首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Pyruvate dehydrogenase kinase (PDHK) regulates the activity of the pyruvate dehydrogenase multienzyme complex. PDHK inhibition provides a route for therapeutic intervention in diabetes and cardiovascular disorders. We report crystal structures of human PDHK isozyme 2 complexed with physiological and synthetic ligands. Several of the PDHK2 structures disclosed have C-terminal cross arms that span a large trough region between the N-terminal regulatory (R) domains of the PDHK2 dimers. The structures containing bound ATP and ADP demonstrate variation in the conformation of the active site lid, residues 316-321, which enclose the nucleotide beta and gamma phosphates at the active site in the C-terminal catalytic domain. We have identified three novel ligand binding sites located in the R domain of PDHK2. Dichloroacetate (DCA) binds at the pyruvate binding site in the center of the R domain, which together with ADP, induces significant changes at the active site. Nov3r and AZ12 inhibitors bind at the lipoamide binding site that is located at one end of the R domain. Pfz3 (an allosteric inhibitor) binds in an extended site at the other end of the R domain. We conclude that the N-terminal domain of PDHK has a key regulatory function and propose that the different inhibitor classes act by discrete mechanisms. The structures we describe provide insights that can be used for structure-based design of PDHK inhibitors.  相似文献   

2.
Structure-activity relationship of diacylglycerol kinase theta   总被引:3,自引:0,他引:3  
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid (PA). Among the nine mammalian isotypes identified, DGKtheta is the only one with three cysteine-rich domains (CRDs) (instead of two) in its N-terminal regulatory region. We previously reported that DGKtheta binds to and is negatively regulated by active RhoA. We now report that RhoA strongly binds to the C-terminal catalytic domain, which would explain its inhibition of DGK activity. To help finding a physiological function of DGKtheta, we further determined its activity in vitro as a function of 15 different truncations and point mutations in the primary structure. Most of these alterations, located throughout the protein, inactivated the enzyme, suggesting that catalytic activity depends on all of its conserved domains. The most C-terminal CRD is elongated with a stretch of 15 amino acids that is highly conserved among DGK isotypes. Mutation analysis revealed a number of residues in this region that were essential for enzyme activity. We suggest that this CRD extension plays an essential role in the correct folding of the protein and/or in substrate presentation to the catalytic region of the protein.  相似文献   

3.
RhoE binds to ROCK I and inhibits downstream signaling   总被引:17,自引:0,他引:17       下载免费PDF全文
RhoE belongs to the Rho GTPase family, the members of which control actin cytoskeletal dynamics. RhoE induces stress fiber disassembly in a variety of cell types, whereas RhoA stimulates stress fiber assembly. The similarity of RhoE and RhoA sequences suggested that RhoE might compete with RhoA for interaction with its targets. Here, we show that RhoE binds ROCK I but none of the other RhoA targets tested. The interaction of RhoE with ROCK I was confirmed by coimmunoprecipitation of the endogenous proteins, and the two proteins colocalized on the trans-Golgi network in COS-7 cells. Although RhoE and RhoA were not able to bind ROCK I simultaneously, RhoE bound to the amino-terminal region of ROCK I encompassing the kinase domain, at a site distant from the carboxy-terminal RhoA-binding site. Overexpression of RhoE inhibited ROCK I-induced stress fiber formation and phosphorylation of the ROCK I target myosin light chain phosphatase. These data suggest that RhoE induces stress fiber disassembly by directly binding ROCK I and inhibiting it from phosphorylating downstream targets.  相似文献   

4.
As the key mediators of eukaryotic signal transduction, the protein kinases often cause disease, and in particular cancer, when disregulated. Appropriately selective protein kinase inhibitors are sought after as research tools and as therapeutic drugs; several have already proven valuable in clinical use. The AGC subfamily protein kinase C (PKC) was identified early as a cause of cancer, leading to the discovery of a variety of PKC inhibitors. Despite its importance and early discovery, no crystal structure for PKC has yet been reported. Therefore, we have co-crystallized PKC inhibitor bisindolyl maleimide 2 (BIM2) with PKA variants to study its binding interactions. BIM2 co-crystallized as an asymmetric pair of kinase-inhibitor complexes. In this asymmetric unit, the two kinase domains have different lobe configurations, and two different inhibitor conformers bind in different orientations. One kinase molecule (A) is partially open with respect to the catalytic conformation, the other (B) represents the most open conformation of PKA reported so far. In monomer A, the BIM2 inhibitor binds tightly via an induced fit in the ATP pocket. The indole moieties are rotated out of the plane with respect to the chemically related but planar inhibitor staurosporine. In molecule B a different conformer of BIM2 binds in a reversed orientation relative to the equivalent maleimide atoms in molecule A. Also, a critical active site salt bridge is disrupted, usually indicating the induction of an inactive conformation. Molecular modeling of the clinical phase III PKC inhibitor LY333531 into the electron density of BIM2 reveals the probable binding mechanism and explains selectivity properties of the inhibitor.  相似文献   

5.
A group of Cu,Zn-superoxide dismutases from pathogenic bacteria is characterized by histidine-rich N-terminal extensions that are in a highly exposed and mobile conformation. This feature allows these proteins to be readily purified in a single step by immobilized metal affinity chromatography. The Cu,Zn-superoxide dismutases from both Haemophilus ducreyi and Haemophilus parainfluenzae display anomalous absorption spectra in the visible region due to copper binding at the N-terminal region. Reconstitution experiments of copper-free enzymes demonstrate that, under conditions of limited copper availability, this metal ion is initially bound at the N-terminal region and subsequently transferred to an active site. Evidence is provided for intermolecular pathways of copper transfer from the N-terminal domain of an enzyme subunit to an active site located on a distinct dimeric molecule. Incubation with EDTA rapidly removes copper bound at the N terminus but is much less effective on the copper ion bound at the active site. This indicates that metal binding by the N-terminal histidines is kinetically favored, but the catalytic site binds copper with higher affinity. We suggest that the histidine-rich N-terminal region constitutes a metal binding domain involved in metal uptake under conditions of metal starvation in vivo. Particular biological importance for this domain is inferred by the observation that its presence enhances the protection offered by periplasmic Cu,Zn-superoxide dismutase toward phagocytic killing.  相似文献   

6.
Structural basis of Rho GTPase-mediated activation of the formin mDia1   总被引:1,自引:0,他引:1  
Diaphanous-related formins (DRFs) regulate dynamics of unbranched actin filaments during cell contraction and cytokinesis. DRFs are autoinhibited through intramolecular binding of a Diaphanous autoinhibitory domain (DAD) to a conserved N-terminal regulatory element. Autoinhibition is relieved through binding of the GTPase RhoA to the N-terminal element. We report the crystal structure of the dimeric regulatory domain of the DRF, mDia1. Dimerization is mediated by an intertwined six-helix bundle, from which extend two Diaphanous inhibitory domains (DIDs) composed of five armadillo repeats. NMR and biochemical mapping indicate the RhoA and DAD binding sites on the DID partially overlap, explaining activation of mDia1 by the GTPase. RhoA binding also requires an additional structurally independent segment adjacent to the DID. This regulatory construction, involving a GTPase binding site spanning a flexibly tethered arm and the inhibitory module, is observed in many autoinhibited effectors of Ras superfamily GTPases, suggesting evolutionary pressure for this design.  相似文献   

7.
Rho Kinase I (ROCK I) is a serine/threonine kinase that is involved in diverse cellular signaling. To further understand the physiological role of ROCK I and to identify and develop potent and selective inhibitors of ROCK I, we have overexpressed and purified a constitutively active dimeric human ROCK I (3-543) kinase domain using the Sf9-baculovirus expression system. In addition, using a limited proteolysis technique, we have identified a minimal functional subdomain of ROCK I that can be used in crystallization studies. The availability of multimilligram amounts of purified and well characterized functional human ROCK I kinase domains will be useful in screening and structural studies.  相似文献   

8.
Protein kinases have an important role in signal transduction in the cellular system via protein phosphorylation. RhoA activated Rho-kinases have a pivotal role in the regulation of smooth muscle contraction. ROCK I and ROCK II phosphorylate myosin-phosphatase and myosin-kinase, which induces contraction in the myometrium. Several studies have investigated the affinity of isoquinoline alkaloids (HA-1077, H1152P) to Rho-kinases, and these compounds notably inhibited the Ca2+-independent process.We measured the efficiency of 25 original, newly synthesized isoquinoline derivatives for the Rho-kinase activity using Rho-associated kinase activity assay and determined their effects on the non-pregnant, 20-day pregnant and parturient rat myometrial contraction in vitro.The IC50 values of 11 from among the 25 derivatives were significantly lower on the oxytocin-induced non-pregnant rat uterine contraction compared with Y-27632 and fasudil, although their maximal inhibitory effects were weaker than those of Y-27632 and fasudil. We measured the effects of 11 isoquinoline molecules with significant IC50 values on ROCK II activity. We found two isoquinolines out of 11 compounds (218 and 852) which decreased the active ROCK II level similarly as Y-27632. Then we found that 218 and 852 relaxed the 20th-day pregnant and parturient rat uterus with greater potency as compared with fasudil.The majority of the synthesized isoquinoline derivatives have uterus relaxant effects and two of them significantly suppress the Rho-kinase mediated myosin light chain phosphorylation. Our results may suggest that the isoquinoline structure has a promising prospect for the development of new and effective inhibitors of uterine contractions in preterm birth.  相似文献   

9.
Rho kinase (ROCK), a downstream effector of Rho GTPase, is a serine/threonine protein kinase that regulates many crucial cellular processes via control of cytoskeletal structures. The C-terminal PH-C1 tandem of ROCKs has been implicated to play an autoinhibitory role by sequestering the N-terminal kinase domain and reducing its kinase activity. The binding of lipids to the pleckstrin homology (PH) domain not only regulates the localization of the protein but also releases the kinase domain from the close conformation and thereby activates its kinase activity. However, the molecular mechanism governing the ROCK PH-C1 tandem-mediated lipid membrane interaction is not known. In this study, we demonstrate that ROCK is a new member of the split PH domain family of proteins. The ROCK split PH domain folds into a canonical PH domain structure. The insertion of the atypical C1 domain in the middle does not alter the structure of the PH domain. We further show that the C1 domain of ROCK lacks the diacylglycerol/phorbol ester binding pocket seen in other canonical C1 domains. Instead, the inserted C1 domain and the PH domain function cooperatively in binding to membrane bilayers via the unconventional positively charged surfaces on each domain. Finally, the analysis of all split PH domains with known structures indicates that split PH domains represent a unique class of tandem protein modules, each possessing distinct structural and functional features.  相似文献   

10.
NDR, a nuclear serine/threonine kinase, belongs to the subfamily of Dbf2 kinases that is critical to the morphology and proliferation of cells. The activity of NDR kinase is modulated in a Ca(2+)/S100B-dependent manner by phosphorylation of Ser281 in the catalytic domain and Thr444 in the C-terminal regulatory domain. S100B, which is a member of the S100 subfamily of EF-hand proteins, binds to a basic/hydrophobic sequence at the junction of the N-terminal regulatory and catalytic domains (NDR(62-87)). Unlike calmodulin-dependent kinases, regulation of NDR by S100B is not associated with direct autoinhibition of the active site, but rather involves a conformational change in the catalytic domain triggered by Ca(2+)/S100B binding to the junction region. To gain further insight into the mechanism of activation of the kinase, studies have been carried out on Ca(2+)/S100B in complex with the intact N-terminal regulatory domain, NDR(1-87). Multidimensional heteronuclear NMR analysis showed that the binding mode and stoichiometry of a peptide fragment of NDR (NDR(62-87)) is the same as for the intact N-terminal regulatory domain. The solution structure of Ca(2+)/S100B and NDR(62-87) has been determined. One target molecule is found to associate with each subunit of the S100B dimer. The peptide adopts three turns of helix in the bound state, and the complex is stabilized by both hydrophobic and electrostatic interactions. These structural studies, in combination with available biochemical data, have been used to develop a model for calcium-induced activation of NDR kinase by S100B.  相似文献   

11.
Structural basis for the autoinhibition of focal adhesion kinase   总被引:9,自引:0,他引:9  
Lietha D  Cai X  Ceccarelli DF  Li Y  Schaller MD  Eck MJ 《Cell》2007,129(6):1177-1187
Appropriate tyrosine kinase signaling depends on coordinated sequential coupling of protein-protein interactions with catalytic activation. Focal adhesion kinase (FAK) integrates signals from integrin and growth factor receptors to regulate cellular responses including cell adhesion, migration, and survival. Here, we describe crystal structures representing both autoinhibited and active states of FAK. The inactive structure reveals a mechanism of inhibition in which the N-terminal FERM domain directly binds the kinase domain, blocking access to the catalytic cleft and protecting the FAK activation loop from Src phosphorylation. Additionally, the FERM domain sequesters the Tyr397 autophosphorylation and Src recruitment site, which lies in the linker connecting the FERM and kinase domains. The active phosphorylated FAK kinase adopts a conformation that is immune to FERM inhibition. Our biochemical and structural analysis shows how the architecture of autoinhibited FAK orchestrates an activation sequence of FERM domain displacement, linker autophosphorylation, Src recruitment, and full catalytic activation.  相似文献   

12.
G Buisson  E Due  R Haser    F Payan 《The EMBO journal》1987,6(13):3909-3916
The crystal structure of porcine pancreatic alpha-amylase (PPA) has been solved at 2.9 A resolution by X-ray crystallographic methods. The enzyme contains three domains. The larger, in the N-terminal part, consists of 330 amino acid residues. This central domain has the typical parallel-stranded alpha-beta barrel structure (alpha beta)8, already found in a number of other enzymes like triose phosphate isomerase and pyruvate kinase. The C-terminal domain forms a distinct globular unit where the chain folds into an eight-stranded antiparallel beta-barrel. The third domain lies between a beta-strand and a alpha-helix of the central domain, in a position similar to those found for domain B in triose phosphate isomerase and pyruvate kinase. It is essentially composed of antiparallel beta-sheets. The active site is located in a cleft within the N-terminal central domain, at the carboxy-end of the beta-strands of the (alpha beta)8 barrel. Binding of various substrate analogues to the enzyme suggests that the amino acid residues involved in the catalytic reaction are a pair of aspartic acids. A number of other residues surround the substrate and seem to participate in its binding via hydrogen bonds and hydrophobic interactions. The 'essential' calcium ion has been located near the active site region and between two domains, each of them providing two calcium ligands. On the basis of sequence comparisons this calcium binding site is suggested to be a common structural feature of all alpha-amylases. It represents a new type of calcium-protein interaction pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
MRCKα and MRCKβ (myotonic dystrophy kinase-related Cdc42-binding kinases) belong to a subfamily of Rho GTPase activated serine/threonine kinases within the AGC-family that regulate the actomyosin cytoskeleton. Reflecting their roles in myosin light chain (MLC) phosphorylation, MRCKα and MRCKβ influence cell shape and motility. We report further evidence for MRCKα and MRCKβ contributions to the invasion of cancer cells in 3-dimensional matrix invasion assays. In particular, our results indicate that the combined inhibition of MRCKα and MRCKβ together with inhibition of ROCK kinases results in significantly greater effects on reducing cancer cell invasion than blocking either MRCK or ROCK kinases alone. To probe the kinase ligand pocket, we screened 159 kinase inhibitors in an in vitro MRCKβ kinase assay and found 11 compounds that inhibited enzyme activity >80% at 3 μM. Further analysis of three hits, Y-27632, Fasudil and TPCA-1, revealed low micromolar IC(50) values for MRCKα and MRCKβ. We also describe the crystal structure of MRCKβ in complex with inhibitors Fasudil and TPCA-1 bound to the active site of the kinase. These high-resolution structures reveal a highly conserved AGC kinase fold in a typical dimeric arrangement. The kinase domain is in an active conformation with a fully-ordered and correctly positioned αC helix and catalytic residues in a conformation competent for catalysis. Together, these results provide further validation for MRCK involvement in regulation of cancer cell invasion and present a valuable starting point for future structure-based drug discovery efforts.  相似文献   

14.
Rho-kinase is a key regulator of cytoskeletal events and a promising drug target in the treatment of vascular diseases and neurological disorders. Unlike other protein kinases, Rho-kinase requires both N- and C-terminal extension segments outside the kinase domain for activity, although the details of this requirement have been elusive. The crystal structure of an active Rho-kinase fragment containing the kinase domain and both the extensions revealed a head-to-head homodimer through the N-terminal extension forming a helix bundle that structurally integrates the C-terminal extension. This structural organization enables binding of the C-terminal hydrophobic motif to the N-terminal lobe, which defines the correct disposition of helix alphaC that is important for the catalytic activity. The bound inhibitor fasudil significantly alters the conformation and, consequently, the mode of interaction with the catalytic cleft that contains local structural changes. Thus, both kinase and drug conformational pliability and stability confer selectivity.  相似文献   

15.
The Rho-kinase (ROCK) plays an important role in the pathogenesis of heart injury. Recent cellular and molecular biology studies indicated a pivotal role of the RhoA/ROCK cascade in many aspects of cardiovascular function such as heart failure, cardiac hypertrophy, and ventricular remodeling following myocardial infarction. However, the signal transduction of RhoA/ROCK and its down-stream signaling pathways remains elusive, and the mechanism of ROCK-mediated isoproterenol (ISO)-induced heart failure is still not thoroughly understood. In the present study, we investigated the effect of the ROCK inhibitor, fasudil hydrochloride hydrate, on ISO-induced heart failure and the potential relationship of RhoA/ROCK to the extracellular signal-regulated kinases (ERK) and the c-jun NH 2-terminal kinase (JNK) pathways. Male Sprague-Dawley (SD) rats, maintained on a normal diet, were randomly divided into four groups given control, ISO alone, ISO with low-dose fasudil, or ISO with high-dose fasudil treatments. Fasudil effectively inhibited ISO-induced heart failure, as evaluated by biometric, hemodynamic, and histological examinations. Consistently, ISO-induced ROCK-1 mRNA expression and myosin phosphatase target subunit-1 (MYPT-1) phosphorylation were markedly suppressed by fasudil. In addition, fasudil significantly decreased ISO-induced JNK activation, ERK translocation to the nucleus and subsequent c-fos, c-jun expression and upregulated c-FLIP(L) expression. Taken together, these results indicate that the RhoA/ROCK pathway is essential for ISO induced heart failure, which can be effectively suppressed by fasudil.  相似文献   

16.
We describe in the present paper mutations of the catalytic subunit α of PKA (protein kinase A) that introduce amino acid side chains into the ATP-binding site and progressively transform the pocket to mimic that of Aurora protein kinases. The resultant PKA variants are enzymatically active and exhibit high affinity for ATP site inhibitors that are specific for Aurora kinases. These features make the Aurora-chimaeric PKA a valuable tool for structure-based drug discovery tasks. Analysis of crystal structures of the chimaera reveal the roles for individual amino acid residues in the binding of a variety of inhibitors, offering key insights into selectivity mechanisms. Furthermore, the high affinity for Aurora kinase-specific inhibitors, combined with the favourable crystallizability properties of PKA, allow rapid determination of inhibitor complex structures at an atomic resolution. We demonstrate the utility of the Aurora-chimaeric PKA by measuring binding kinetics for three Aurora kinase-specific inhibitors, and present the X-ray structures of the chimaeric enzyme in complex with VX-680 (MK-0457) and JNJ-7706621 [Aurora kinase/CDK (cyclin-dependent kinase) inhibitor].  相似文献   

17.
How sorting receptors recognize amino acid determinants on polypeptide ligands and respond to pH changes for ligand binding or release is unknown. The plant vacuolar sorting receptor BP-80 binds polypeptide ligands with a central Asn-Pro-Ile-Arg (NPIR) motif. tBP-80, a soluble form of the receptor lacking transmembrane and cytoplasmic sequences, binds the peptide SSSFADSNPIRPVTDRAASTYC as a monomer with a specificity indistinguishable from that of BP-80. tBP-80 contains an N-terminal region homologous to ReMembR-H2 (RMR) protein lumenal domains, a unique central region, and three C-terminal epidermal growth factor (EGF) repeats. By protease digestion of purified secreted tBP-80, and from ligand binding studies with a secreted protein lacking the EGF repeats, we defined three protease-resistant structural domains: an N-terminal/RMR homology domain connected to a central domain, which together determine the NPIR-specific ligand binding site, and a C-terminal EGF repeat domain that alters the conformation of the other two domains to enhance ligand binding. A fragment representing the central domain plus the C-terminal domain could bind ligand but was not specific for NPIR. These results indicate that two tBP-80 binding sites recognize two separate ligand determinants: a non-NPIR site defined by the central domain-EGF repeat domain structure and an NPIR-specific site contributed by the interaction of the N-terminal/RMR homology domain and the central domain.  相似文献   

18.
19.
We have investigated the influence of the N-terminal domain of the 94-kDa glucocorticoid receptor on the DNA:receptor interaction. An alpha-chymotrypsin-induced 39-kDa receptor fragment, containing the hormone and DNA binding domains, binds DNA with a reduced specificity compared to the intact 94-kDa receptor. Various footprinting assays did not reveal any qualitative differences when comparing the DNA contact points made by the two different receptor entities. Like the intact receptor, the 39-kDa receptor fragment binds as a dimer to DNA. Glutaraldehyde cross-linking demonstrated a difference in the protein:protein contacts of the two homodimers. Furthermore, the dimeric 94-kDa receptor did not recognize a half-DNA site, while the dissociated 94-kDa receptor dimer and the dimeric 39-kDa receptor fragment allowed binding to such a site. These results suggest that the loss of the N-terminal domain of the receptor affects the steric arrangement and/or rigidity of the two DNA binding domains of the receptor homodimer, resulting in a decreased DNA binding specificity of the 39-kDa receptor fragment.  相似文献   

20.
The catalytic subunit of cAMP-dependent protein kinase has served as a prototype for the protein kinase superfamily for many years while structures of the cAMP-bound regulatory subunits have defined the conserved cyclic nucleotide binding (CNB) motif. It is only structures of the holoenzymes, however, that enable us to appreciate the molecular features of inhibition by the regulatory subunits as well as activation by cAMP. These structures reveal for the first time the remarkable malleability of the regulatory subunits and the CNB domains. At the same time, they allow us to appreciate that the catalytic subunit is not only a catalyst but also a scaffold that mediates a wide variety of protein:protein interactions. The holoenzyme structures also provide a new paradigm for designing isoform-specific activators and inhibitors of PKA. In addition to binding to the catalytic subunits, the regulatory subunits also use their N-terminal dimerization/docking domain to bind with high affinity to A Kinase Anchoring Proteins using an amphipathic helical motif. This targeting mechanism, which localizes PKA near to its protein substrates, is also a target for therapeutic intervention of PKA signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号