首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survival as well as repair of DNA strand breaks were studied in CHO cells after exposure to internal beta-rays from incorporated [3H]thymidine at 4 degrees C (equivalent to an exposure at 'infinitely high' dose rate) and at 37 degrees C (low dose rate). DNA strand breaks were determined by the alkaline unwinding technique. In cells exposed at 4 degrees C cell killing was five times higher (Do = 250 decays per cell) than in cells exposed at 37 degrees C (Do = 1280 decays per cell). Strand breaks induced by 3H decay at 37 degrees C were repaired with the same kinetics as those generated at 4 degrees C. Therefore the different degrees of cell killing at 4 degrees C and 37 degrees C cannot be attributed to a difference in the repair kinetics for DNA strand breaks.  相似文献   

2.
DNA strand damage in isolated male germ cells (MGC) was evaluated after in vitro exposure to bleomycin (BLM), a known genotoxin. The alkaline elution technique was used to determine DNA-strand breaks. Concentration-dependent strand damage was established following exposure to bleomycin for 1 h at 37 degrees C. Exposure at 0 degrees C resulted in an increase in the frequency of strand breaks as compared to those observed at 37 degrees C. Pretreatment of cells with deferoxamine (DM), an iron-selective chelating agent, abolished the DNA damage induced by bleomycin. Isolated male germ cells responded in a predictable and reproducible manner thus supporting their use in mechanistic studies of genotoxicity.  相似文献   

3.
The purpose of this study was to investigate a possible involvement of poly(ADP-ribosyl)ation reactions in hyperthermic cell killing and hyperthermic DNA strand-break induction and repair in HeLa S3 cells. The inhibitors of poly(ADP-ribose) polymerase, 3-aminobenzamide (3AB) and 4-aminobenzamide (4AB), were used as tools in this study. Both inhibitors could sensitize the cells for hyperthermic cell killing equally well, although 3AB is known to be a more effective enzyme inhibitor. The heat sensitization at the level of cell killing could be reversed when the compounds were still present during a 4-h postincubation at 37 degrees C. More heat-induced DNA strand breaks were formed in the presence of 3AB and 4AB. Repair of strand breaks was inhibited during the postincubation at 37 degrees C. Thus the effect of 3AB and 4AB on DNA strand-break repair was different from the cited effect on cell survival. It is concluded that the sensitizing effect of 3AB and 4AB on hyperthermic cell killing is not caused by inhibition of poly(ADP-ribose) polymerase and is also not related to repair of DNA strand breaks.  相似文献   

4.
Strand breaks were detected in the DNA of Ehrlich ascites cells as well as in HeLa S3 cells directly after 1-5 hr at 43-45 degrees C by the use of the unwinding in high salt/hydroxylapatite method. The strand breaks found could not be attributed to the decay of incorporated tritiated thymidine. When the cells were incubated at 37 degrees C after the hyperthermic treatments, the amount of strand breaks formed remained at a constant level. Hyperthermia inhibited the repair of "radiation-induced" strand breaks. The repair curves obtained this way show a heat-dose-dependent decrease of the relative weight of the fast component of repair. Similar repair curves of "radiation-induced" strand breaks could be obtained by mixing heat inactivated and vital control cells prior to irradiation. In the latter case, however, the DNA repair was inhibited to a greater extent for identical levels of cell survival. The possible underlying molecular mechanisms are discussed.  相似文献   

5.
Melanins have been associated with the development of melanoma and its resistance to photodynamic therapy (PDT). Singlet molecular oxygen ((1)O(2)), which is produced by ultraviolet A solar radiation and the PDT system, is also involved. Here, we investigated the effects that these factors have on DNA damage and repair. Our results show that both types of melanin (eumelanin and pheomelanin) lead to DNA breakage in the absence of light irradiation and that eumelanin is more harmful than pheomelanin. Interestingly, melanins were found to bind to the minor grooves of DNA, guaranteeing close proximity to DNA and potentially causing the observed high levels of strand breaks. We also show that the interaction of melanins with DNA can impair the access of repair enzymes to lesions, contributing to the perpetuation of DNA damage. Moreover, we found that after melanins interact with (1)O(2), they exhibit a lower ability to induce DNA breakage; we propose that these effects are due to modifications of their structure. Together, our data highlight the different modes of action of the two types of melanin. Our results may have profound implications for cellular redox homeostasis, under conditions of induced melanin synthesis and irradiation with solar light. These results may also be applied to the development of protocols to sensitize melanoma cells to PDT.  相似文献   

6.
Exposure of light-grown and dark-grown Euglena cells to gamma radiation causes single strand breaks in nuclear DNA as assessed by sedimentation analysis in alkaline sucrose density gradients. The number of radiation-induced single strand breaks in nuclear DNA of light-grown cells is found to be less than that in dark-grown cells. Post-irradiation incubation of both types of cells in 0 . 1 M phosphate buffer, pH 7 . 0 at 25 degrees C for 1 hour results in restitution of the strand breaks in DNA. Light-grown cells (cells with chloroplasts) are able to rejoin all the single strand breaks in DNA produced by gamma irradiation at D50 and D5 doses. On the other hand, dark-grown cells (cells devoid of chloroplasts) are unable to rejoin all the strand breaks caused by irradiation at either of the doses. The rate of DNA repair in dark-grown cells is also much slower than that in light-grown cells. Radiation-induced single strand breaks in DNA and their repair in nuclei from both types of cells is found to be similar to that observed in the spheroplasts. It is suggested that some factor(s) elaborated by chloroplasts may contribute towards the efficiency of nuclear DNA repair in Euglena cells.  相似文献   

7.
Formation of strand-breaks in DNA and its repair in Yoshida ascites tumor cells exposed to gamma radiation (100-400 Gy) in presence and absence of misonidazole (10 mM) were studied. The methodology involved pre-labelling of cellular DNA by 3H-thymidine during cell proliferation in rats, irradiation of cells in vitro and analysing sedimentation profile of DNA by ultracentrifugation in alkaline sucrose density gradients. Irradiation under euoxic conditions resulted in formation of about 1.5 times greater number of strand breaks as compared to those formed during irradiation under hypoxic conditions. Misonidazole (10 mM) by its presence along with the cells during irradiation under hypoxic conditions caused a 3-fold increase in the number of single strand breaks, but under euoxic conditions of irradiation the presence of misonidazole did not enhance the strand break formation. Incubation of cells irradiated in absence of misonidazole for 1 hr in tissue culture medium at 37 degrees C resulted in repair of substantial fraction of the strand breaks while there was no repair of the DNA strand breaks in cells irradiated in the presence of the chemical.  相似文献   

8.
X-ray-induced DNA base damage can be detected using endonuclease III and formamidopyrimidine-glycosylase, which create DNA strand breaks at enzyme-sensitive sites. Strand breaks can then be measured with excellent sensitivity using the alkaline comet assay, a single-cell gel electrophoresis method that detects DNA damage in individual cells. In using this approach to measure the oxygen enhancement ratio (OER) for radiation-induced base damage, we observed that the number of enzyme-sensitive sites increased with dose up to 4 Gy in air and 12 Gy in hypoxic WIL2NS cells. After rejoining of radiation-induced strand breaks, base damage was detected more easily after higher doses. The number of radiation-induced enzyme-sensitive sites was similar under both air and nitrogen. Base damage produced by hydrogen peroxide and 4-nitroquinoline-N-oxide (4NQO) was also measured. Results with hydrogen peroxide (20 min at 4 degrees C) were similar to those observed for X rays, indicating that enzyme-sensitive sites could be detected most efficiently when few direct strand breaks were present. Removing DNA-associated proteins before irradiation did not affect the ability to detect base damage. Base damage produced by 4NQO (30 min at 37 degrees C) was readily apparent after treatment with low concentrations of the drug when few 4NQO-induced strand breaks were present, but the detection sensitivity decreased rapidly as direct strand breaks increased after treatment with higher concentrations. We conclude that: (1) the OER for base damage is approximately 1.0, and (2) the presence of direct DNA strand breaks (>2000-4000 per cell) prevents accurate detection of base damage measured as enzyme-sensitive sites with the alkaline comet method.  相似文献   

9.
Elaboration of cellular DNA breaks by hydroperoxides.   总被引:2,自引:0,他引:2  
Cellular damage produced by ionizing radiation and peroxides, hydrogen peroxide (HOOH) and the organic peroxides tert-butyl (tBuOOH) or cumene hydroperoxide (CuOOH) were compared. DNA breaks, toxicity, malondialdehyde production, and the rate of peroxide disappearance were measured in a human adenocarcinoma cell line (A549). The alkaline and neutral filter elution assays were used to quantitate the kinetics of single and double strand break formation and repair (SSB and DSB), respectively. Peroxides, at 0.01-1.0 mM, produce multiphasic dose response curves for both toxicity and DNA SSBs. Radiation, 1-6 Gy, produced a shouldered survival curve, and both DNA SSB and DSBs produced in cells x-rayed on ice were nearly linear with dose. The peroxides produced more SSBs than radiation at equitoxic doses. X-ray induced DNA single strand breaks were rejoined rapidly by cells at 37 degrees C with approximately 80% of initial damage repaired in 20 min. Peroxide induced SSBs were maximal after 15 min at 37 degrees C. Rejoining proceeded thereafter, but at a rate less than for x-ray induced strand breaks. Significant DNA DSBs could not be achieved by peroxides even at concentrations 50-fold higher than required to produce SSBs. HOOH treatment of DNA on filters following cell lysis and proteolysis produced SSBs. CuOOH and tBuOOH produced no SSBs in lysed cell DNA. None of the peroxides produced DSBs when incubated with lysed cell DNA. Malondialdehyde was released from cells incubated with organic hydroperoxides, but not HOOH, nor up to 40 Gy of x-rays. HOOH was metabolized three times faster than the organic peroxides. The overall results demonstrate the necessity for a metabolically active cell environment to elaborate maximal DNA strand breaks and cell death at hydroperoxide concentrations of 10(-4) or greater, but prevent strand breaks and stimulate cell growth at 10(-5) M.  相似文献   

10.
The ability to detect DNA damage using the alkaline comet assay depends on pH, lysis time and temperature during lysis. However, it is not known whether different lysis conditions identify different types of DNA damage or simply measure the same damage with different efficiencies. Results support the latter interpretation for radiation, but not for the alkylating agent MNNG. For X-ray-induced damage, cells showed the same amount of damage, regardless of lysis pH (12.3 compared to >13). However, increasing the duration of lysis at 5 degrees C from 1 h to more than 6 h increased the amount of DNA damage detected by almost twofold. Another twofold increase in apparent damage was observed by conducting lysis at room temperature (22 degrees C) for 6 h, but at the expense of a higher background level of DNA damage. The oxygen enhancement ratio and the rate of rejoining of single-strand breaks after irradiation were similar regardless of pH and lysis time, consistent with more efficient detection of strand breaks rather than detection of damage to the DNA bases. Conversely, after MNNG treatment, DNA damage was dependent on both lysis time and pH. With the higher-pH lysis, there was a reduction in the ratio of oxidative base damage to strand breaks as revealed using treatment with endonuclease III and formamidopyrimidine glycosylase. Therefore, our current results support the hypothesis that the increased sensitivity of longer lysis at higher pH for detecting radiation-induced DNA damage is due primarily to an increase in efficiency for detecting strand breaks, probably by allowing more time for DNA unwinding and diffusion before electrophoresis.  相似文献   

11.
Induction and repair of DNA strand breaks in asynchronous and synchronized cultures of human lymphocytes was investigated by using the alkaline DNA-unwinding technique followed by chromatography on hydroxylapatite. Strand break rejoining in exponentially growing human PHA stimulated lymphocytes, irradiated with 20 Gy of X-rays, is temperature-dependent, being fast at 37 degrees C (half-time of a few minutes), and very slow at around 4 degrees C. In synchronized cells irradiated with the same X-ray dose, the repair capacity increases during S phase reaching its maximum when DNA is entirely duplicated.  相似文献   

12.
Radiation induced damage, i.e., the induction of DNA strand breaks, was studied on the level of single, unlabeled cells. DNA strand breaks were determined by direct partial alkaline unwinding in intact cell nuclei followed by staining with acridine orange, a development of a proposal first described by B. Rydberg (Int J Radiat Biol 46:521-527, 1984). The ratio of green fluorescence (double-stranded DNA) to red fluorescence (single-stranded DNA) in single cells was taken as a measure of DNA strand breaks. CHO-K1 and M3-1 cells irradiated with X-rays show a dose dependent induction of DNA strand breaks. Incubation at 37 degrees C after irradiation leads to repair of breaks. A repair halflife of about 10-11 min can be determined. Cell cycle specific differences in the induction of DNA strand breaks or repair behavior are not detectable at the resolution achieved so far. This new method offers two major advantages: the resolution of DNA damage and repair on the level of single cells and no need for labeling, thereby allowing for DNA damage and repair to be assessed in biopsy material from tumor patients.  相似文献   

13.
Using the in vitro human diploid fibroblast model, we tested theories of aging which hypothesize that either accumulation of DNA damage or decreased DNA repair capacity is causally related to cellular senescence. Between population doubling level (PDL) 32 and 71, fetal lung-derived normal diploid human fibroblasts (IMR 90) were assayed for both DNA single-strand breaks (SSBs, spontaneous and induced by 6 Gy) and DNA double-strand breaks (DSBs, spontaneous and induced by 100 Gy). After gamma-irradiation cells were kept on ice unless undergoing repair incubation at 37 degrees C for 7.5-120 min or 18-24 h. To assay DNA strand breaks we used the filter elution technique in conjunction with a fluorometric determination of DNA which is not biased in favor of proliferating aging cells as are radioactive labelling methods. We found no change with in vitro age in the accumulation of spontaneous SSBs or DSBs, nor in the kinetics or completeness of DNA strand rejoining after gamma-irradiation. Cells at varying PDLs rejoined approx. 90% of SSBs and DSBs after 60 min repair incubation and 100% after 18-24 h repair incubation. We conclude that aging and senescence as measured by proliferative lifespan in IMR 90 cells are neither accompanied nor caused by accumulation of DNA strand breaks or by diminished capacity to rejoin gamma-radiation-induced SSBs or DSBs in DNA.  相似文献   

14.
DNA strand breaks induced in human CCRF-CEM cells by electrophilic chemicals (carcinogens/mutagens) can be readily quantitated via a facile alkaline unwinding assay. This procedure estimates the number of chemically induced DNA strand breaks on the basis of the percentage DNA converted from double-stranded to single-stranded form during an exposure to the alkaline unwinding conditions. The assay is based on the assumption that each strand break serves as a strand unwinding point during the alkaline denaturation. The extent of strand separation can be standardized with respect to the initial level of induced strand breaks by the use of X-rays, which produce known levels of DNA strand breaks per rad in mammalian cells. Subsequent to the alkaline exposure, the single- and double-stranded DNA were separated by use of thermostated hydroxylapatite columns (60 degrees C), and the DNA was quantitated via a fluorescence assay (Hoechst 33258 compound). A correlation was shown between mammalian DNA strand-breaking potential (as measured in this procedure) and the propensity of these chemicals to revert Salmonella typhimurium TA100.  相似文献   

15.
Idarubicin is an anthracycline antibiotic used in cancer therapy. Mitoxantrone is an anthracycline analog with presumed better antineoplastic activity and lesser toxicity. Using the alkaline comet assaywe showed that the drugs at 0.01-10 microM induced DNA damage in normal human lymphocytes. The effect induced by idarubicin was more pronounced than by mitoxantrone (P < 0.001). The cells treated with mitoxantrone at 1 microM were able to repair damage to their DNA within a 30-min incubation, whereas the lymphocytes exposed to idarubicin needed 180 min. Since anthracyclines are known to produce free radicals, we checked whether reactive oxygen species might be involved in the observed DNA damage. Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by idarubicin, but did not affect the extent evoked by mitoxantrone. Lymphocytes exposed to the drugs and treated with endonuclease III or formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing and nicking oxidized bases, displayed a higher level of DNA damage than the untreated ones. 3-Methyladenine-DNA glycosylase II (AlkA), an enzyme recognizing and nicking mainly methylated bases in DNA, increased the extent of DNA damage caused by idarubicin, but not that induced by mitoxantrone. Our results indicate that the induction of secondary malignancies should be taken into account as side effects of the two drugs. Direct strand breaks, oxidation and methylation of the DNA bases can underlie the DNA-damaging effect of idarubicin, whereas mitoxantrone can induce strand breaks and modification of the bases, including oxidation. The observed in normal lymphocytes much lesser genotoxicity of mitoxantrone compared to idarubicin should be taken into account in planning chemotherapeutic strategies.  相似文献   

16.
Reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) are produced in the skin under the influence of UV radiation. These compounds are highly reactive and can induce DNA lesions in epidermal cells. Melanin is considered to protect human skin against DNA damage by absorbing UV radiation. We have investigated whether melanin can, in addition, offer protection against the effects of H(2)O(2) in human melanocytes and HaCaT keratinocytes. In the present study, it was shown that 40 and 100 microM H(2)O(2) increased the number of DNA strand breaks as measured using the comet assay, in melanocytes of Caucasian origin. In melanocytes of the same origin in which melanin levels were increased by culturing in presence of 10 mM NH(4)Cl and elevated l-tyrosine, H(2)O(2)-induced DNA damage was reduced compared to that in control melanocytes. Similarly, HaCaT cells that were loaded with melanin were better protected against H(2)O(2)-induced DNA strand breaks than control HaCaT cells. These protective effects of melanin were mimicked by the intracellular Ca(2+)-chelator BAPTA. Thus, BAPTA reduced the level of H(2)O(2)-induced DNA strand breaks in melanocytes. Like BAPTA, melanin is known to be a potent chelator of Ca(2+) and this was confirmed in the present study. It was shown that melanin levels in melanocytic cells correlated directly with intracellular Ca(2+) binding capacity and, in addition, correlated inversely with H(2)O(2)-induced increases in intracellular Ca(2+). Our results show that melanin may have an important role in regulating intracellular Ca(2+) homeostasis and it is suggested that melanin protects against H(2)O(2)-induced DNA strand breaks in both melanocytes and keratinocytes and through its ability to bind Ca(2+).  相似文献   

17.
When HeLa cells are irradiated with UV and treated with the DNA synthesis inhibitors hydroxyurea (HU) and 1-beta-D-arabinofuranosylcytosine (ara C), DNA strand breaks accumulate at sites where excision repair of DNA damage has been inhibited after the incision step. This break accumulation occurs in mitotic, G1 and S phase cells. But UV-induced repair synthesis of DNA, as measured by [3H]thymidine incorporation into unreplicated DNA, is not inhibited by HU and ara C in G1 or S phase cells, even though replicative synthesis is virtually abolished. Repair and replication must therefore utilise different DNA precursor pools, or different DNA synthetic systems; and the action of Hu and ara C in causing strand break accumulation may occur at the ligation step of excision repair.  相似文献   

18.
CHO cells and cs-4-D3 cells were used to investigate the association between poly(ADP-rib) synthesis and the cessation of DNA synthesis and DNA fragmentation. The cs4-D3 cells are cold-sensitive DNA synthesis arrest mutants of CHO cells. Upon incubation at 33 degrees C, DNA synthesis in the cs4-D3 cells stops and the cells enter a prolonged G1 or G0 phase. The events that occurred when cs4 cells were incubated at 33 degrees C were similar to those that occurred when wild-type CHO cells grew to high density. (1) In both cases, DNA synthesis and cell growth stopped. (2) The NAD+ concentration/cell was 20-25% lower in growth-arrested cells than in logarithmically growing cells. (3) Poly(ADP-rib) synthesis was 3-4 fold higher in growth-arrested cells than in logarithmically growing cells. (4) The growth-inhibited cells developed DNA strand breaks which resulted in large percentages of their DNA appearing in the low molecular weight range of alkaline sucrose gradients. (5) Both the increased rate of poly(ADP-rib) synthesis and the development of DNA strand breaks appears to be characteristic of the G1 phase of the cell cycle. (6) When growth-inhibited cells were restored to conditions favorable for DNA synthesis and cell growth, the DNA strand breaks were repaired. (7) Prolonged incubation under growth-restrictive conditions resulted in the accumulation of more DNA strand breaks than the cells could repair. This was followed by cell death when the cells were restored to conditions favorable for cell growth.  相似文献   

19.
Previous reports have suggested that the potentiation of cellular radiation sensitivity by hyperthermia may be due to its inhibition of the repair of single-strand breaks in DNA. Such inhibition could result in increased numbers of unrejoined breaks at long times following irradiation, lesions that are presumed to be lethal to the cell. As a test of this hypothesis, the amounts of residual strand-break damage in cells following combined hyperthermia and ionizing radiation were measured. The results show that hyperthermia does significantly enhance the relative number of unrejoined strand breaks as measured by the technique of alkaline elution and that the degree of enhancement is dependent on both the temperature and duration of the hyperthermia treatment. For example, compared to unheated cells, the proportion of unrejoined breaks measured 8 hr after irradiation was increased by a factor of 1.5 in cells that were treated for 30 min at 43 degrees C, by a factor of 6 for cells treated for 30 min at 45 degrees C, and by a factor of 4 for cells treated at 43 degrees C for 2 hr. In experiments in which the sequence of heat and irradiation were varied, a high degree of correlation was observed between the resulting level of cell killing and the relative numbers of unrejoined strand breaks. The greatest effects on both of these parameters were observed in those protocols in which the irradiation was delivered either during, just before, or just after the heat treatment.  相似文献   

20.
DNA-damaging activity of patulin in Escherichia coli   总被引:1,自引:0,他引:1  
At a concentration of 10 micrograms/ml, patulin caused single-strand DNA breaks in living cells of Escherichia coli. At 50 micrograms/ml, double-strand breaks were observed also. Single-strand breaks were repaired in the presence of 10 micrograms of patulin per ml within 90 min when the cells were incubated at 37 degrees C in M9-salts solution without a carbon source. The same concentration also induced temperature-sensitive lambda prophage and a prophage of Bacillus megaterium. When an in vitro system with permeabilized Escherichia coli cells was used, patulin at 10 micrograms/ml induced DNA repair synthesis and inhibited DNA replication. The in vivo occurrence of DNA strand breaks and DNA repair correlated with the in vitro induction of repair synthesis. In vitro the RNA synthesis was less affected, and overall protein synthesis was not inhibited at 10 micrograms/ml. Only at higher concentrations (250 to 500 micrograms/ml) was inhibition of in vitro protein synthesis observed. Thus, patulin must be regarded as a mycotoxin with selective DNA-damaging activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号