首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultivation based and culture independent molecular approaches were used to characterize the composition and structure of bacterial community from a natural warm spring in the Western Ghats, a biodiversity ‘hotspot’. Dilution plating was done on three types of media with varying nutrient levels. Relatively nutritionally poor medium supported growth of highest number of bacteria (4.98 × 103 ml−1) compared to nutritionally rich media. On the basis of different morphological features on the plate, 62 aerobic and heterotrophic bacterial strains were isolated and their 16S rRNA genes were sequenced and analyzed. On the basis of sequence similarity these isolates were found to be distributed in 21 different genera belonging to Proteobacteria (58%) followed by Firmicutes (26%), Actinobacteria (13%) and Bacteroidetes (3%). Amplification of 16S rRNA gene of the community DNA using eubacterial primers, followed by cloning and sequencing revealed that predominant members of the habitat belong to the phylum Cyanobacteria (60%) followed by Proteobacteria (19.5%), Bacteroidetes (6.67%), Actinobacteria (4.4%) and Firmicutes (2.2%) and small ribosomal subunit of a plastid (of Chlorophyta, 2.2%).  相似文献   

2.
Svalbard reindeer (Rangifer tarandus platyrhynchus) live under austere nutritional conditions on the high-arctic archipelago of Svalbard, while semi-domesticated Norwegian reindeer (R. tarandus tarandus) migrate between lush coastal summer pastures and inland winter pastures with lichens on mainland Norway. Svalbard reindeer are known to have high rumen concentrations of cellulolytic bacteria, ranging from 15% of the viable population in summer to 35% in winter, compared to only 2.5% in Norwegian reindeer. Their rumen bacterial diversity was investigated through comparative analyses of 16S rRNA gene sequences (∼1.5 kb in length) generated from clone libraries (n = 121) and bacterial isolates (n = 51). LIBSHUFF comparisons of the composition of the two 16S rRNA libraries from Norwegian reindeer showed a significant effect of artificial feeding compared to natural pasture, but failed to yield significant differences between libraries from Norwegian reindeer and Svalbard reindeer. The combined sequences from reindeer were not significantly different from those reported in wild Thompson’s gazelle in Kenya but did differ from those reported in domestic cattle in Japan. A total of 90 distinct operational taxonomic units (OTUs) were identified by employing a criterion of 97% similarity, while the Chao1 index estimated the reindeer bacterial rumen population richness at 698 OTUs. The majority of the clone library sequences (92.5%) represented novel strains with <97% identity to any known sequence in the public database, most of them affiliated with the bacterial phylum Firmicutes (low G+C Gram-positives) related to the order Clostridiales (76.7%), while Gram-negative bacteria in the Bacteriodales (Prevotella–Bacteroides group) contributed to 22.5%. Also, six of the isolates were putatively novel strains, possibly representing new species in the Clostridium subphylum (cluster XIVa), Actinomyces and Butyrivibrio.  相似文献   

3.
The phylogenetic diversity and composition of the bacterial community in anaerobic sediments from Sapelo Island, GA, USA were examined using 16S rRNA gene libraries. The diversity of this community was comparable to that of soil, and 1,186 clones formed 817 OTUs at 99% sequence similarity. Chao1 estimators for the total richness were also high, at 3,290 OTUs at 99% sequence similarity. The program RDPquery was developed to assign clones to taxonomic groups based upon comparisons to the RDP database. While most clones could be assigned to describe phyla, fewer than 30% of the clones could be assigned to a described order. Similarly, nearly 25% of the clones were only distantly related (<90% sequence similarity) to other environmental clones, illustrating the unique composition of this community. One quarter of the clones were related to one or more undescribed orders within the γ-Proteobacteria. Other abundant groups included the δ-Proteobacteria, Bacteroidetes, and Cyanobacteria. While these phyla were abundant in other estuarine sediments, the specific members at Sapelo Island appeared to be different from those previously described in other locations, suggesting that great diversity exists between as well as within estuarine intertidal sediments. In spite of the large differences in pore water chemistry with season and depth, differences in the bacterial community were modest over the temporal and spatial scales examined and generally restricted to only certain taxa. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0%), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment.  相似文献   

5.
The bacterial community in a historic lake sediment core of Ardley Island, Antarctica, spanning approximately 1,600 years, was investigated by molecular approaches targeting the 16S rRNA gene fragments. The cell number in each 1 cm layer of the sediment core was deduced through semi-quantification of the 16S rRNA gene copies by quantitative competitive PCR (QC-PCR). It was found that the total bacterial numbers remained relatively stable along the entire 59 cm sediment core. Denaturing Gradient Gel Electrophoresis (DGGE) analysis and sequencing of PCR-amplified 16S rRNA gene fragments were performed to analyze the bacterial diversity over the entire column. Principle coordinates analysis suggested that the bacterial communities along the sediment core could be separated into three groups. There were obvious bacterial community shift among groups of 1–20 cm, 21–46 cm and 46–59 cm. Diversity indices indicated that the bacterial community in the 21–46 cm depth showed the highest species diversity and uniformity. The main bacterial groups in the sediments fell into 4 major lineages of the gram-negative bacteria: the α, γ and δ subdivision of Proteobacteria, the Cytophaga-Flavobacteria-Bacteroides, and some unknown sequences. The gram-positive bacteria Gemmatimonadetes, Firmicutes and Actinobacteria were also detected. The results demonstrated the presence of highly diverse bacterial community population in the Antarctic lake sediment core. And the possible influence of climate and penguin population change on the bacterial community shift along the sediment core was discussed.Shengkang Li and Xiang Xiao contributed equally to this paper  相似文献   

6.
Li CQ  Liu WC  Zhu P  Yang JL  Cheng KD 《Microbial ecology》2011,62(4):800-812
Several molecular techniques were employed to document the bacterial diversity associated with the marine sponge Gelliodes carnosa. Cultivation-dependent and cultivation-independent methods were used to obtain the 16S rRNA gene sequences of the bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the bacterial community structure was highly diverse with representatives of the high G + C Gram-positive bacteria, cyanobacteria, low G + C Gram-positive bacteria, and proteobacteria (α-, β-, and γ-), most of which were also found in other marine environments, including in association with other sponges. Overall, 300 bacterial isolates were cultivated, and a total of 62 operational taxonomic units (OTUs) were identified from these isolates by restriction fragment length polymorphism (RFLP) analysis and DNA sequencing of the 16S rRNA genes. Approximately 1,000 16S rRNA gene clones were obtained by the cultivation-independent method. A total of 310 clones were randomly selected for RFLP analysis, from which 33 OTUs were acquired by further DNA sequencing and chimera checking. A total of 12 cultured OTUs (19.4% of the total cultured OTUs) and 13 uncultured OTUs (39.4% of the total uncultured OTUs) had low sequence identity (≤97%) with their closest matches in GenBank and were probably new species. Our data provide strong evidence for the presence of a diverse variety of unidentified bacteria in the marine sponge G. carnosa. A relatively high proportion of the isolates exhibited antimicrobial activity, and the deferred antagonism assay showed that over half of the active isolates exhibited a much stronger bioactivity when grown on medium containing seawater. In addition to demonstrating that the sponge-associated bacteria could be a rich source of new biologically active natural products, the results may have ecological implications. This study expands our knowledge of the diversity of sponge-associated bacteria and contributes to the growing database of the bacterial communities within sponges.  相似文献   

7.
Microorganisms inhabiting stream sediments mediate biogeochemical processes of importance to both aquatic and terrestrial ecosystems. In deserts, the lateral margins of ephemeral stream channels (parafluvial sediments) are dried and rewetted, creating periodically wet conditions that typically enhance microbial activity. However, the influence of water content on microbial community composition and diversity in desert stream sediments is unclear. We sampled stream margins along gradients of wet to dry sediments, measuring geochemistry and bacterial 16S rRNA gene composition, at streams in both a cold (McMurdo Dry Valleys, Antarctica) and hot (Chihuahuan Desert, New Mexico, USA) desert. Across the gradients, sediment water content spanned a wide range (1.6–37.9% w/w), and conductivity was highly variable (12.3–1,380 μS cm−2). Bacterial diversity (at 97% sequence similarity) was high and variable, but did not differ significantly between the hot and cold desert and was not correlated with sediment water content. Instead, conductivity was most strongly related to diversity. Water content was strongly related to bacterial 16S rRNA gene community composition, though samples were distributed in wet and dry clusters rather than as assemblages shifting along a gradient. Phylogenetic analyses showed that many taxa from wet sediments at the hot and cold desert site were related to, respectively, halotolerant Gammaproteobacteria, and one family within the Sphingobacteriales (Bacteroidetes), while dry sediments at both sites contained a high proportion of taxa related to the Acidobacteria. These results suggest that bacterial diversity and composition in desert stream sediments is more strongly affected by hydrology and conductivity than temperature.  相似文献   

8.
In order to estimate how pollution affects the bacterial community structure and composition of sediments, chemical and molecular approaches were combined to investigate eight stations around the Bizerte lagoon. Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified 16S rRNA genes revealed that each station was characterized by a specific bacterial community structure. The combination of this data with those of chemical analysis showed a correlation between the bacterial fingerprint and the pollutant content, principally with hydrocarbon pollution. The composition of the bacterial community of two contrasted stations related to the pollution revealed sequences affiliated to α, β, γ, δ, ε subclass of the Proteobacteria, Actinobacteria, and Acidobacteria in both stations although in different extent. Gamma and delta subclass of the Proteobacteria were dominant and represent 70% of clones in the heavy-metal-contaminated station and 47% in the polyaromatic hydrocarbon (PAH)-contaminated. Nevertheless, most of the sequences found were unaffiliated to cultured bacteria. The adaptation of the bacterial community mainly to PAH compounds demonstrated here and the fact that these bacterial communities are mainly unknown suggest that the Bizerte lagoon is an interesting environment to understand the capacity of bacteria to cope with some pollutants.  相似文献   

9.
Microbial Diversity at a Deep-Sea Station of the Pacific Nodule Province   总被引:4,自引:0,他引:4  
The Pacific nodule province covers about 4.5 million km2 in the eastern tropical Pacific with abundance of polymetallic nodules. Microbes are believed to play large roles in the metal cycling in many environments, but the microbial community in the Pacific nodule province has never been studied. Phylogenetic studies based on 16S rRNA gene sequence analysis, together with bacterial cultivation were used to study the microbial populations in the Pacific nodule province (A core) deep-sea sediment. Bacterial 16S rRNA gene sequence analysisdemonstrated that Proteobacteria division mainly of γ-Proteobacteria dominated the microbial community of the nodule province A core. Among the γ-Proteobacteria, Shewanella species which were known as Fe(□), Mn(□) reducing bacteria were found prevalent. Besides Proteobacteria, Green nonsulfur bacteria, the candidate subdivision OP3, Cytophaga-Flexibacter-Bacteroides bacteria and novel unidentified strains were also detected. Archaeal 16S rDNA sequence analysis data and results from hybridization with crenarchaeotal marine group I specific probe revealed that all archaea detected at the station belong to Crenarchaeota nonthermophilic marinegroup I. Bacteria assigned to the gamma Proteobacteria wereisolated, none of them showed capability of manganese oxidation. These authors contributed equally to this paper.  相似文献   

10.
The South China Sea, which is one of the largest marginal seas in the world, is predicted to have suitable accumulation conditions and exporting prospects for natural gas hydrate. The aim of this study was to explore the bacterial community composition of deep-sea sediments from such an ecosystem. DNA was extracted by five different methods and used as templates for PCR amplification of the V3 regions of the 16S rRNA gene. Denaturing gradient gel electrophoresis (DGGE) was used to separate the amplified products and analyse the 16S rRNA gene diversity of sediment samples. The results of DGGE indicated that the bacterial community composition is influenced by DNA extraction methods. Sequencing dominant bands demonstrated that the major phylogenetic groups identified by DGGE belong to Proteobacteria, Bacteroidetes, gram-positive bacteria and Archaea. Integrating different DNA extraction procedures are needed to analyse the actual bacterial diversity from environment when the amplification of 16S rRNA gene and construction of representative clone library were adopted.  相似文献   

11.
To provide insight into the phylogenetic bacterial diversity of the freshwater sponge Spongilla lacustris, a 16S rRNA gene libraries were constructed from sponge tissues and from lake water. Restriction fragment length polymorphism (RFLP) analysis of >190 freshwater sponge-derived clones resulted in six major restriction patterns, from which 45 clones were chosen for sequencing. The resulting sequences were affiliated with the Alphaproteobacteria (n = 19), the Actinobacteria (n = 15), the Betaproteobacteria (n = 2), and the Chloroflexi (n = 2) lineages. About half of the sequences belonged to previously described actinobacterial (hgc-I) and betaproteobacterial (beta-II) sequence clusters of freshwater bacteria that were also present in the lake water 16S rRNA gene library. At least two novel, deeply rooting alphaproteobacterial lineages were recovered from S. lacustris that showed <89% sequence similarity to known phylogenetic groups. Electron microscopical observations revealed that digested bacterial remnants were contained within food vacuoles of sponge archaeocytes, whereas the extracellular matrix was virtually free of bacteria. This study is the first molecular diversity study of a freshwater sponge and adds to a growing database on the diversity and community composition of sponge-associated microbial consortia.  相似文献   

12.
The primary goal of this study was to better understand the microbial composition and functional genetic diversity associated with turkey fecal communities. To achieve this, 16S rRNA gene and metagenomic clone libraries were sequenced from turkey fecal samples. The analysis of 382 16S rRNA gene sequences showed that the most abundant bacteria were closely related to Lactobacillales (47%), Bacillales (31%), and Clostridiales (11%). Actinomycetales, Enterobacteriales, and Bacteroidales sequences were also identified, but represented a smaller part of the community. The analysis of 379 metagenomic sequences showed that most clones were similar to bacterial protein sequences (58%). Bacteriophage (10%) and avian viruses (3%) sequences were also represented. Of all metagenomic clones potentially encoding for bacterial proteins, most were similar to low G+C Gram-positive bacterial proteins, particularly from Lactobacillales (50%), Bacillales (11%), and Clostridiales (8%). Bioinformatic analyses suggested the presence of genes encoding for membrane proteins, lipoproteins, hydrolases, and functional genes associated with the metabolism of nitrogen and sulfur containing compounds. The results from this study further confirmed the predominance of Firmicutes in the avian gut and highlight the value of coupling 16S rRNA gene and metagenomic sequencing data analysis to study the microbial composition of avian fecal microbial communities.  相似文献   

13.
Fecal pellets make up a significant fraction of the global flux of organic matter in oceans, and the associated bacterial communities in particular are a potential food source for marine organisms. However, these communities remain largely unknown. In the present study, the bacterial communities on fecal pellets of the benthic copepod Paramphiascella fulvofasciata feeding on the diatoms Navicula phyllepta and Seminavis robusta were analyzed. The aim of this study was to characterize the bacterial communities associated with the diatoms and the fecal pellets by means of DGGE profiling. Furthermore, isolated bacteria were characterized by means of partial 16S rRNA gene sequencing. The composition of the bacterial microflora on fecal pellets was studied in terms of the effect of the original food source, the age of the fecal pellets and the copepod’s identity. Alphaproteobacteria, Flavobacteria, and Bacilli were found on the fecal pellets; whereas on diatoms, exclusively Gammaproteobacteria were identified. Especially after eating N. phyllepta, there was an important increase in bacterial diversity, although the diatom N. phyllepta harbored a less diverse bacterial community than S. robusta. Our data suggest that the additional bacteria originate from the copepod’s digestive tract and largely depends on the initial food source.  相似文献   

14.
Urmia Lake is one of the most permanent hypersaline lakes in the world which is threatened by hypersalinity and serious dryness. In spite of its importance no paper has been published regarding bacterial community of this lake. Accordingly, the present study aimed to investigate the halophilic bacteria in the aforementioned lake. In so doing, thirty seven strains were isolated on six different culture media. The isolated strains were characterized using phenotypic and genotypic methods. Growth of the strains occurred at 25–35°C, pH 6–9 and 7 to 20% (w/v) NaCl indicating that most of the isolates were moderately halophiles. Catalase, oxidase and urease activities were found to be positive for the majority of the isolates. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolated bacteria belonged to two major taxa: Gammaproteobacteria (92%, including Salicola [46%], Pseudomonas [13.5%], Marinobacter [11%], Idiomarina [11%], and Halomonas [8%]) and Firmicutes (8%, including Bacillus [5%] and Halobacillus [3%]). In addition, a novel bacterium whose 16S rRNA gene sequence showed almost 98% sequence identity with the taxonomically troubled DSM 3050T, Halovibrio denitrificans HGD 3T and Halospina denitriflcans HGD 1–3, each, was isolated. 16S rRNA gene similarity levels along with phenotypic characteristics suggest that some of the isolated strains could be regarded as potential type strain for novel species, on which further studies are recommended.  相似文献   

15.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments was used to explore the genetic diversity of hydrothermal vent microbial communities, specifically to determine the importance of sulfur-oxidizing bacteria therein. DGGE analysis of two different hydrothermal vent samples revealed one PCR band for one sample and three PCR bands for the other sample, which probably correspond to the dominant bacterial populations in these communities. Three of the four 16S rDNA fragments were sequenced. By comparison with 16S rRNA sequences of the Ribosomal Database Project, two of the DGGE-separated fragments were assigned to the genusThiomicrospira. To identify these ‘phylotypes’ in more detail, a phylogenetic framework was created by determining the nearly complete 16S rRNA gene sequence (approx. 1500 nucleotides) from three describedThiomicrospira species, viz.,Tms. crunogena, Tms. pelophila, Tms. denitrificans, and from a new isolate,Thiomicrospira sp. strain MA2-6. AllThiomicrospira species exceptTms. denitrificans formed a monophyletic group within the gamma subdivision of the Proteobacteria.Tms. denitrificans was assigned as a member of the epsilon subdivision and was distantly affiliated withThiovulum, another sulfur-oxidizing bacterium. Sequences of two dominant 16S rDNA fragments obtained by DGGE analysis fell into the gamma subdivisionThiomicrospira. The sequence of one fragment was in all comparable positions identical to the 16S rRNA sequence ofTms. crunogena. Identifying a dominant molecular isolate asTms. crunogena indicates that this species is a dominant community member of hydrothermal vent sites. Another ‘phylotype’ represented a newThiomicrospira species, phylogenetically in an intermediate position betweenTms. crunogena andTms. pelophila. The third ‘phylotype’ was identified as aDesulfovibrio, indicating that sulfate-reducing bacteria, as sources of sulfide, may complement sulfur- and sulfide-oxidizing bacteria ecologically in these sulfide-producing hydrothermal vents.  相似文献   

16.
Zhang XF  Yao TD  Tian LD  Xu SJ  An LZ 《Microbial ecology》2008,55(3):476-488
The microbial abundance, the percentage of viable bacteria, and the diversity of bacterial isolates from different regions of a 83.45-m ice core from the Puruogangri glacier on the Tibetan Plateau (China) have been investigated. Small subunit 16S rRNA sequences and phylogenetic relationships have been studied for 108 bacterial isolates recovered under aerobic growth conditions from different regions of the ice core. The genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-polymerase chain reaction and physiological heterogeneity of the closely evolutionary related bacterial strains isolated from different ice core depths were analyzed as well. The results showed that the total microbial cell, percentages of live cells, and the bacterial CFU ranged from 104 to 105 cell ml−1 (Mean, 9.47 × 104; SD, 5.7 × 104, n = 20), 25–81%, and 0–760 cfu ml−1, respectively. The majority of the isolates had 16S rRNA sequences similar to previously determined sequences, ranging from 92 to 99% identical to database sequences. Based on their 16S rRNA sequences, 42.6% of the isolates were high-G + C-content (HGC) gram-positive bacteria, 35.2% were low-G + C (LGC) gram-positive bacteria, 16.6% were Proteobacteria, and 5.6% were CFB group. There were clear differences in the depth distribution of the bacterial isolates. The isolates tested exhibited unique phenotypic properties and high genetic heterogeneity, which showed no clear correlation with depths of bacterial isolation. This layered distribution and high heterogeneity of bacterial isolates presumably reflect the diverse bacterial sources and the differences in bacteria inhabiting the glacier’s surface under different past climate conditions.  相似文献   

17.
Published polymerase chain reaction primer sets for detecting the genes encoding 16S rRNA gene and hydrazine oxidoreductase (hzo) in anammox bacteria were compared by using the same coastal marine sediment samples. While four previously reported primer sets developed to detect the 16S rRNA gene showed varying specificities between 12% and 77%, an optimized primer combination resulted in up to 98% specificity, and the recovered anammox 16S rRNA gene sequences were >95% sequence identical to published sequences from anammox bacteria in the Candidatus “Scalindua” group. Furthermore, four primer sets used in detecting the hzo gene of anammox bacteria were highly specific (up to 92%) and efficient, and the newly designed primer set in this study amplified longer hzo gene segments suitable for phylogenetic analysis. The optimized primer set for the 16S rRNA gene and the newly designed primer set for the hzo gene were successfully applied to identify anammox bacteria from marine sediments of aquaculture zone, coastal wetland, and deep ocean where the three ecosystems form a gradient of anthropogenic impact. Results indicated a broad distribution of anammox bacteria with high niche-specific community structure within each marine ecosystem.  相似文献   

18.
为揭示呼伦贝尔沙地樟子松人工林土壤细菌群落结构和功能特征,以3种林龄(25 a、34 a和43 a)沙地樟子松人工林为研究对象,沙质草地为对照,采用野外调查、Illumina Miseq高通量测序和PICRUSt功能预测相结合的研究方法,鉴定分析土壤细菌群落结构,阐明土壤理化因子对土壤细菌群落结构的影响,预测土壤细菌功能特征。研究结果显示:(1)呼伦贝尔沙地樟子松人工林共获得土壤细菌35门92纲109目210科267属,主要细菌优势门为变形菌门(Proteobacteria)(24.29%±3.39%)、放线菌门(Actinobacteria)(23.72%±4.10%)和酸杆菌门(Acidobacteria)(23.40%±2.55%)。人工林与沙质草地的变形菌门和酸杆菌门相对丰度存在显著差异(P<0.05),人工林间土壤细菌多样性指数不存在显著差异(P>0.05)。(2)研究区土壤细菌群落的主要影响因子是速效钾、全磷和全氮。(3)PICRUSt功能预测共获得5个一级功能层和31个二级功能层,主要涉及环境信息处理、代谢和遗传信息处理等功能。43 a人工林土壤细菌代谢功能活跃,有利于植物对养分的吸收和利用。在呼伦贝尔沙地种植樟子松人工林有助于改善土壤细菌群落结构,促进土壤细菌代谢功能,且表层土壤细菌群落对土壤环境变化更为敏感。  相似文献   

19.
动物肠道细菌群落在联系宿主与生态系统功能中发挥着至关重要的作用。【目的】本研究旨在评估绿肥翻压和水稻生长不同时期对土壤细菌和线虫肠道细菌群落组成和结构的影响,并探究土壤细菌和线虫肠道细菌群落间的潜在关联关系。【方法】基于盆栽试验,结合16S rRNA基因高通量测序技术,分析黑麦草翻压和对照处理下水稻生长的前期(返青期)和后期(收获期)土壤细菌和线虫肠道细菌群落,结合网络分析研究土壤细菌网络互作对线虫肠道细菌群落的潜在影响。【结果】黑麦草翻压对土壤细菌和线虫肠道细菌群落组成和结构没有显著影响(P>0.05);水稻生长后期样品比前期样品具有更高的α多样性。基于随机森林机器学习法获得的土壤细菌和线虫肠道细菌生物标志物之间存在广泛的显著相关关系,为土壤细菌群落变化调控线虫肠道细菌群落组成提供了有力的证据。共现网络分析表明土壤细菌之间的正相互作用显著促进了土壤细菌和线虫肠道细菌之间的正相互作用(P<0.01),进而影响了线虫肠道细菌之间的网络互作。结构方程模型进一步表明土壤养分含量的降低主要通过降低土壤细菌之间正相互作用,从而间接影响线虫肠道细菌之间的互作。【结论】土壤细菌互作可能在...  相似文献   

20.
DNA-based pyrosequencing analysis of the V1- V3 16S rRNA gene region was used to identify bacteria community and shift during early stages of wood colonization in boreal forest soils. The dataset comprised 142,447 sequences and was affiliated to 11 bacteria phyla, 25 classes and 233 genera. The dominant groups across all samples were Proteobacteria, followed by Bacteroidetes, Acidobacteria, Actinobacteria, Amatimonadetes, Planctomycetes and TM7 group. The community structure of the primary wood-inhabiting bacteria differed between types of forest soils and the composition of bacteria remained stable over prolonged incubation time. The results suggest that variations in soil bacterial community composition have an influence on the wood-inhabiting bacterial structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号