首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
The transforming proteins of DNA tumor viruses SV40, adenovirus and human papillomaviruses (HPV) bind the retinoblastoma and p53 cell cycle regulatory proteins. While the binding of SV40 large T antigen and the adenovirus E1B 55 kDa protein results in the stabilization of the p53 protein, the binding of HPV16 and 18 E6 results in enhanced degradation in vitro. To explore the effect of viral proteins on p53 stability in vivo, we have examined cell lines immortalized in tissue culture by HPV18 E6 and E7 or SV40 large T antigen, as well as cell lines derived from cervical neoplasias. The half-life of the p53 protein in non-transformed human foreskin keratinocytes in culture was found to be approximately 3 h while in cell lines immortalized by E6 and E7, p53 protein half-lives ranged from 2.8 h to less than 1 h. Since equivalent levels of E6 were found in these cells, the range in p53 levels observed was not a result of variability in amounts of E6. In keratinocyte lines immortalized by E7 alone, the p53 half-life was found to be similar to that in non-transformed cells; however, it decreased to approximately 1 h following supertransfection of an E6 gene. These observations are consistent with an interaction of E6 and p53 in vivo resulting in reductions in the stability of p53 ranging between 2- and 4-fold. We also observed that the expression of various TATA containing promoters was repressed in transient assays by co-transfection with plasmids expressing the wild-type p53 gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The primary transforming functions of simian virus 40 large T antigen (SV40 LT) are conferred primarily through the binding and inactivation of p53 and the retinoblastoma family members. Normal p53 function requires an association with the CREB binding protein (CBP)/p300 coactivators, and a ternary complex containing SV40 LT, p53, and CBP/p300 has been identified previously. In this report, we have evaluated a secondary function of p53 bound to the SV40 LT complex in mediating the binding of human CBP/p300. We demonstrate that p53 associated with SV40 LT was posttranslationally modified in a manner consistent with the binding of CBP/p300. Furthermore, expression of SV40 LT induced the proportion of p53 phosphorylated on S15. An essential function for p53 in bridging the interaction between SV40 LT and CBP/p300 was identified through the reconstitution of the SV40 LT-CBP/p300 complex upon p53 reexpression in p53-null cells. In addition, the SV40 LT-CBP/p300 complex was disrupted through RNA interference-mediated depletion of endogenous p53. We also demonstrate that SV40 LT was acetylated in a p300- and p53-dependent manner, at least in part through the CH3 domain of p300. Therefore, the binding of p53 serves to modify SV40 LT by targeting CBP and p300 binding to direct the acetylation of SV40 LT.  相似文献   

4.
Small DNA tumor viruses such as simian virus 40 (SV40) and polyomavirus (Py) take advantage of host cell proteins to transcribe and replicate their DNA. Interactions between the viral T antigens and host proteins result in cell transformation and tumor induction. Large T antigen of SV40 interacts with p53, pRb/p107/p130 family members, and the cyclic AMP-responsive element-binding protein (CREB)-binding protein (CBP)/p300. Py large T antigen is known to interact only with pRb and p300 among these proteins. Here we report that Py large T binds to CBP in vivo and in vitro. In co-transfection assays, Py large T inhibits the co-activation functions of CBP/p300 in CREB-mediated transactivation but not in NF-kappa B-mediated transactivation. p53 appears not to be involved in the functions of CREB-mediated transactivation and is not essential for large T:CBP interaction. Mutations introduced into a region of Py large T with homology to adenovirus E1A and SV40 large T prevent binding to the co-activators. These mutant large T antigens fail to inhibit CREB-mediated transactivation. The CBP/p300-binding Py mutants are able to transform established rat embryo fibroblasts but are restricted in their ability to induce tumors in the newborn mouse, indicating that interaction of large T with the co-activators may be essential for virus replication and spread in the intact host.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Functional p53 protein is associated with the ability of cells to arrest in G1 after DNA damage. The E6 protein of cancer-associated human papillomavirus type 16 (HPV-16) binds to p53 and targets its degradation through the ubiquitin pathway. To determine whether the ability of E6 to interact with p53 leads to a disruption of cell cycle control, mutated E6 proteins were tested for p53 binding and p53 degradation targeting in vitro, the ability to reduce intracellular p53 levels in vivo, and the ability to abrogate actinomycin D-induced growth arrest in human keratinocytes. Mutations scattered throughout the amino terminus, either zinc finger or the central region but not the carboxy terminus, severely reduced the ability of E6 to interact with p53. Expression of HPV-16 E6 or mutated E6 proteins that bound and targeted p53 for degradation in vitro sharply reduced the level of intracellular p53 induced by actinomycin D in human keratinocytes. A perfect correlation between the ability of E6 proteins to reduce the level of intracellular p53 and their ability to block actinomycin D-induced cellular growth arrest was observed. These results suggest that interaction with p53 is important for the ability of HPV E6 proteins to circumvent growth arrest.  相似文献   

12.
We have begun to define the human papillomavirus (HPV)-associated proteome for a subset of the more than 120 HPV types that have been identified to date. Our approach uses a mass spectrometry-based platform for the systematic identification of interactions between human papillomavirus and host cellular proteins, and here we report a proteomic analysis of the E6 proteins from 16 different HPV types. The viruses included represent high-risk, low-risk, and non-cancer-associated types from genus alpha as well as viruses from four different species in genus beta. The E6 interaction data set consists of 153 cellular proteins, including several previously reported HPV E6 interactors such as p53, E6AP, MAML1, and p300/CBP and proteins containing PDZ domains. We report the genus-specific binding of E6s to either E6AP or MAML1, define the specific HPV E6s that bind to p300, and demonstrate several new features of interactions involving beta HPV E6s. In particular, we report that several beta HPV E6s bind to proteins containing PDZ domains and that at least two beta HPV E6s bind to p53. Finally, we report the newly discovered interaction of proteins of E6 of beta genus, species 2, with the Ccr4-Not complex, the first report of a viral protein binding to this complex. This data set represents a comprehensive survey of E6 binding partners that provides a resource for the HPV field and will allow continued studies on the diverse biology of the human papillomaviruses.  相似文献   

13.
14.
15.
The E6 and the E7 proteins of the oncogenic human papillomavirus types 16 and 18 can stably associate with p53 and the retinoblastoma protein, respectively. The E6-p53 interaction results in the accelerated degradation of p53 in vitro via the ubiquitin-dependent proteolysis system. In this study we demonstrate that a fusion protein consisting of the N-terminal half of the HPV-16 E7 protein and the full length HPV-16 E6 protein promotes the in vitro degradation of the retinoblastoma protein. This indicates that the property of the HPV-16 E6 protein to stimulate the degradation of p53 can be targeted to other proteins. Unlike the HPV-16 or HPV-18 E6 protein, the E6 proteins of HPV-6 and 11 do not bind to p53 and consequently do not target p53 for degradation. Analogous E7-E6 fusion proteins using the E6 proteins of HPV-6 and HPV-11, however, also have the ability to promote the degradation of the retinoblastoma protein, indicating that the property to target associated proteins for degradation is shared by the anogenital specific HPV E6 proteins.  相似文献   

16.
Hebner C  Beglin M  Laimins LA 《Journal of virology》2007,81(23):12740-12747
The high-risk human papillomavirus (HPV) E6 and E7 proteins act cooperatively to mediate multiple activities in viral pathogenesis. For instance, E7 acts to increase p53 levels while E6 accelerates its rate of turnover through the binding of the cellular ubiquitin ligase E6AP. Interferons are important antiviral agents that modulate both the initial and persistent phases of viral infection. The expression of HPV type 16 E7 was found to sensitize keratinocytes to the growth-inhibitory effects of interferon, while coexpression of E6 abrogates this inhibition. Treatment of E7-expressing cells with interferon ultimately resulted in cellular senescence through a process that is dependent upon acetylation of p53 by p300/CBP at lysine 382. Cells expressing mutant forms of E6 that are unable to bind p300/CBP or bind p53 failed to block acetylation of p53 at lysine 382 and were sensitive to growth arrest by interferon. In contrast, mutant forms of E6 that are unable to bind E6AP remain resistant to the effects of interferon, demonstrating that the absolute levels of p53 are not the major determinants of this activity. Finally, p53 acetylation at lysine 382 was found not to be an essential determinant of other types of senescence such as that induced by overexpression of Ras in human fibroblasts. This study identifies an important physiological role for E6 binding to p300/CBP in blocking growth arrest of human keratinocytes in the presence of interferon and so contributes to the persistence of HPV-infected cells.  相似文献   

17.
The E6 proteins from cervical cancer-associated human papillomavirus (HPV) types such as HPV type 16 (HPV-16) induce proteolysis of the p53 tumor suppressor protein through interaction with E6-AP. We have previously shown that human mammary epithelial cells (MECs) immortalized by HPV-16 E6 display low levels of p53. HPV-16 E6 as well as other cancer-related papillomavirus E6 proteins also binds the cellular protein E6BP (ERC-55). To explore the potential functional significance of these interactions, we created and analyzed a series of E6 mutants for their ability to interact with E6-AP, p53, and E6BP in vitro. While there was a similar pattern of binding among these E6 targets, a subset of mutants differentiated E6-AP binding, p53 binding, and p53 degradation activities. These results demonstrated that E6 binding to E6-AP is not sufficient for binding to p53 and that E6 binding to p53 is not sufficient for inducing p53 degradation. The in vivo activity of these HPV-16 E6 mutants was tested in MECs. In agreement with the in vitro results, most of these p53 degradation-defective E6 mutants were unable to reduce the p53 level in early-passage MECs. Interestingly, several mutants that showed severely reduced ability for interacting with E6-AP, p53, and E6BP in vitro efficiently immortalized MECs. These immortalized cells exhibited low p53 levels at late passage. Furthermore, mutants defective for p53 degradation but able to immortalize MECs were also identified, and the immortal cells retained normal levels of p53 protein. These results imply that multiple functions of HPV-16 E6 contribute to MEC immortalization.  相似文献   

18.
19.
20.
The adenovirus E1A protein interferes with regulators of apoptosis and growth by physically interacting with cell cycle regulatory proteins including the retinoblastoma tumor suppressor protein and the coactivator proteins p300/CBP (where CBP is the CREB-binding protein). The p300/CBP proteins occupy a pivotal role in regulating mitogenic signaling and apoptosis. The mechanisms by which cell cycle control genes are directly regulated by p300 remain to be determined. The cyclin D1 gene, which is overexpressed in many different tumor types, encodes a regulatory subunit of a holoenzyme that phosphorylates and inactivates PRB. In the present study E1A12S inhibited the cyclin D1 promoter via the amino-terminal p300/CBP binding domain in human choriocarcinoma JEG-3 cells. p300 induced cyclin D1 protein abundance, and p300, but not CBP, induced the cyclin D1 promoter. cyclin D1 or p300 overexpression inhibited apoptosis in JEG-3 cells. The CH3 region of p300, which was required for induction of cyclin D1, was also required for the inhibition of apoptosis. p300 activated the cyclin D1 promoter through an activator protein-1 (AP-1) site at -954 and was identified within a DNA-bound complex with c-Jun at the AP-1 site. Apoptosis rates of embryonic fibroblasts derived from mice homozygously deleted of the cyclin D1 gene (cyclin D1(-/-)) were increased compared with wild type control on several distinct matrices. p300 inhibited apoptosis in cyclin D1(+/+) fibroblasts but increased apoptosis in cyclin D1(-/-) cells. The anti-apoptotic function of cyclin D1, demonstrated by sub-G(1) analysis and annexin V staining, may contribute to its cellular transforming and cooperative oncogenic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号