrast, microinjection of equivalent amounts of the purified type-2A phosphatase had no effect on actin microfilament organization. Metabolic labeling of cells after injection of purified phosphatases was used to analyze changes in protein phosphorylation. Concomitant with the disassembly of the actin microfilaments induced by type-1 phosphatase, there was an extensive dephosphorylation of myosin light chain. No such change was observed when cells were injected with type-2A phosphatase. In addition, after extraction of fibroblasts with Triton X-100, the type-1 phosphatase could be specifically localized by immunofluorescence to a fibrillar network of microfilaments. Furthermore, neutralizing type-1 phosphatase activity in vivo by microinjection of an affinity-purified antibody, prevented the reorganization of actin microfilaments that we had previously described following injection of cAMP-dependent protein kinase. These data support the notion that type 1 and type-2 phosphatases have distinct substrate specificity in living cells, and that type-1 phosphatase plays a predominant role in the dephosphorylation of myosin light chain and thus in the modulation of actin microfilament organization in vivo in intact nonmuscle cells.  相似文献   

10.
Calyculin-A, an inhibitor of type 1 and 2A phosphatases, was applied extracellularly to 3T3 fibroblasts. At 0.1 microM, calyculin-A caused a marked increase in protein phosphorylation in both the cytosolic and insoluble cellular fractions. This effect was independent of external Ca2+. An immunoprecipitate, formed with an antibody to myosin, contained several cytoskeletal components. Increased phosphorylation following treatment with calyculin-A was observed in vimentin, the 20-kD myosin light chain, and an unidentified 440-kD component. An enhanced level of vimentin phosphorylation was found in intermediate filament preparations from treated cells. Calyculin-A also caused marked shape changes of 3T3 cells. Within minutes after addition of calyculin-A (0.1 microM) cells became rounded and lost attachment to the substratum. Stress fibers, intermediate filaments, and microtubules, prominent in the attached control cells, were not evident in the rounded cells. Shape changes were reversible and after removal of calyculin-A the rounded cells attached to the substratum, resumed a flattened shape, and were active mitotically. In the cells treated with calyculin-A an unusual "ball-like" structure was observed with transmission electron microscopy. This unique structure was 2-3 microM in diameter and was located close to the nucleus. The use of calyculin-A adds further support to the idea that cell shape is controlled, at least in part, by concerted actions of a kinase-phosphatase couple.  相似文献   

11.
To analyze the cell cycle-dependent desmin phosphorylation by Rho kinase, we developed antibodies specifically recognizing the kinase-dependent phosphorylation of desmin at Thr-16, Thr-75, and Thr-76. With these antibodies, phosphorylation of desmin was observed specifically at the cleavage furrow in late mitotic Saos-2 cells. We then found that treatment of the interphase cells with calyculin A revealed phosphorylation at all the three sites of desmin. We also found that an antibody, which specifically recognizes vimentin phosphorylated at Ser-71 by Rho kinase, became immunoreactive after calyculin A treatment. This calyculin A-induced interphase phosphorylation of vimentin at Ser-71 was blocked by Rho kinase inhibitor or by expression of the dominant-negative Rho kinase. Taken together, our results indicate that Rho kinase is activated not only in mitotic cells but also interphase ones, and phosphorylates intermediate filament proteins, although the apparent phosphorylation level is diminished to an undetectable level due to the constitutive action of type 1 protein phosphatase. The balance between intermediate filament protein phosphorylation by Rho kinase and dephosphorylation by type 1 protein phosphatase may affect the continuous exchange of intermediate filament subunits between a soluble pool and polymerized intermediate filaments.  相似文献   

12.
The formation of extensions in cell migration requires tightly coordinated reorganization of all three cytoskeletal polymers but the mechanisms by which intermediate filament networks interact with actin to generate extensions are not well-defined. We examined interactions of the actin binding protein filamin A (FLNA) with vimentin in extension formation by fibroblasts. Knockdown (KD) of vimentin in fibroblasts reduced the lengths of cell extensions by 50% (p < 0.001). After cell binding to fibronectin, there was a time-dependent increase of phosphorylation of serine 39, 56 and 72 in vimentin, which was associated with vimentin filament assembly. Of the FLNA-interacting kinases that could phosphorylate vimentin, we focused on PAK1, which we found by reciprocal immunoprecipitation associated with FLNA. Enzyme inhibitor studies and siRNA KD demonstrated that PAK1 was required for vimentin phosphorylation and formation of cell extensions. In sedimentation assays, vimentin was exclusively detected in the insoluble pellet fraction of cells expressing FLNA while in FLNA KD cells there was increased vimentin in the supernatants of FLN KD cells. Compared with wild type, FLNA KD cells showed loss of phosphorylation of serine 56 and 72 in vimentin and reduced numbers and lengths of cell extensions by >4-fold. We suggest that the association of PAK1 with FLNA enables vimentin phosphorylation and filament assembly, which are important in the development and stabilization of cell extensions during cell migration.  相似文献   

13.
The phosphorylation of the intermediate filament protein vimentin was examined under in vitro conditions. Cell cytosol and Triton-insoluble cytoskeleton preparations from nonmitotic and mitotically selected mouse L-929 cells exhibited vimentin kinase activity that is apparently cAMP and Ca2+ independent. The level of vimentin kinase activity was greater in preparations from mitotically selected cells than nonmitotic cells. Addition of Ca2+ to mitotic cytosol decreased net vimentin phosphorylation. Dephosphorylation experiments indicated that there is phosphatase activity in these preparations which is stimulated by addition of Ca2+. Fractionation of cytosol from nonmitotic cells on DEAE-Sephacel and phosphocellulose revealed a single major vimentin kinase activity (peak I). Fractionation of cytosol from mitotically selected cells yielded a similar activity (peak I) and an additional vimentin kinase activity (peak II) that was not found in nonmitotic preparations. Based on substrate specificity and lack of inhibition to characteristic inhibitors, the semipurified peak I and II vimentin kinase activities appear to be cAMP-independent enzymes that are distinct from casein kinases I and II. Phosphopeptide mapping studies indicated that both peak I and peak II vimentin kinases phosphorylate tryptic peptides in the NH2-terminal region of vimentin that are phosphorylated in intact cells. Electron microscopic examination of reconstituted vimentin filaments phosphorylated with both semipurified kinases indicated that phosphorylation induced filament disassembly. These experiments indicate that the increased phosphorylation of vimentin during mitosis may be catalyzed by a discrete cAMP-independent protein kinase. In addition, preparations from mitotic cells exhibited a Ca2+-stimulated phosphatase activity, suggesting that Ca2+ may play a regulatory role in vimentin dephosphorylation during mitosis.  相似文献   

14.
Organization of intermediate filament, a major component of cytoskeleton, is regulated by protein phosphorylation/dephosphorylation, which is a dynamic process governed by a balance between the activities of involved protein kinases and phosphatases. Blocking dephosphorylation by protein phosphatase inhibitors such as okadaic acid (OA) leads to an apparent activation of protein kinase(s) and to genuine activation of phosphatase-regulated protein kinase(s). Treatment of 9L rat brain tumor cells with OA results in a drastically increased phosphorylation of vimentin, an intermediate filament protein. In-gel renaturing assays and in vitro kinase assays using vimentin as the exogenous substrate indicate that certain protein kinase(s) is activated in OA-treated cells. With specific protein kinase inhibitors, we show the possible involvement of the cdc2 kinase- and p38 mitogen-activated protein kinase (p38MAPK)-mediated pathways in this process. Subsequent in vitro assays demonstrate that vimentin may serve as an excellent substrate for MAPK-activated protein kinase-2 (MAPKAPK-2), the downstream effector of p38MAPK, and that MAPKAPK-2 is activated with OA treatment. Comparative analysis of tryptic phosphopeptide maps also indicates that corresponding phosphopeptides emerged in vimentin from OA-treated cells and were phosphorylated by MAPKAPK-2. Taken together, the results clearly demonstrate that MAPKAPK-2 may function as a vimentin kinase in vitro and in vivo. These findings shed new light on the possible involvement of the p38MAPK signaling cascade, via MAPKAPK-2, in the maintenance of integrity and possible physiological regulation of intermediate filaments. J. Cell. Biochem. 71:169–181, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Phosphorylation and spatial reorganization of the vimentin network have been implicated in mediating smooth muscle contraction, cell migration, and mitosis. In this study, stimulation of cultured smooth muscle cells with 5-hydroxytryptamine (5-HT) induced PAK1 phosphorylation at Thr-423 (an indication of p21-activated kinase (PAK) activation). Treatment with PAK led to disassembly of wild-type (but not mutant S56A) vimentin filaments as assessed by an in vitro filament assembly assay. Furthermore, stimulation with 5-HT resulted in the dissociation of Crk-associated substrate (CAS; an adapter protein associated with smooth muscle force development) from cytoskeletal vimentin. Expression of mutant S56A vimentin in cells inhibited the increase in phosphorylation at Ser-56 and in the ratios of soluble to insoluble vimentin (an index of vimentin disassembly) and the dissociation of CAS from cytoskeletal vimentin in response to 5-HT activation compared with cells expressing wild-type vimentin. Because CAS may be involved in PAK activation, PAK phosphorylation was evaluated in cells expressing the S56A mutant. Expression of mutant S56A vimentin depressed PAK phosphorylation at Thr-423 induced by 5-HT. Expression of the S56A mutant also inhibited the spatial reorientation of vimentin filaments in cells in response to 5-HT stimulation. Our results suggest that vimentin phosphorylation at Ser-56 may inversely regulate PAK activation possibly via the increase in the amount of soluble CAS upon agonist stimulation of smooth muscle cells. Additionally, vimentin phosphorylation at this position is critical for vimentin filament spatial rearrangement elicited by agonists.  相似文献   

16.
The expression of the intermediate filament (IF) protein nestin is closely associated with rapidly proliferating progenitor cells during neurogenesis and myogenesis, but little is known about its function. In this study, we examine the effects of nestin expression on the assembly state of vimentin IFs in nestin-free cells. Nestin is introduced by transient transfection and is positively correlated with the disassembly of vimentin IFs into nonfilamentous aggregates or particles in mitotic but not interphase cells. This nestin-mediated disassembly of IFs is dependent on the phosphorylation of vimentin by the maturation/M-phase-promoting factor at ser-55 in the amino-terminal head domain. In addition, the disassembly of vimentin IFs during mitosis appears to be a unique feature of nestin-expressing cell types. Furthermore, when the expression of nestin is downregulated by the nestin-specific small interfering RNA in nestin-expressing cells, vimentin IFs remain assembled throughout all stages of mitosis. Previous studies suggest that nonfilamentous vimentin particles are IF precursors and can be transported rapidly between different cytoplasmic compartments along microtubule tracks. On the basis of these observations, we speculate that nestin may play a role in the trafficking and distribution of IF proteins and potentially other cellular factors to daughter cells during progenitor cell division.  相似文献   

17.
The focal adhesion protein VASP, a possible link between signal transduction pathways and the microfilament system, is phosphorylated by both cAMP- and cGMP-dependent protein kinases in vitro and in intact cells. Here, the analysis of VASP dephosphorylation by the serine/threonine protein phosphatases (PP) PP1, PP2A, PP2B and PP2C in vitro is reported. The phosphatases differed in their selectivity with respect to the dephosphorylation of individual VASP phosphorylation sites. Incubation of human platelets with okadaic acid, a potent inhibitor of PP1 and PP2A, caused the accumulation of phosphorylated VASP indicating that the phosphorylation status of VASP in intact cells is regulated to a major extent by serine/ threonine protein phosphatases. Furthermore, the accumulation of phosphorylated cAMP-dependent protein kinase substrate(s) appears to account for inhibitory effects of okadaic acid on platelet function.  相似文献   

18.
Several kinases phosphorylate vimentin, the most common intermediate filament protein, in mitosis. Aurora-B and Rho-kinase regulate vimentin filament separation through the cleavage furrow-specific vimentin phosphorylation. Cdk1 also phosphorylates vimentin from prometaphase to metaphase, but its significance has remained unknown. Here we demonstrated a direct interaction between Plk1 and vimentin-Ser55 phosphorylated by Cdk1, an event that led to Plk1 activation and further vimentin phosphorylation. Plk1 phosphorylated vimentin at approximately 1 mol phosphate/mol substrate, which partly inhibited its filament forming ability, in vitro. Plk1 induced the phosphorylation of vimentin-Ser82, which was elevated from metaphase and maintained until the end of mitosis. This elevation followed the Cdk1-induced vimentin-Ser55 phosphorylation, and was impaired by Plk1 depletion. Mutational analyses revealed that Plk1-induced vimentin-Ser82 phosphorylation plays an important role in vimentin filaments segregation, coordinately with Rho-kinase and Aurora-B. Taken together, these results indicated a novel mechanism that Cdk1 regulated mitotic vimentin phosphorylation via not only a direct enzyme reaction but also Plk1 recruitment to vimentin.  相似文献   

19.
Using immobilized GST-Raf-1 as bait, we have isolated the intermediate filament protein vimentin as a Raf-1-associated protein. Vimentin coimmunoprecipitated and colocalized with Raf-1 in fibroblasts. Vimentin was not a Raf-1 substrate, but was phosphorylated by Raf-1-associated vimentin kinases. We provide evidence for at least two Raf-1-associated vimentin kinases and identified one as casein kinase 2. They are regulated by Raf-1, since the activation status of Raf-1 correlated with the phosphorylation of vimentin. Vimentin phosphorylation by Raf-1 preparations interfered with its polymerization in vitro. A subset of tryptic vimentin phosphopeptides induced by Raf-1 in vitro matched the vimentin phosphopeptides isolated from v-raf-transfected cells labeled with orthophosphoric acid, indicating that Raf-1 also induces vimentin phosphorylation in intact cells. In NIH 3T3 fibroblasts, the selective activation of an estrogen-regulated Raf-1 mutant induced a rearrangement and depolymerization of the reticular vimentin scaffold similar to the changes elicited by serum treatment. The rearrangement of the vimentin network occurred independently of the MEK/ERK pathway. These data identify a new branch point in Raf-1 signaling, which links Raf-1 to changes in the cytoskeletal architecture.  相似文献   

20.
The reversible phosphorylation of proteins controlled by protein kinases and protein phosphatases is a major mechanism that regulates a wide variety of cellular processes. In contrast to C. elegans, recent studies in mammalian cells have highlighted a major role of serine/threonine protein phosphorylation in apoptosis. To illustrate the importance of dephosphorylation processes in apoptosis, this review will focus on recent studies suggesting that the interaction of the serine/threonine protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) with certain regulators of the Bcl-2 family is critically involved in the control of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号