首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two lectins were isolated from Robinia pseudoacacia (black locust) seeds using affinity chromatography on fetuin-agarose, and ion exchange chromatography on a Neobar CS column. The first lectin, R. pseudoacacia seed agglutinin I, referred to as RPsAI, is a homotetramer of four 34 kDa subunits whereas the second lectin, referred to as RPsAII, is composed of four 29 kDa polypeptides. cDNA clones encoding the polypeptides of RPsAI and RPsAII were isolated and their sequences were determined. Both polypeptides are translated from mRNAs of ca. 1.2 kb encoding a precursor carrying a signal peptide. Alignment of the deduced amino acid sequences of the different clones indicates that the 34 and 29 kDa seed lectin polypeptides show 95% sequence identity. In spite of this striking homology, the 29 kDa polypeptide has only one putative glycosylation site whereas the 34 kDa subunit has four of these sites. Carbohydrate analysis revealed that the 34 kDa possesses three carbohydrate chains whereas the 29 kDa polypeptide is only partially glycosylated at one site. A comparison of the deduced amino acid sequences of the two seed and three bark lectin polypeptides demonstrated unambiguously that they are encoded by different genes. This implies that five different genes are involved in the control of the expression of the lectins in black locust.Abbreviations LECRPAs cDNA clone encoding Robinia pseudoacacia seed lectin - LoLI Lathyrus ochrus isolectin I - PsA Pisum sativum agglutinin - RPbAI Robinia pseudoacacia bark agglutinin I - RPbAII Robinia pseudoacacia bark agglutinin II - RPsAI Robinia pseudoacacia seed agglutinin I - RPsAII Robinia pseudoacacia seed agglutinin II  相似文献   

2.
3.
Cloning and characterization of root-specific barley lectin   总被引:14,自引:2,他引:12       下载免费PDF全文
  相似文献   

4.
Using a combination of cDNA cloning and protein purification it is demonstrated that bark of yellow wood (Cladrastis lutea) contains two mannose/glucose binding lectins and a lectin-related protein which is devoid of agglutination activity. One of the lectins (CLAI) is the most prominent bark protein. It is built up of four 32 kDa monomers which are post-translationally cleaved into a 15 kDa and a 17 kDa polypeptide. The second lectin (CLAII) is a minor protein, which strongly resembles CLAI except that its monomers are not cleaved into smaller polypeptides. Molecular cloning of the Cladrastis lectin family revealed also the occurrence of a lectin-related protein (CLLRP) which is the second most prominent bark protein. Although CLLRP shows sequence homology to the true lectins, it is devoid of carbohydrate binding activity. Molecular modelling of the three Cladrastis proteins has shown that their three-dimensional structure is strongly related to the three-dimensional models of other legume lectins and, in addition, revealed that the presumed carbohydrate binding site of CLLRP is disrupted by an insertion of three extra amino acids. Since it is demonstrated for the first time that a lectin and a noncarbohydrate binding lectin-related protein are the two most prominent proteins in the bark of a tree, the biological meaning of their simultaneous occurrence is discussed.  相似文献   

5.
Aleuria aurantia lectin (AAL) shows sugar-binding specificity for L-fucose. A λgt11 expression library was constructed from A. aurantia poly(A) RNA and screened with a polyclonal antiserum directed against AAL. An immunopositive clone carrying 1.3-kb EcoRI fragment was obtained. The fragment encoded AAL, but lacked a nucleotide sequence corresponding to the two amino-terminal amino acids. The 5′-terminal part of the fragment was replaced with a chemically synthesized DNA fragment and inserted into an expression vector to yield a plasmid pKA-1. Escherichia coli carrying pKA-1 expressed functional AAL and the recombinant AAL showed the same immunological properties as those of natural AAL.  相似文献   

6.
Characterization of the lectins from onion (Allium cepa), shallot (A. ascalonicum) and leek (A. porrum) has shown that these lectins differ from previously isolated Alliaceae lectins not only in their molecular structure but also in their ability to inhibit retrovirus infection of target cells.cDNA libraries constructed from poly(A)-rich RNA isolated from young shoots of onion, shallot and leek were screened for lectin cDNA clones using colony hybridization. Sequence analysis of the lectin cDNA clones from these three species revealed a high degree of sequence similarity both at the nucleotide and at the amino acid level.Apparently the onion, shallot and leek lectins are translated from mRNAs of ca. 800 nucleotides. The primary translation products are preproproteins (ca. 19 kDa) which are converted into the mature lectin polypeptides (12.5–13 kDa) after post-translational modifications.Southern blot analysis of genomic DNA has shown that the lectins are most probably encoded by a family of closely related genes which is in good agreement with the sequence heterogeneity found between different lectin cDNA clones of one species.  相似文献   

7.
A detailed study was made of the bark lectins of the legume tree Maackia amurensis using a combination of protein purification and cDNA cloning. The lectins, which are the most abundant bark proteins, are a complex mixture of isoforms composed of two types of subunits of 32 and 37 kDa, respectively. Isolation and characterization of the homotetrameric isoforms indicated that the 32 kDa subunit exhibits a 100-fold stronger haemagglutinating activity than the 37 kDa subunit. Molecular cloning confirmed that the two lectin subunits are encoded by different genes. The 32 kDa subunit is apparently encoded by a single gene, whereas two highly homologous genes encode the 37 kDa subunit. A comparison of the deduced amino acid sequences of the bark lectin cDNAs and the previously described cDNA encoding the seed haemagglutinin demonstrated that they are encoded by different genes. Abbreviations: LECMAHb, cDNA clone encoding Maackia amurensis bark haemagglutinin; LECMALb, cDNA clone encoding Maackia amurensis bark leucoagglutinin; MALb, Maackia amurensis bark leucoagglutinin; MAHb, Maackia amurensis bark haemagglutinin This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
9.
Molecular cloning of mannose-binding lectins from Clivia miniata   总被引:1,自引:0,他引:1  
Screening of a cDNA library constructed from total RNA isolated from young developing ovaries of Clivia miniata Regel with the amaryllis lectin cDNA clone resulted in the isolation of four different isolectin clones which clearly differ from each other in their nucleotide sequences and hence also in their deduced amino acid sequences. Apparently the lectin is translated from an mRNA of ca. 800 nucleotides encoding a precursor polypeptide of 163 amino acids. Northern blot analysis of total RNA isolated from different tissues of Clivia miniata has shown that the lectin is expressed in most plant tissues with very high lectin mRNA concentrations in the ovary and the seed endosperm.  相似文献   

10.
Poly(A)-rich RNA isolated from ripening ovaries of snowdrop (Galanthus nivalis L.) yielded a single 17-kDa lectin polypeptide upon translation in a wheat-germ cell-free system. This lectin was purified by affinity chromatography. Translation of the same RNA in Xenopus leavis oocytes revealed a lectin polypeptide which was about 2 kDa smaller than the in vitro synthesized precursor, suggesting that the oocyte system had removed a 2-kDa signal peptide. A second post-translational processing step was likely to be involved since both the in vivo precursor and the Xenopus translation products were about 2 kDa larger than the mature lectin polypeptide. This hypothesis was confirmed by the structural analysis of the amino acid sequence of the mature protein and the cloned mRNA. Edman degradation and carboxypeptidase Y digestion of the mature protein, and structural analysis of the peptides obtained after chemical cleavage and modification, allowed determination of the complete 105 amino acid sequence of the snowdrop lectin polypeptide. Comparison of this sequence with the deduced amino acid sequence of a lectin cDNA clone revealed that besides the mature lectin polypeptide, the lectin mRNA also encoded a 23 amino acid signal-sequence and a C-terminal extension of 29 amino acids, which confirms the results from in vitro translation experiments.  相似文献   

11.
Using RNA extracted from Pinellia cordata young leaves and primers designed according to the conserved regions of Araceae lectins, the full-length cDNA of Pinellia cordata agglutinin (PCL) was cloned by rapid amplification of cDNA ends (RACE). The full-length cDNA of pcl was 1,182 bp and contained a 768 bp open reading frame (ORF) encoding a lectin precursor of 256 amino acids. Through comparative analysis of pcl gene and its deduced amino acid sequence with those of other Araceae species, it was found that pcl encoded a precursor lectin with signal peptide. PCL is a mannose-binding lectin with three mannose-binding sites. Semi-quantitative RT-PCR analysis revealed that pcl is expressed in all tested tissues including leaf, stem and bulbil, but with the highest expression in bulbil. PCL protein was successfully expressed in Escherichia coli with the molecular weight expected.  相似文献   

12.
A cDNA clone for the extrinsic 30 kDa protein (OEC30) of photosystem II in Euglena gracilis Z was isolated and characterized. The open reading frame of the cDNA encoded a polypeptide of 338 amino acids, which consisted of a long presequence of 93 amino acids and a mature polypeptide of 245 amino acids. Two hydrophobic domains were identified in the presequence, in contrast to the presence of a single hydrophobic domain in the presequence of the corresponding proteins from higher plants. At the N- and C-terminal regions, respectively, of the presequence, a signal-peptide-like sequence and a thylakoid-transfer domain were identified. The presence of a long and unique presequence in the precursor to OEC30 is probably related to the complexity of the intracellular processes required for the synthesis and/or transport of the protein in Euglena.Abbreviations ER endoplasmic reticulum - cDNA complementary DNA - SSU small subunit; Rubisco, ribulose 1,5-bisphosphate carboxylase/oxygenase - Rubico, ribulose 1,5 bisphosphate carboxylase/oxygenase - LHC II light-harvesting chlorophyll protein of photosystem II - PS II photosystem II - OEC30 the extrinsic 30 kDa protein of photosystem II in Euglena - PCR polymerase chain reaction - SDS sodium dodecyl sulfate - TE a solution containing 10 mM Tris-HCl and 1 mM EDTA pH 8.0 - SSPE a solution containing 0.15 M NaCl, 10 mM NaH2PO4 and 1 mM EDTA pH 7.4 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - PVDF poly(vinylidene difluoride)  相似文献   

13.
Lectin is the major protein in the phloem tissue of S. japonica. By immunohistochemistry using anti-seed lectin antibody it was demonstrated that the lectin was localized in the ray and the axial parenchyma. Neither lectin nor other cross-reactive materials were observed in the cambium, sieve tubes and companion cells. The distribution and localization changed in relation to tissue development. Lectin content in the bark changed during the year, the average in summer being about 50% of that in winter. The distribution of lectin in the bark in winter was similar from the innermost (youngest) to the outermost (oldest) region. In contrast, in summer the innermost region hardly contained any lectin, and the outermost region contained less lectin than the middle. Lectin localization in tissues and cells differed also depending on tissue age. In new tissue, produced in the current year, lectip was absent in summer, was located in the cytoplasmic layer between cell wall and vacuole in autumn, and sequestered in the vacuoles in winter. On the other hand, lectin in old tissue (formed in the previous year) was located throughout the year mainly within the vacuoles, with only very small contents in the cytoplasmic layer in autumn. Within the outermost (oldest) region, in which the lectin content was low in summer, the cells which bordered the outer bark never contained any lectin in summer. The intracellular localization in autumn in new tissue, determined by immunogold electron microscopy, was in the lumen of the endoplasmic reticulum and vesicles, with gold particles hardly present in the cytoplasm. From these findings we conclude that lectin is synthesized on the endoplasmic reticulum and most vigorously in the new tissue in autumn, and that it is mainly consumed in the outermost bark regions, where dilatation occurs and-or where cork cambium is differentiated.Abbreviations ELISA enzyme-linked immunosorbent assay - ER endoplasmic reticulum - kDa kilodalton Retired. Anatomical terms in this paper are used according to Multilingual glossary of terms used in wood anatomy edited by the Committee on Nomenclature, International Association of Wood Anatomists; reprints may be obtained from the Office of the Secretary-Treasurer, Universitätsstrasse 2, CH-8092 Zürich 6, Switzerland.  相似文献   

14.
The major albumin, a polypeptide of 21 kilodaltons (kDa), from the seeds of cocoa (Theobroma cacao L.), has been identified and partially purified by preparative gel electrophoresis. Some N-terminal sequence was obtained, permitting the construction of an oligonucleotide probe. This probe was used to isolate the corresponding copy DNA (cDNA) clone from a library made from poly(A)+ RNA from immature cocoa beans. The cDNA sequence has a single major open reading frame, that translates to give a 221-amino-acid polypeptide of Mr 24003. The existence of a precursor to the 21-kDa polypeptide of this size was confirmed by immunoprecipitation from total poly(A)+ RNA translation products. The polypeptide has a hydrophobic signal sequence of 26 amino acids before the mature start, and the mature polypeptide would have an Mr of 21223. The protein sequence is homologous with sequences of the Kunitz protease and -amylase inhibitor family, and the protein probably functions to defend the seed's protein reserves from the digestive enzymes of invading pests. However because the protein comprises 25–30% of the total seed protein it may itself also function as a storage protein. Electron micrographs of immunogold-labelled embryo sections show that the protein is located in membrane-enclosed organelles.Abbreviations cDNA copy DNA - IgG immunoglobulin G - kb kilobase pairs - kDa kilodaltons - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulphate-polyacylamide gel electrophoresis The authors are very grateful to Dr R. Jennings of the Virology Department, Sheffield University Medical School, for help in raising antibodies, and to Dr G. Cope, of the Biological Sciences Electron Microscopy Unit, Sheffield University, for taking the electron micrographs.To whom correspondence should be addressed.  相似文献   

15.
A cDNA clone, corresponding to mRNAs preferentially expressed in the roots of bean (Phaseolus vulgaris L.) seedlings, was isolated. This clone contains a 381 bp open reading frame encoding a polypeptide of 13.5 kDa, designated PVR5 (Phaseolus vulgaris root 5). The amino acid sequence of this clone is rich in proline (13.5%) and leucine (12.7%) and shares significant amino acid sequence homology with root-specific and proline-rich proteins from monocots (maize and rice), and proline-rich proteins from dicots (carrot, oilseed rape, and Madagascar periwinkle). The precise biological roles of these polypeptides are unknown. PVR5 mRNA accumulation is developmentally regulated within the root, with high levels at the root apex and declining levels at distances further from the root tip. In situ hybridization shows that PVR5 mRNA specifically accumulates in the cortical ground meristem in which maximal cell division occurs. Southern blot analysis suggests that genomic DNA corresponding to PVR5 cDNA is encoded by a single gene or a small gene family.  相似文献   

16.
A tissue-specific cDNA library was constructed using polyA+ RNA from pituitary glands of the Indian catfishHeteropneustes fossilis (Bloch) and a cDNA clone encoding growth hormone (GH) was isolated. Using polymerase chain reaction (PCR) primers representing the conserved regions of fish GH sequences the 3′ region of catfish GH cDNA (540 bp) was cloned by random amplification of cDNA ends and the clone was used as a probe to isolate recombinant phages carrying the full-length cDNA sequence. The full-length cDNA clone is 1132 bp in length, coding for an open reading frame (ORF) of 603 bp; the reading frame encodes a putative polypeptide of 200 amino acids including the signal sequence of 22 amino acids. The 5′ and 3′ untranslated regions of the cDNA are 58 bp and 456 bp long, respectively. The predicted amino acid sequence ofH. fossils GH shared 98% homology with other catfishes. Mature GH protein was efficiently expressed in bacterial and zebrafish systems using appropriate expression vectors. The successful expression of the cloned GH cDNA of catfish confirms the functional viability of the clone.  相似文献   

17.
18.
A root-specific cDNA clone, PVR3, was isolated from a bean (Phaseolus vulgaris L.) root cDNA library by a differential screening procedure. The nucleotide sequence of PVR3 contains an open reading frame coding for an 11.14 kDa polypeptide of 102 amino acid residues; the first 25 amino acids correspond to the sequence characteristic of a signal peptide. Comparison of the deduced PVR3 polypeptide sequence with the polypeptide sequences of previously cloned genes indicates that PVR3 may encode a ns-LTP-like protein. Molecular modelling of the PVR3 protein predicts that it has a three-dimensional structure that is similar to the three-dimensional model determined from the maize ns-LTP. The PVR3 mRNA accumulated mainly in the roots of young seedlings. It can be detected at low levels in flowers, but it is not detected in other organs. Genomic Southern blot analysis indicates that the genomic DNA corresponding to PVR3 cDNA is encoded by a single gene or small gene family in the bean genome.  相似文献   

19.
A new lectin gene was cloned from Amorphophallus konjac. The full-length cDNA of Amorphophallus konjac agglutinin (aka) was 736 bp and contained a 474 bp open reading frame encoding a 158 amino acid protein. Homology analysis revealed that the lectin from this Araceae species belonged to the superfamily of monocot mannose-binding proteins. Molecular modeling of AKA indicated that the three-dimensional structure of AKA strongly resembles that of the snowdrop lectin. Southern blot analysis of the genomic DNA revealed that aka belonged to a low-copy gene family. Northern blot analysis demonstrated that aka expression was tissue-specific with the strongest expression being found in root.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号